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FOREWORD

Literature in the field of nomography is nowadays so extensive
that in many languages textbooks of nomography and collections
of nomograms for various branches of technology are published
separately.

This book is not a collection of nomograms but a manual
to teach nomography. The examples contained in it are not
meant to give ready-made solutions for the use of engineers but
serve as illustrations of the methods of constructing nomograms;
that is why most of them are given without any comment regarding
the technical problems from which they have arisen.

The importance of geometrical transformations, and partic-
ularly projective transformations of a plane, has been specially
stressed. The traditional method of providing the best form
of a nomographic drawing within the given variability limits
of the parameters occurring in the equation, a method consisting
in a suitable choice of units for various functional scales, has
been replaced in this manual by a method of transforming an
arbitrary nomogram satisfying the given equation. Thus the
finding of the so called modules, which is different for every
type of equations dealt with in nomography, has been replaced
by one method: a projective transformation of an arbitrary
quadrilateral into a rectangle.

Accordingly, Chapter I begins with the necessary informa-
tion on the projective plane and collineation transformations.
They have been approached both from the geometrical and the
algebraical point of view: the geometrical approach aims at
permitting the use of elementary geometrical methods in drawing
collineation nomograms consisting of three rectilinear scales
(§§ 10-13) while the algebraical treatment concerns nomograms
containing curvilinear scales. The necessary algebraic calculation

has been developed as a uniform procedure involving the use
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8 FOREWORD

of the matrix calculus. The chapter ends with information on
duality in the plane.

Chapter II contains the fundamental data concerning functio-
nal scales.

In the first part of Chapter III those equations are singled
out which can be represented by elementary methods without
the use of a system of coordinates. Those equations are most
frequent in practice and it has seemed advisable to give the
simplest methods for them. The remaining cases (§§ 15-19)
require the use of algebraic calculation. The second part of Chapter
IIT deals with nomograms with a binary field (lattice nomo-
grams): it has been stressed that from the algebraical point of
view it is only necessary to pass from the coordinates of a point
to the coordinates of a straight line.

In Chapter IV the methods discussed in the preceding chapters
are used for constructing combined nomograms.

Chapter V is an introduction to mathematical problems which
have arisen in the analysis of the methods of constructing nomo-
grams. Besides solutions known in literature, such as the so
called Massau method and the criterion of Saint Robert, § 31
contains an algebraic criterion of nomogrammability of functions,
which is a realisation of an idea of Duporq (Comptes Rendus 1898).
It finally solves a problem which has only partially been solved
by other authors, who have been using complicated, practically
inapplicable methods.

My manuscript has been revised and corrected in various
places by Dr. K. Kominek from Prague, for which I owe him
sincere thanks.

THE AUTHOR



CHAPTER I

INTRODUCTION

§ 1. Nomograms

Nomograms are drawings made on a plane in order to replace
cumbersome numerical calculations occurring in technology by
simple geometrical constructions. Figure 1 is an example of
a nomogram of this kind. It is closely connected with the formula

185

A = 3160 . (1.1)

d4~97

The numerical values of the variable ¢ are represented in
the figure by points of the segment marked with the letter G;
each number contained between 1000 and 10000 has a point
of this segment corresponding to it, and vice versa; in Fig. 1 only
the points corresponding to numbers 1000, 2000, ..., 10000 are
marked, but it should be understood of course that intermediate
points correspond to intermediate values. The same can be said
of the numerical values of the variable d contained between the
numbers 40 and 350 and the segment marked by the letter d in
the figure, as well as of the numerical values of the variable
A4 and the segment A in the nomogram. Now the close relation
between Fig. 1 and formula (1.1) consists in the fact that the
three numbers G,, d, and 4, satisfy equation (1.1) if and only
if the three points of the nomogram corresponding to those points
lie on the same straight line. By way of example, points ¢/, = 2238,
dy = 82 and 4, = 1-52 have been marked on the nomogram.
We thus see that the calculation necessary to find A, with given
G, and d, is equivalent to the determination of a straight line
joining points G and d, in the nomogram, fixing the point of
intersection of that line with segment 4 and reading the corres-
ponding number A,.

Let us disregard for the present the method of executing Fig. 1

9



10 NOMOGRAPHY

(which will be dealt with in Chapter III) and consider the advis-
ability of constructing geometrical figures like the nomogram
in Fig. 1. To begin with, it should be observed that the nomogram
in question permits us to read number A, only with a limited
accuracy, depending of course on the magnitude of the segment
corresponding to the given interval on A; if that segment were

d 4 G
350 1000
3003 1
2503 - 1500
200% 3

E 2000
150 [ 2500

g - 3000
100 :

3 - 4000

1 3
80 E

1 5000
70 2

1 E- 6000
60 ] :

] 7000
50 i—sooo

] E- 9000
40~ £ 10000

Fig. 1

longer, the accuracy would be greater. The same applies to
the remaining two segments, marked in Fig. 1 with letters ¢ and d.
In order to increase the reading accuracy we could thus enlarge
the drawing (just as we use logarithmic tables with a larger
number of digits in order to increase the accuracy of numerical


file:///5000
file:///9000
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calculations). Obviously, we can restrict ourselves to enlarging
only the lengths of the lines for instance, leaving their distance
from one another unchanged, i.e. we can make a transformation
of the plane of the drawing according to the formulas

E=w, mn==Fky, where k>1 (1.2)

(it is assumed here that the segments G, d and A are parallel
to the axis y); as we know, three points of a plane that lie on
a straight line will be changed by this transformation into three
new points also lying on a (new) straight line. (The transforma-
tion defined by formulas (1.2) produces an elongation of the
plane in the direction of the axis y.) Therefore, if three numbers
G,, 4, and d, satisfy equation (1.1), then the points corresponding
to those numbers after a transformation according to formulas
(1.2) will, in the new drawing, also lie on a straight line. The new
drawing will also be a nomogram for the given equation. It can
thus be seen that a nomogram corresponding to formula (1.1)
may yield a new nomogram by being subjected to a suitable
transformation. We are of course interested only in those transfor-
mations which to each three points that are collinear, i.e. lie
on a straight line, assign three new points also lying on a (different)
straight line. It can be seen that the transformations defined
by formulas (1.2) are not the only transformations of this kind;
there are a great many such transformations. The choice of a suit-
able transformation to obtain the best form of the nomogram
is of essential importance in nomography.

Mappings of a plane which transform every triple of collinear
points into another triple of collinear points constitute one of
the branches of projective geometry. Our exposition of nomo-
graphy will be preceded by a discussion of the basic notions
and theorems of that branch of geometry.

§ 2. Projective plane

2.1. Consider two planes a, and «, and a point § not lying
on either of them (Fig. 2). To a point P, of the plane a, let
us assign such a point P, of the plane a, as to make the three
points P;, P,, and 8§ collinear. We can immediately observe
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that this agreement assigns to every point of the plane a, a certain
point of the plane a, if and only if the plane @, is parallel to the
plane a,. If the plane a, were not parallel to the plane a;, the
points of the straight line n;, along which the plane a, intersects
the plane «, parallel to a, and passing through the point S,

would have no counterparts on the plane a, Indeed, joining
the point NV, lying on the straight line n, to the point § in order
to find the corresponding point N,, we should see that the
straight line obtained would be parallel to the plane a, (as one
lying in the plane a@,). Conversely, points corresponding to the
points of the plane «; do not fill the whole plane a,, for we
see that no point of the straight line z, (the intersection edge
of the plane a, and the plane a; parallel to @, and passing through
the point S) would correspond to any point of the plane «;.

Observe that if the points Py, @, and R, lying on the plane
a; have corresponding points P,, @,, and R, lying on the plane
a, and one of these triples of points is collinear, then the other
three points are also collinear (the points 8, Py, P,, Ry, R,, @,
and (), are then lying on the same plane). We thus have here
a transformation of the kind discussed in the preceding section.

We find, however, that the use of this kind of transformations
involves considerable difficulties, due to the fact that there
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exist exceptional points and exceptional straight lines (the straight
line », on the plane a, and the straight line z, on the plane a,),
which have no counterparts on the other plane. Thus, for instance,
to the straight lines of the plane a, which pass through the point
Z, lying on the straight line z, (Fig. 3) there would correspond
lines which are parallel on the plane a;, i.e. such as have no
point in common. However, in the set of all straight lines passing
through the point Z, (and forming a so called pencil of lines)
there is a straight line z, which has no counterpart on the plane a,;
consequently, the parallel lines form a set containing one element
less than the set of the straight lines passing through the point Z,.

Fia. 3

In order to remove the inconvenience caused by the absence
of points which would correspond to the exceptional points (on
z, or on n,;) of the other plane, we extend the concept of
plane in the following manner:

We are accustomed to the use of the notion of direction in
geometry. Let us include in the set of all points of a plane the
set of all directions. In order to signify that directions will
be regarded as elements of the same kind as points, let us call
them points at infinity. We shall denote them, just as ordinary
points (called ordinary points), by the letters 4, B, ..., P adding
the index oc: thus 4%, B®,..., P*. Let us make one more agree-
ment: instead of saying that “the straight line p has the di-
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rection A°” we shall say that “the straight line p passes through
the point 4™ or that “the point A% lies on the straight
line p”’, and instead of saying that “two straight lines have
a common direction B*” we shall say that “two straight lines
intersect at the point B®”. It will be observed that on a plane
extended in this manner every two straight lines have a point
in common (i.e. intersect); that point is an ordinary point or
a point at infinity. The set of all points at infinity on a plane
will be called the straight line at infinity. The straight line
at infinity has one point in common with every ordinary straight
line— it is the point at infinity of that line. A plane extended
by points at infinity is called a projective plane. An ordinary
plane, without points at infinity, is called a Euclidean plane.
Now if ¢, and a, are projective planes, it can easily be seen
that there is a correspondence between the points of the plane
a, which lie on the straight line z, and the points at infinity of
the plane a, and between the straight line z, and the straight
line at infinity z° of the plane @,. Thus the correspondence
defined at the beginning of this section and applied to the
projective planes a; and a, is a transformation which changes
the whole projective plane a, into the whole projective plane
ay; it is termed a projective transformation of the planes a; and
ay,. Henceforth, by a plane we shall mean a projective plane.

2.2. As we know, a Euclidean plane can be represented analy-
tically as a set of ordered pairs of numbers x and y (the so-
called coordinates): points lie on a straight line if and only if
their coordinates satisfy an equation of the first degree, i.e. an
equation of the type ax--by+c = 0 in which a?48% > 0.

The question arises how to represent analytically a projective
plane. If we retain numbers x and y as the coordinates of an
ordinary point, what should we assume as the coordinates of a
point at infinity? In order to answer this question let us take
two straight lines intersecting at a point at infinity:

ax-tby+c =0 and azx+by+c =0 where c#c¢. (2.1)

There are of course no numbers z and y that would satisfy
both equations. However, write the ratio x,/x; instead of x and
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the ratio x,/x, instead of y. We obtain the equations

aﬁ+b£2-—}—c:() and a—yfl——i—b—ac—zr—i—c’:O
Zy Ty X3 !
or
ax,+bry+cr, =0 and  ax,4-bry+c'x, = 0.

It will be observed that the last two equations are satisfied
if and only if we take 0 as x,. As z; and x, we can take for instance
the numbers b and —a. This suggests the idea of regarding the
numbers z; =b, x, =—a and x, = 0 as the coordinates of
the point at infnity of the straight lines (2.1) on the projective
plane. If z, = 0, then every three numbers z,, z, and z, will be
regarded as three coordinates of the new kind of the point
(% /24, Z5/%;). Such three numbers z,, x,, z, will be called homo-
geneous coordinates on the projective plane.

The equation of the straight line will then be changed into
the homogeneous equation ax;+ba,+cx; = 0. Therefore, if a
certain triple x,, x,, %, satisfies this equation, every proportion-
al triple kx,, kz,, kv, will also satisfy it. It will be observed that
every triple of numbers with the third number equal to 0, which
is inadmissible in the substitution x = z,/x, and y = z,/x,;, can
be regarded, as we have just seen, as three coordinates of a
point at infinity, since, if it satisfies the equation of a certain
straight line ax,+bx,--cx, = 0, then it satisfies also the equation
of every parallel line ax, +bx,+c'z; = 0 for an arbitrary c’.

Thus every triple of numbers z;, x, x, with the excep-
tion of the triple 0, 0, 0 has a corresponding point on the pro-
jective plane, the same point corresponding to proportional
threes. Thus the equation of the straight line on a projective
plane is the homogeneous equation w,x,+uy%y+ux, = 0 in which
the coefficients w,, #,, u, are not all equal to zero.

E.g. the equation of a straight line at infinity is of the form

Ox,+0x,+2, =0, ie. a3=0,
since it is satisfied by every triple of numbers z;, z,, 0. Similar-

ly, the axis « has the equation z, = 0 and the axis y the equa-
tion x; = 0.



16 NOMOGRAPHY

§ 3. Projective (collineation) transformations

3.1. A one-to-one correspondence between the points of two
projective planes «; and a, (different or not) in which every
triple of collinear points has a triple of collinear points assigned
to it on the other plane is called a collireation transformation.

The correspondence defined at the beginning of the preceding
section (Fig. 2) provides an example of a collineation transforma-
tion. In that correspondence the points X, and X, of the planes
a; and a, correspond to each other only if the straight line X;X,
contains a certain fixed point § belonging neither to a; nor to ay;
for, as we have seen, in that transformation three collinear points
always change into three collinear points.

It will be observed that if we take two collineation transform-
ations (Fig. 4): 1° between the planes a; and a, and 2° between

a)

Fic. 4

the planes a, and a,, we can define a new transformation tetween
the planes @, and a, regarding as corresponding points such
two points X; and X, as correspond on the strength of trans-
formations 1° and 2° to the same point X, of the plane «a,.

In Fig. 4 the above is shown in the case where both the trans-
formation of a, into a, and the transformation of a, into a, are
central projections (from point S and from point S;) of one
plane upon another. In Fig. 4a the planes «; and oy are dif-
ferent from each other, and in Fig. 4b a; = as.

The transformation of the plane @, into the plane a, is a col-
lineation transformation because the condition that collinear
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threes of points should be changed to collinear threes is a transitive
property. A transformation of the plane «; into the plane o,
obtained by means of the transormations of «; into a, and a,
into a, is called a combined transformation or a superposition of two
transformations. Obviously a transformation of the plane a, into
the plane a, obtained by a combination of a finite number of
projective transformations

a, into a,, 0 into a3, ..., a,, into a,,

and also called a projective transformation, is a collineation trans-
formation.

Our further considerations will concern certain properties of
projective tranformations and a proof of a theorem that is essen-
tial for our purpose:

Let A,, B, C; and D, be four arbitrary points on the plane a, no
three of which are collinear, and let A,, B,, C, and D, be four
arbitrary points on the plane a, no three of which are collinear.
Then there exists one and only one projective transformation of
the plane a, into the plane a, such that point A; is changed to point
A,, point By to point B,, point C, to point C, and point D, to
point D,

In the proof we shall use both geometrical and analytical
methods according to which of them give quicker results. We
shall also find analytical methods of representing projective
transformations.

3.2, On an arbitrary straight line let us take two ordinary
points 4 and B and an arbitrary point C different from point B
(Fig. 5). Assume that a unit of measure and the sense on the
straight line have been chosen. The fraction

2 =2C,

BC
in_ which AC and BC denote the measures of the vectors AC and
BC (i.e. lengths provided with a suitable sign depending on the
sense), is called the division ratio for the point C' with respect
to the points 4 and B.
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It will be observed that the number A does not depend either
on the unit (by a change of the unit the numerator and the de-
nominator will be increased by the same factor) or on the sense
(the change of vectors AC and BC to the opposite sense will
cause a change of the sign both in the numerator and in the deno-
minator). The number A; thus depends only on geometrical
properties (on the position of the point ¢ with respect to the
points 4 and B). It will be seen that for points lying between

A . cc B D D

Fic. 5

the points 4 and B, for instance for the point C, we have A << 0,
while for external points, for instance for the point D, we have
Ap > 0. It is easy to see that for two different points X and Y
we always have Ay -4 Ay. Indeed, if both points were internal,
like the points C' and C’ for instance, then for AC > AC’ we
should have A; > Aor; if, however, both points were external,
like the points D and D’ for instance, then for BD << BD' we
should have
AD’ AB  BD" AB  BD AD

ZD’ = = + < + = = )‘D .
BD’ BD'" BD’ BD  BD BD

The definition of the division ratio does not comprise the
point at infinity. In view of the fact that for every sequence of
points D,, D,, ..., D

. --. divergent to infinity we have

we assume Apo = 1,

If we are given four points 4, B, €, D on a straight line
and at least the first two of them are ordinary points, then
the number

}'C :}'D

is called the cross-ratio of the four points 4, B, €, D and de-
noted by the symbol (4BCD).
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Obviously, if the pair of points A4, B separates the pair of
points C, D (i.e. if one point of the second pair lies inside the
segment AB and the other point lies outside the segment AB),
then {ABCD) < 0 because the numbers Ac and A, have opposite
signs, while if the pairs of points 4, B and C, D do not separate
each other, i.e. either the points C' and D lie inside the segment
AB or the points C and D lie outside the segment AB, then
(ABCD) > 0.

In geometrical constructions fours of points for which the
cross-ratio has the value —1 are particularly frequent: we call
them harmonic fours.

ExampLE. Let 4 and B be two ordinary points, S the mid-
-point of the segment AB and N> a point at infinity. Since Ag
= AS/BS =—1and Ay = 1, we have (A BSN®) = A : Ayoo =—1
and thus the four points 4, B, §, N* are a harmonic four.

Having three arbitrary points 4, B, C of a straight line p
let us assign to each point of the line p a number x=(4BCX),
It can easily be seen that the function defined in this way is
reflexive, i.e. such that for different points X and X’ we have
x # 2'. Indeed, z = ¢ : Ay, and for different points X and X’
we have Ay 3£ Ays; consequently x =# x'.

3.3. Let 4, B, U, D (Fig. 6) be ordinary points of the straight
line p and W a point that does not lie on the line p. Joining the

W n N

A P W B c D
Fic. 6
point W to the points 4, B, C, D we obtain the straight lines

a, b, ¢, d. At the vertex W let us choose a sense agreeing with
the sense chosen on the line p (i.e. such that the angle (ac)
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is positive if the vector AC has a positive measure). We shall
prove the following equality:

(ABCD) — sin (ac) . sin (ad)_ 3.1)
sin (bc)  sin (bd)

For this purpose let us draw a straight line WW’, orthogonal
to the straight line p, and using the well-known formulas for the
area of a triangle let us write

AC|WW'| = |[AW||CW| sin (ac)
and
BO|WW'| = |BW||CW] sin (be) (2).

Dividing these expressions we obtain

ro o AC_ AW sin(ar)
BC | BW | sin (be)
Analogously we have
2y = AD ‘AW sin (ad)
BD BW | sin (bd)
and thus
sin (ac) _ sin (ad)
Ac thp = :

sin (be) sin (bd)

It will be observed that formula (3.1) also holds if the point
D (or the point C) is a point at infinity (then of course the straight
line d or the straight line ¢ is parallel to the straight line p). Indeed,
taking the sequence of points D, D,, ..., D,, ... and the sequence
of corresponding straight lines d,, d,, ..., d, tending to the straight
line #, we obtain by (3.1)
sin (ac) . sin (ad,)
sin (be)  sin (bd,)

(ABCD,) =

Hence, in view of the continuity of the function sin x, we obtain
in the limit
__sin (ac) | sin (an)

lim (ABCD,) = (ABCN>) = : .
n—00 sin (bc)  sin (bn)

(1) AC and BC are the measures of the vectors on the axis p;
{WW’|, ... are the lengths of the corresponding segments.
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Since the right side of formula (3.1) depends only on the angles
contained between the straight lines a, b, ¢, d, intersecting these
lines by an arbitrary straight line p at the points 4,, By, C,, D,
(Fig. 7) we obtain the equality

(4, B,C,D,) = (ABCD).

This theorem is called the theorem of Pappus.

W,

Fic. 7

The cross-ratios of two fours of points of which one is a central
projection of the other are equal.

3.4. The value of the cross-ratio of four points lying on a straight
line s an invariant of the transformation defined by the so-called
homographic function

_axtb
cx+d

where

1 #0(Y (3.2)

Jor any constant a, b, c, d.

This means that any four points X,, X,, X;, X, of the axis
x have by (3.2) corresponding points Y,, Y,, Y;, ¥, of the axis
y with the same value of the cross-ratio

(Yl Yz Ys Y4) = (X1X2X3X4)-

ab
* If c d’ = 0, then, as we know, the fraction can be simplified and
'a b
thus y has a constant value for every value of z. For cdl ™ 0 the

homographic function is reflexive.
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Proof. It will be observed that if x; (or y;) is & coordinate
of the point X; (or Y;) on the straight line z (or y), then

ax,+b . ax,+b  (ad—bc) (x3—=y) |

Y Y == y — == — ;
e v cx;+d  cx+d (cxy+d) (cx;+d)
similarly
ax,+b  ax,+b ad—be) (x,—x.
VLY ,=y—th=—————= ( ) (7 2);
cty+d  cxytd  (cm3td) (cxyt-d)
consequently

Y1V, x> cwytd
Y, Y, xy—xy  cxy+-d '

Replacing the index 3 by 4 we obtain

Yy, wx—x cx,td
Y, Y, Xy—y cxl—l—d,

which immediately gives

_ Ty Ty

(Y1Y2Y3Y4)

= (X X; X3 X)) (3.3)
Xyg—Ty Xy—Ty
We thus see that the theorem, defined by formula (3.2), on the
invariance of the cross-ratio in passing from the straight line x
to the straight line ¥ can be reversed; namely the following theo-
rem holds:

Every correspondence between points of two straight lines in
which the corresponding fours of points have the same values of
the cross-ratio can be writien in the form of a homographic function.

Proof If X; and Y;, X, and Y,, and X; and Y; are pairs
of corresponding points, X;, X,, X, and Y,, Y,, Y; being threes
of different points, then for every pair of corresponding points
X, Y we have
. (1,Y,Y)= (X, X, X; X),
ie.

oY1 Y=Y _ T H, T .

Ys— Y2 Y Y Ty—Ty XXy
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. _ 1
?_/3__?/1; LT by -- we have
Ys—Y T3—%  a

Denoting the fraction

Y—Ys @ T—%xy

Y=% T—I,

2

whence

(Yo QY1) T+ AT Y2 —T1 Y5 )

y —_
(1—a)x+ar,—z,

This is a homographic function. Its determinant is different
from zero because

(Ya— Yy GXRY 1Y, }

£ 0.

Ya—Y1 Ta— X,
|

i Ys—Ys T3—%
l—a ar,—r, |

1 = () (1)

The homographic function plays an important role in nomo-
graphy.

The theorem of Pappus and formula (3.3) imply an easy
construction of points assigned to one another on the basis of
a homographic transformation.

Suppose that we have assigned to three points X;, X,, X,
of one straight line three arbitrary points Y, Y,, Y, of another
straight line. The theorem which we have proved shows that
there exists a homographic transformation (and only one such
transformation) assigning to the points X;, X,, X, and X
such points Y,, Y,, ¥, and Y that

(Y, 7,Y,Y) = (X, X, X, X). (3.4)

We shall now construct a point Y corresponding to an arbi-
trary point X.

On the straight line p we have the points X,, X,, X; and
on the straight line p;, the points Y;, Y,, Y,. For simplicity
let us assume that X, = Y, is a common point of the straight
lines p and p; (Fig. 8). Let us join the points X, and Y,, and
then X, and Y, and denote by S the intersection point of the
straight lines thus obtained. By the theorem of Pappus the poirts
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of intersection X and Y of the straight line passing through the
point § with the lines » and p; form together with the points
X, X,, X; and Y, Y,, Y; two fours satisfying condition (3.4).

If every pair of corresponding points consisted of different
points, as X3, X;, X; and Y], Y;, Y; for instance, it would
be sufficient to project the three points X;, X;, X; onto the
straight line passing through the point Y, in such a way as to
locate the new three points X;, X,, X, in the same position as
that considered before. The passage from the straight line p’ to
the straight line p, requires projecting twice (from the point
S; and then from the point S).

If the straight lines p and p, were not different, it would
obviously be necessary to project three times (Fig. 9). We choose
intersecting straight lines p and p, and project the points X;
onto the line p and the points ¥; onto the line p, in such a way as
to make the common point of the lines p and p, correspond to
the point X; and to the point Y;. We then proceed as in the
first case.

It will thus be observed that in every case we can construct
by a finite number of operations of central projection a homo-
graphic correspondence such that given three points X;, X,, X;
have given three points Y;, Y,, Y, corresponding to them.

3.5. Suppose we are given a projective transformation of a
plane a; onto a plane «, obtained by projection from a point
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S which does not lie on either of the planes a, and a, (Fig. 10).
On one of these planes, e.g. on the plane a;, let us take points
4,, B, 0, D, lying on a straight line p,; they have correspond-
ing points A4,, By, C,, D, on the straight line p, of the plane a,.
By the theorem of Pappus we have

(A1B1 01D1) = (A2B202D2)-

Fra. 10

If the correspondence between the planes a;, and «, is a super-
position of n—1 transformations each of which is a central
projection, then we obviously have

(AIBICIDI) = (AanOnDn)'

This means that the value of the cross-ratio of four points
is an invariant of a projective transformation which is a combina-
tion of a finite number of transformations by central projection.

3.6. Four points A, B, C, D of a projective plane no three
of which are collinear determine the so-called complete quadri-
lateral (Fig. 11a). It is (unlike the quadrilateral of elementary
geometry) a set of six straight lines, i.e. the set of lines AB,
AC, AD, BC, BD, and CD each of which contains two of the
given points 4, B, C, and D. These lines are called the sides
of the complete quadrilateral and the given points are called its
vertices. Opposite sides are such pairs of sides as have no common
vertex; they are the pairs 4B and C'D, AC and BD, AD and BC.
The intersection point of a pair of opposite sides is called a
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diagonal point. The points P, R, and @ in Fig. 11a are diagonal
points.

We shall prove that every pair of vertices (e.g. B and C), the
diagonal point lying on the same side as those vertices (point Q)
and the intersection point of that side with the straight line joining
the remaining two diagonal points (points M) form a harmonic
Sfour. _

For the proof let us take an arbitrary point § which does not
lie on the plane of the quadrilateral and denote by f, the plane
determined by the points 4, P, @; denote by f# an arbitrary plane

Fic. 11

paralle to the plane B, (Fig. 11b). It can easily be seen that
the projection of the quadrilateral ABCD from the point S onto
the plane 8 is a complete quadrilateral 4’B'C"D’ whose diagonal
points P’ and @’ are points at infinity. Indeed, the fact that
B11 8, implies SP || and SQ||B. The pair of sides 4B and CD inter-
secting at the point P have a corresponding pair of sides A'B’
and C'D’ parallel to SP, and similarly the pair of sides 4D and
BC intersecting at the point @ have a corresponding pair of sides
A'D’ and B’C’ parallel to the straight line S¢; the quadrilateral
A’B’C’'D’ is thus a parallelogram. Consequently the projection
M’ of the point M is the centre of the segment B'C’. As we know
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(§ 3.2, example) (B'C’'M'Q'®) =—1; by the theorem of Pappus
we have

(BCMQ) = (B'C'M'Q>) =—1,
and thus BCMQ is a harmonic four.

3.7. Let us take points 4, B, C, D on a straight line x and
consider whether there exists a pair of points X, ¥ for which

(ABXY)= —1 and (CDXY)=—1.

It will be observed at once that in view of the theorem of
Pappus we can restrict ourselves to the case where the points
A, B, C, D are all ordinary points (by projection every four of
points may be reduced to a four of ordinary points with the
same value of the cross-ratio).

In order to solve this problem let us fix the origin of the
coordinates at the mid-point of the segment AB and denote the
coordinates of the points 4, B, C, D successively by z,, x,, 23, 2,;
we thus have z, = —u,.

Obviously, if we also had z, =—=z,, the points X = 0 and
Y = N* would be the solution of the problem.

Assume that such points X and Y exist and denote their
coordinates by z and y.

Numbers = and y should satisfy the equation

T, Y4

(ABXY) = = —1,
T—xy Y—@y
ie.
(x—x1) (y—25) +H(y—2xy) (x—p) = O
and
(CDXY) =1 970 g,
T—xy Y—4
ie.
(x—w5) (y—24) +Hy—2;) (x—xy) = 0.
Taking into account the assumption that x, =—x, we obtain

the system of equations

xy—a; =0, 2oy—(23+2,) (@4y)+22,2, =0,
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whence

2
Tay+ 2

Tyt

xy =23 and 2xty=2

It follows that x and y are the roots of the following equation
of the second degree:

2
Ty 21

23+,

22—2 z+at = 0.

This equation has real roots only if

A=4 (x—“xﬁﬁ)z—m > 0.
T3+

Therefore we must have (wyz,+a3)%—af (x3+2,)% >0, ie.
(a2 —a?) (xz—af) > 0. This means that either 22 < 2} and 2% < a7}
or 23 > 2% and 22 > z}. In the first case the points O, D lie inside
the segment 4B, in the second case the points 4, B lie inside
the segment CD. In such cases we say (§ 3.2) that the pairs A, B
and C, D do not separate each other.

Consequently for given pairs of points 4, B and C, D a com-
mon pair of points X, Y forming harmonic fours with the given
points of both pairs exists only if the pairs 4, B and C, D do not
separate each other.

3.8. Let us take on a plane a arbitrary points A, B, C, D, no
three of which are collinear, and on a plane p arbitrary four points
4, B, C, D, of which again no three are collinear. Then there exists
a projective transformation of the plane a onto the plane B which
assigns point A to point A, point B to point B, point C to point
C and point D to point D.

In particular we shall prove that this transformation is a su-
perposition of several transformations which are projections
of one plane onto the other (from an ordinary point or from
a point at infinity).

In the proof we shall speak of a translation of a plane by
a vector which is not parallel to it (Fig. 12a) and of a rotation
of a plane about a straight line s lying off that plane (Fig. 12b).
Assigning to point X, which is a point of the plane in its initial
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position, point X’ after the translation or rotation of the plane,
we shall see that the transformation defined in this manner is
a projection from the point at infinity S%. In the case of trans-
lation the point S® is the point at infinity of the vector XX’
and in the case of rotation through an angle different from = the
centre of projection is the point at infinity of a straight line
perpendicular to the plane of symmetry of the rotation angle.

b)

Fic. 12

Proceeding now to the proof let us assume that the planes
a and B intersect along an ordinary straight line which does
not pass through the point 4 and that both 4 and A are ordinary
points (1). Consider the following transformation, consisting in
projections of one plane onto the other:

a. A translation of the plane a (Fig. 13a) by the vector 44
(lying off the plane a) so as to transform the quadrilateral 4 BCD
into the quadrilateral A’B’C'D’, with 4’ = A.

b. A projection of the plane a’ (Fig. 13b) onto the plane a’’
passing through the straight line 4B from the point S; of inter-
section §; of the straight lines B’B and P'P (the points P’ and
P are diagonal points of the corresponding complete quadri-
laterals). The projection centre 8, exists because the points

(1) It follows from the assumption that at least two of the points
A, B, C, D are ordinary points.
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B’, P’, A’ and the corresponding points B, P, A lie on the same
plane. We thus obtain a quadrilateral 4"’B"’C’'D’" two vertices
of which, A"’ and B’’, coincide with the points A and E, and
moreover the diagonal point P’ coincides with the point P.

c. A projection from the point of intersection 8, of the straight
lines €''C’ and D’’D, which finally transforms the quadrilateral
A"”B"”C"D" into the quadrilateral ABCD. The projection
centre S, exists because the points C'', B/, P"’, equal to the
points C, D, P respectively, lie on the same plane.

We have thus proved the theorem.

3.9. A projective transformation is, as we know, a collinea-
tion transformation because it transforms every triple of
collinear points of one plane into three collinear points of the
other plane. We shall prove that the projective transformation,
just defined, of the plane « into the plane §, assigning four points
A, 79, 5, D to given four points 4, B, C, D, is a colline-
ation transformation satisfying a given condition. This means
that if f(X) and g(X) are two collineation transformations which
satisfy the conditions f(4) = 4 = ¢(4), f(B) = B = g(B), f(C)
= (= 9(C) and f(D) = D = g(D), then we have to prove that
for every point X of the plane g(X) = f(X).

We shall denote by X = f“l(f) a transformation inverse to
the transformation X — f(X), i.e. such as assigns a point X to
every point X. Thus, according to our agreement, f*l( f(X)) =X
and similarly f(f*l(f)) = X.

Suppose that we are given two collineation transformations
f(X) and g(X) of a plane « into a plane §. We are to show
that the transformations f(X) and g(X) are identical, i.e. that for
every X we have f(X) = g(X). Accordingly let us consider a map-
ping ¥ = f“l(g(X)) where f~}(X) is a transformation inverse
to f(X). Obviously this mapping, which will be denoted by Y
= F(X), transforms into themselves those points which corres-
pond to the same point X by the mappings f(X) and g(X). It
follows that F(X) assigns to each of the points A, B, C, D the
same points, Since F(X) is of course a collineation mapping, the
problem is reduced to the following question: Is the transformation
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F(X), which retains collinearity and assigns the same points
to the points B, C, D (among which there are no threes of
collinear points), necessarily an identity transformation, i.e. does
F(X)=X always hold?

To begin with, it will be observed that in every one-to-one
correspondence retaining collinearity a harmonic four of points
is transformed into a harmonic four. This follows from the fact
that for three points 4, B, C there exists only one point D such
that (ABCD) =—1 and that the point D can be obtained by
drawing a complete quadrilateral ABMN with vertices A and
B and the diagonal point € (Fig. 14); for in a collineation mapping
a complete quadrilateral is transformed into a complete quadrilat-
eral. It follows (on the grounds of the considerations of § 3.8)
that in a collineation transformation separating fours are trans-
formed into separating fours and non-separating fours are trans-
formed into non-separating fours.

e 1 C1 7

U= D
Xw
1 0 o5 N\l N
E A R F
Fia. 14 Fiac. 15

We can assume without loss of generality that the points
A, B, C, D have the coordinates 0, 0; 1, 0; 1, 1; 0, 1 respecti-
vely (Fig. 15). It will be seen that the sides of the quadrilateral
obtained are transformed into themselves, whence also the diago-
nal points, i.e. the points X®, Y® and R, are transformed into
themselves. Now this implies that the straight lines RX®, RY®
and X*°Y® are transformed into themselves and that the points
of intersection Z® and U® of the lines AC and BD with the straight
line at infinity are transformed into themselves. It is now ob-
vious that the points of intersection E and F of the axis x with
the straight lines DZ and CU are transformed into themselves;
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their abscissas are —1 and 2. It can be shown by induction
that every point of the axis x with a positive abscissa is trans-
formed into itself. But the fact that the straight lines RX®
and RY® are transformed into themselves implies that the point
of the axis x with the abscissa 1/2 is transformed into itself,
and, generally, all points of the axis # with abscissas n/2 where
n is an arbitrary integer are transformed into themselves. Re-
peating this procedure we can see that all points of the axis
x with abscissas n/4 are transformed into themselves, and then
also all points with abscissas n/2* where n and k are arbitrary
integers; they are the so-called dyadic rational numbers. As we
know, they constitute a dense set on a straight line (3).

We shall also prove that, if x is not a dyadic rational number,
then the point X(z, 0) is also transformed into itself. It would
be sufficient of course to prove that if numbers d; and d, are
dually rational, with d, <<« << d, and z’ denoting the abscissa
of a point corresponding to the point X, then also d, < 2’ < d,.
This, however, results directly from the proposition that the pairs
of points D(d;, 0), Dy(d,, 0) and X, X* separate one another
and from the fact that in every collineation transformation of
a plane harmonic fours are transformed into harmonic fours.
Indeed, in view of the theorem of 3.7, § 3, a pair that would
be harmonic with the pair D;, D, on one hand and with the
pair X, X on the other hand does not exist.

It follows that there exists no pair harmonic with D{, D,
on oue hand and with X', X' on the other hand. Since D,
= Dy, Dy = D, and X' = X, there exists no pair harmonic both
with D;, D, and with X', X. Thus D,D, separates the pair
X', X, ie. x’ lies between D; and D, or d, <<z’ < d,. This,
however, holds for every pair of dyadic rational numbers d,
and d,, ie. the inequalities d; < z << d, always imply the ine-
qualities d; << 2’ << d,. Hence X’ = X. Thus every point of
the axis  is transformed into itself; similarly every point of the

(!) A set Z of numbers is called dense if in every interval (z,, z,) there
exlsts & number of that set, i.e. a number z belonging to Z such that
Z; <X < 2,
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axis y is transformed into itself. This finally implies that every
point of a plane is transformed into itself, q.e.d.().

We have proved at the same time that every transformation
of a plane which retains the collinearity of poinis is a projective
transformation, i.e. can be obtained by a finite number of pro-
jections of a plane onto a plane.

§ 4. Analytical representation of a projective transformation

4.1. Consider two planes, a and f. Denote the homogeneous
coordinates on the plane o by z;, ,, =, and the homogeneous
coordinates on the plane § by vy, ¥, ¥s.

Suppose we are given a tranformation of the plane « into
the plane 8 by means of homogeneous linear equations

Y1 = Q@ 02y 105575,
Yo = Qg ;- UppTyTUpg X, (+.1)
Y3 = Q5 B+ Agp Xy Ty Ty
with the determinant
G @pp Gy |
A= |0 Qn Oyp|=£0 (4.2)
A3y Qzp Qg
where a;, are numerical coefficients. From the assumption that
A £ 0 it follows that every non-zero triple ¥, ¥, ¥» (i.e. a triple
that is different from the triple (0, 0, 0)) has a corresponding
non-zero triple z;, ,, x;, i.e. every point Y of the plane f8 has
a corresponding point X of the plane «. The plane a is thus
transformed into the whole plane B, the transformation being
one-to-one. The coordinates x,, x, x; of the point X corres-
ponding to the point Y are defined by the formulas

Az = Ayy+AnYet-AaiYas
Azy = Apyy+Ap Yot A Ys,
Axy = Ay +AsYot+Asals,
where A is a minor corresponding to the term a;, in the deter-

minant 4. (If A = 0, then, as we know, equations (4.1) would
have a solution w, %, %, only for numbers y;, ¥,, ¥, satisfying

(}) The proof given here is due to Professor S. Straszewicz.



INTRODUCTION 35

a certain linear equation my,~+ny,+py, = 0; the whole plane
a would then be transformed into a certain straight line of the
plane f. Since that case does not interest us here, we have
assumed that 4 5% 0.)

We shall show that in transformation (4.1) straight lines
are transformed into straight lines.

Indeed, if we are given a straight line

biy1+b:y+byy; = 0,
where the coefficients b, b,, b, are not simultaneously equal
to zero, then substituting in this equation the right sides of
equations (4.1) we obtain

by (@11 %1+ G1a%p 013 T) +ba (o) Ty + Bap Ty~ Aoy 73)

b3 (@31 %) 1 Gy Ty + Qg3 %) = 0

ie., an equation of a straight line since the coefficients of z;,
2y, %3, i.e. the numbers

ay1 byt byt by = By,

A12by+05 by + 3005 = By,

@13by+ A3 bytagsby = By,
are not simultaneously equal to zero if b, b,, b; are not equal
to zero.

We thus have a transformation retaining collinearity. We
have shown that every transformation defined by formulas
(4.1) is a projective transformation. We shall now prove that,
conversely, every projective transformation can be expressed by
formulas (4.1). For this purpose it is sufficient to prove that
there exists a transformation of the form (4.1) which, for instance,
transforms a quadrilateral with vertices X(1, 0, 0), X,(0,1,0),
X,(0,0,1), X,(1, 1, 1) into a quadrilateral with arbitrarily given
vertices Y,(a;, a,, a3), Yy(b, by, by), Yi(cy, ¢, ¢3), Yyu(dy, dy, dy)
on the plane j.

Before we define the coefficients a; of this transformation
let us observe that there exist numbers %, v, w, none of them
equal to zero, which satisfy the equations

d, = aju+bvtcw,
d, = ayu+byv-Fcw,
dy = agu-tbvtcyw.



36 NOMOGRAPHY

This follows from the fact that each of the determinants

a, b ¢ dy by ¢l a, dy ¢ a b, d,
a by ¢, dy by ¢y, @ dy €35 a, b, dy
as by ¢ dy by ¢ a; dy ¢y a; by dy

is different from zero because none of the threes of points Y,
Y, Y5, Y, Y, ¥,; Y, Y, Y, Y, ¥, Y, is collinear. Let us
multiply the coordinates of the points Y;, Y, Y, successively
by u, v, w and take the following transformation:

Yy = a ux,++byvry+c wa,,

Yo = oy +by 0¥y Cowis,

Y = AaUT; by 2y~ Co U5,
It will be seen that by substituting successively the coordinates of
the points X;(1, 0, 0), X,(0, 1, 0), X,(0, 0, 1), X,(1, 1, 1) we obtain
the coordinates of the points Y (a,u, ayu, asu), Yy(byv, byv, byv),
Yi(cyw, cow, cqw), Yy(dy, dy, dy).

We have thus proved that every projective transformation

can be written in form (4.1).

4.2. The so-called affine transformations, i.e. transformations
through affinity, are a particular case of projective transformations.
A vprojective transformation is called affine if every point
at infinity has a corresponding point at infinity. As we see from
formula (4.1) that occurs only if
Gy =0 =0 and a, 7~ 0.

Since triples of proportional numbers arc coordinates of the
same point, we can assume that agy = 1. Then, dividing both
sides of the first two equations of (4.1) by y, or by x; (which
is equal to y,) and replacing the fractions /2, 2,/%s, Y1/¥s Ya/¥s
by the Cartesian coordinates =z, y, &, n, we obtain formulas
defining the affine transformation

§ = anT+apy+ay,, 1 = OyT-+0nY-+ay. (4.3)

From the assumption that the determinant (4.2) is different

from zero, we obtain, on expanding it according to the terms of
the third line,

a1 Qg2

4= 0. (4.4)

Qs Qao
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It follows immediately from the definition of the affine trans-
formation (or from formulas (4.3)) that every pair of parallel
straight lines I, and I, is transformed into a pair of parallel
lines !; and I;. Indeed, an affine transformation transforms
a whole Euclidean plane into a whole Euclidean plane, and thus
if the straight lines !; and !, had a point in common, then
the straight lines I, and I, would also have a point in common,
which is contrary to our assumption. Thus a parallelogram is
transformed into a parallelogram.

Let us now choose three points 4, B, C on a certain straight
line I: the corresponding points 4’, B’, €’ lie on a straight
line I’. As follows from the considerations of § 3, we have the
equation

(4’'B'C'D'™®) = (ABCD™>),

where D® and D'® are by hypothesis corresponding points. Since
the division ratio for a point at infinity is equal to unity, we
obtain from the last equation

4'c'  AC

B'C' BC

It will thus be seen that all segments on the straight line
I (e.g. AC and BC) undergo the same contraction (or elongation)
after an affine transformation.

We shall also prove that having three arbitrary non-collinear
points M, N, P on one plane and three arbitrary points M’,
N’, P’, also non-collinear, on another plane, we can find such
an affine transformation of one plane into the other that the
points M, N, P will be transformed into the points M', N’, P’
respectively.

In order to find the coefficients a; of the required trans-
formation we write formulas defining the transformation of
the points M(z,, y.), N(z, y,), P(x, y,) into the points
M (&, ), N'(&s ) P’(Sp! p):

m = Q11T+ 010Y+igs Ty = Oy T+ 020 Ym B
&n = AT, +01Yy +0i3, Ty = ATy Ul T (4.5)
& = A%y +apYp+ayg Ny = Gy %, + oYy o
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It will be seen that these two systems of equations with un-
knowns a,;, @5, ;3 and day,, ¢y and a,, have a unique solution
because the determinant (common to both systems)

T Ym 1
W=z, y, 1
z, Y, 1

is different from zero, the points M, N, P not being collinear.
It must also be shown that the determinant of the affine
transformation

§ = au0+apY+a,, N = GuTt+anytay,

i.e. the determinant

lay, ag
w =

b
gy g

is different from zero. Since equations (4.5) imply

‘Sm Ym 1 Ty Em 1
Wa, =% ¥ =W, Wa,=_|% & 1l|=w,
& oy, 1 z, & 1
Wag =M ¥u 1 =W, Way, = |%n  n 1 =W,
N Yp 1 xp, M 1
we obtain by substituting w in the determinant
w, W,
Wew = W; Wj = W,W,—W,W,
= (‘Snyp_i_spym'{_‘smyn_gpyn#gmyp_gnym) X
X(xnnp+xp7)m+xm7]n_xp77n_xm7]p_xnnm)_
_(xn Sp_}'xp §m+xm En—xn §m-xp En—xm ‘SP) X
X (Yt Ym o ~+YnTm—YnMNp—Yp Im—Ymln)
= (Em"h+§p77m+§n7]p*§p7]n“Ennm_'fm’?p) X
><(xmyn—*"xpym—i_xnyp——xpyn*xnym_xmyp) =WW',
where
En Mm 1]
W' =& 7

Ep mp 1
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Since W £ 0 and W’ = 0 (the points M’, N’, P’ not being
collinear), the determinant w is different from 0.

4.3. We shall solve the following problem:

Write the formulas for a projective transformation changing
given four points A(a,, a,, a;), B(by, by, by), Clcy, ¢y, ¢5), and
D(d,, d,, d;), no three of which are collinear, into four vertices of
a rectangle.

In order to transform the quadrilateral 4 BCD into the rectangle
A'B'C'D’" (Fig. 16) of the plane § in such a way as to make
the side A4'B’ parallel to the side C'D’ and the side 4’D’ parallel
to the side B’C’ it is sufficient that the required transformation
should assign to the diagonal points P and @ the points at
infinity P’ and @’ lying on the axes of the system, i.e. the points
(1, 0, 0) and (0, 1, 0).

%1 % Q"™
D’ c
p'=
A B
1)1
Yy
Fig. 16

We shall give a solution which satisfies one more condition:
The point A4 is transformed into the point (0, 0, 1), which is the
origin of the system of axes y,/y, and y,/y,.

To begin with, it will be observed that the coefficients a;,
of transformation (4.1) should be determined in such a manner
as to satisfy the following conditions:

a. Every point of the straight line 4B, i.e. the straight line

a b =z
ay by z,| =0,
a; by z,

should have a corresponding point (y,, ¥, y;) for which 7, = 0.
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b. Every point of the straight line AD, i.e. the straight line
a dy z
a, dy 2,| =0
as dy @y
should have a corresponding point (y,, ¥, ¥;) for which y, = 0.
c. Every point of the straight line Pg), ie. the straight line
‘Pl 17
’Pz % 2| =0,
Ps I3 T3

where p,, ps, P; and ¢q,, s, g, are the coordinates of the diagonal
points P and @, should have a corresponding point (y;, ¥s, ¥3)
for which y, =0.

It is obvious that conditions a, b and ¢ will be satisfied if
we assume

a d; = a b oz P o4
1=\, dy 3, Yp= |0 by x|, Ys3=|Ps G Ta|-
’ a; dy a; by z, P 43 % |

ExampLE. Transform a plane by projection in such a manner
as to have the points A(1, 1), B(4, 0), C(0, 3), D® (D™ being
the point at infinity of the line y = 2z) transformed into the
vertices of a rectangle (Fig. 17).

The homogeneous coordinates of the points 4, B, C, D™ are,
successively the threes 1,1,1;4,0,1; 0,3,1; 1,2,0 (the point
D>(1, 2, 0) being a point at infinity because its third coordinate
is 0 and it lies on the straight line y = 2z since the first two
of its coordinates satisfy the equation of that line).

In order to determine the coordinates of the point P we must
solve the system of equations

1 4 01 x
1 0 2,/ =0 (line 4B), 3 2 z,| =0 (line CD).
11 = 1'1 0 x4

By calculation we obtain numbers —35, 11, 7 as the coord-
inates of the point P.
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Similarly, in order to find the coordinates of the point @ we
must solve the system of equations

4 1 x; 10 2
0 2 x,|=0 (line BD), 1 3 2,=0 (line 4C).
1 0 z 11 o

Hence we obtain numbers 11, —10, 4 as the coordinates of the
point Q.

%
D Ys

s

We thus see that the formulas for the projective transform-
ation have the form

1 z,
h=1|1 3 x| = —2x,—x,1-3x,,
11 x
4 =z,
Yo=|1 0 25|= 2,+3r,—4x,,
1 x4
—5 11 x
Ys=| 11 —10 =z,|= 1142, +97x,—Tlx,.
7 4 z,

Substituting the coordinates of the point D%, i.e. numbers
1, 2, 0, we obtain y, =—4, y, = 7, y; = 308 as the homogeneous
coordinates of the point D'; the Cartesian coordinates are —4/308
and 7/308.



42 NOMOGRAPHY

Since the point A is transformed into the origin of the system,
the given quadrilateral is transformed into a rectangle with sides
1/77 and 1/44.

4.4. The problem of a projective transformation of a plane
which transforms a given quadrilateral into a rectangle is of
fundamental importance for nomography. The method of solution
which has been given here is not the shortest as regards calcula-
tion. The most convenient calculation for our purposes is that
based on the properties of matrices.

Here is what we need to know about matrices:

Let m and n be natural numbers. Assume that every pair
of natural numbers ¢, k, 7+ << m, k<< n, has a certain number
ay corresponding to it: we thus have mm numbers a;. The
system of numbers

A
Qg Qg ... Gy,

A= = [ay] (4.6)
Ay Qo v Qo

written in the form of a rectangular table with m rows and n co-
lumns is called a matriz. If m = n, then matrix (4.6) is called.
a square matriz.
Matrices ¥ = [a;] and U = [b;] are regarded as equal
if they are identical, i.e. a; = by for all pairs of indices ¢, k.
A matrix 9’ which results from a matrix ¥ by changing rows
into columns and columns into rows is called a transposed matrix
E.g. numbers
1 3
4 2
2

o

form a matrix with 3 rows and 2 columns, and the transposed

matrix
1 4 2
3 2 —8

has 2 rows and 3 columns.
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Square matrices for which @; =1 and a; =0 for ¢« #k,
i.e. matrices of the form

10 ...0
- 01 ..0
J =
00 ..1
are called wunity matrices.
Consider two matrices
Ay Gy oo Oy byy bys .. by
gy Ooy ... @ by; by ... b
9 — 21 Oop 2n % _ o1 Oa2 2p
. . . . . . - b . . . . . .
Cpy Oy oo Oy by by o by

of which the first has as many columns as the second has rows.
The scalar product of these matrices is the name which we .give
to a new matrix with m rows and p columns,

dy dig ... dy,
By dyp ... d,
By Qg ovv A
in which
dix = A by +apbot+ ... 01,0y (4.7)

In the particular case where m = 1 and p =1, ie. where
matrix I has one row and matrix L one column, the product AB
is a matrix composed of one number:

: = (@ b1+ Cipby+ oo A abul;

(211813 - Q]

by

this number is called the scalar product of the one-row matrix
U, and the one-column matrix B,.

In the general case, in the product AN we have, in accordance
with formula (4.6), at the place of ¢, k the scalar product of
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the row of matrix 9 with the index ¢ and the column of matrix
B with the index k. It will thus be seen that the definition of the
product of matrices is meaningful only if the length of row in
the first factor is the same as the length of column in the second
factor.

It is easy to see that, on the whole, a product of two matrices
is not commutative, i.e. AV £ BY. For example if

9o — 01 and % _ 2 3
2 3 8 0]
then

9N :[0 1] [2 3]: [0.2—}—1.8 0.3+1.0] _ [ 8 0]’
2 3118 0 2.24+3.8 2.343.0] 28 6
and
q\w{:[Z 3][0 1]:[2.0+3.2 2.1—}—3.3"= [6 11].
8 0112 3 8.0+0.2 8.140.3] 0 8
However, the law of associativity does hold for the product
of matrices:

A
-

AV)E = A(BEO).

We shall prove this for matrices having three rows and three
columns (in the sequel only such matrices will be needed).

The term d;, of the product ALV has by definition the form

dix = @ bytAioboy+ai3 by

whence the term z;; of the product (V) has the form

Tij = diy Cyj+dipco;+dizcy;

= (@111 +inbyy +-a;305;) Clj+(ai1b12+a‘i2b22+ai3b32)C2j+
A+ (i1 b13+ Ainbay + i byg) €5 -

Similarly, denoting by e; the terms of the product BE,
we have

€ = by1Crtia o F-bizCan
and denoting the general term of the product %(BCE) by y;;, we have
Yij == @iyt apey+aey;
=0y (bu"u +blzc2j+b13c3j) +“iz(bz1"1j‘|‘b2202j+b23c3j) +
+i(D5 15 +bs5aCoj+ s Cyy)-
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Obviously for every pair of indices i, j we have z; =y,
whence (V) = A(VE).

If the matrix is square

a1 Qg - alJ
A — (a1 Agg Qo ,
anl anz a’nn

a11 Qo A1n
a a
21 Qoo 2n
A= o ’
Ay Qug oo Oy

which is called the determinant of matrix .

In the case where || = 0, matrix ¥ is called a singular matrix,
and if || 55 0 the matrix is called non-singular.

A matrix formed from matrix ¥ by deleting certain columns
and certain rows in it is called a submatriz of matrix . E.g.
from the matrix

we can form a submatrix

73]

From a given matrix ¥ let us form all square submatrices.
Let ¢ denote that singular submatrix of matrix 9 which has
the largest number of rows (columns). The number of rows (co-
lumns) of submatrix (§ is called the rank of matrix (.

E.g. the matrix
321
6 4 2

is of the first rank because the submatrix consisting of the term
ay,, for instance, is non-singular but every submatrix with two
rows is singular since its determinant is equal to zero.
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If 9 and B are square matrices with the same number of
rows (columns), then the Cauchy formula holds:

RETE

i.e. the value of the determinant of the product of matrices % is
equal to the product of the values of the determinants of matrices
I and B,

We shall prove the Cauchy formula for a matrix with three

rows,
Let
Ay Qg Gy by bip byg
A= |ay ay ay and B =|by by by
Ga1 Ggp Qgg byy bye by

It follows from the definition of the product of matrices
9 and B that

PR AT T A S T N N e AT O
AV = { @y b1y +Aopbyy +g3byy Ay 10+ 0gbop s bya
310114 Caobyy FA33b3y Ay bipt-@asbos +aa3byy

011 b1g-+ 150051y 5bgg
A1 013120 Doyt g3 byy
A b15+ Agabay A by

Let us apply to the determinant || the formula for the
addition of determinants differing only in the terms of one
column, i.e. the formula

Loy Qg ¥y 031 I Yy fall (ST x1+y1l
Oyy Ogy |+ |Uyy Ogp Yp| = |Azy Ogo TatYai-
O3 dzp T3 O31 O3 Y3 jOg1 O xs‘l‘?/a]

Making repeated use of this formula we shall be able to write
the determinant || as a sum of 27 determinants of the type

ay;:b, a’ljbj2 a15bg Ay Gy Qg
A9 biy azjbjz by = bnbjzbs:z

Aybiy A3bjs Gybg [ Qi Agj Qas

g; Qg Qag| -
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The determinant on the right side of the equality is equal to
zero if at least two of the numbers ¢, j, s are equal. Obviously
in the remaining cases the determinant is equal to |9] or to
— || according to whether the three natural numbers s, j, s are
an even or an odd permutation. There are as many such deter-
minants as there are permutations of numbers 1, 2, 3. We
thus have

[\Bs‘)[l = (b11b22b33+b21b32b13+b31b12b23_
A1 Gyg Qg3
—by1b29b0s by Doy bry — g1 b1abys) | Gy gy Ay

(31 Qg9 g3
by bz by a1 Qg Qg
= by by by Ap1 Ay Gy | = AV
by, by b a1 Q32 Qg

If a square matrix ¥ is non-singular, then we denote by -?
a matrix which satisfies the equation 9! = T where X denotes
a unity matrix. The matrix %1 is called tnverse to matrix ¥.
Let
Ayy A1p i3
AU=|ay ap ay
@31 Q32 Qg

be a given non-singular matrix, i.e. such that the value of the
determinant || = W is different from zero. Assume that

T11 %12 Xyg
9—1
Wt =12y 2y ¥y
T31 Xaz T3
Multiplying ¥ by ' we obtain
Q11 %1y + Ay 013 y;  Gyy Typt+ Qyaon+A1aTsn
-1 —
AAT = (a1 %)+ Ago Ty + Bag &gy Aoy Tyg+-Uog Lo+ Aog Tao
U31 %)+ g9y + Ay Ty Agy TiptUgaTop+Ugaiys
Gy %13+ Oy Tog+ B3 Tay
\
g1 Trg 0oy Xag—+ oy Xay
(31 Tyg+Ogp o+ gy Tgg
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From the condition

1 00
ANA1=T=|010
001

we have, by the definition of equality of two matrices, nine
equations

Oy Byy+ Ty +0i3%s = 1, 01 X1+ Gyaan+ 1325 = 0,
U Xyy+op Ty + a3 ®yy = 0, Qg Typ T Ugp oy + A gy = 1,
U Tyy + 3o Tpy g3 Tay = 0, Ay Typ+op oy g Te = 0,

Q11 T3t OyaTag+ 1325 = 0,
gy T3t O Tog 1 ga Xgp = 0,
() X131 Cag Lo Aag gy = 1,

whence we obtain uniquely

Ty =Ap/W, 2= Ay/W, 2= Ay [W,
L1 = AIZ/W’ Ty = AW, @y = Ag|W,
Ty = Am/Wr Tgg = AW, 2= AW,

where 4;, denotes the minor of the determinant |¥| corresponding
to the term ay.

It should be observed that in the matrix 9~ at the place of
the term with indices 4, k& there is a number proportional
to the minor of the term with indices k, 7. Thus, in order to
write the matrix -1, we must take the table of minors 4,
change its rows into columns and its columns into rows and
divide each term of the matrix thus obtained by the value of the
determinant W.

4.5, Let us apply the matrix calculus to projective transfor-
mations. To begin with, it will be observed that the three formulas
for a projective transformation of a plane (;, x,, ¥;} onto a plane
(#1> Y25 %s),

Y1 = Ay % 05T+ 1373,
Yo = g1 Xy F Aoy Ty Q33

Y3 == gy Ty F-Ago%a+ g3 Xy
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can be replaced with the aid of matrices by one formula

Ay Gy Q3
(Y1 Yo Ya]l =[] 25 74) | P12 G2z Qao
iz Gy Qg3
If in a transformation defined by matrix ¥
point X = (x,, z,, ;) has a corresponding point Y = (y,, ¥z, ¥a),
point X’ = (x1, x5, x;) has a corresponding point ¥’ = (y1, ¥y, ¥3),

point X'’ = (x7’, z;’, x3’) has a corresponding point ¥’
= (yilr yé” yé’)?

then we can write this in the following way:

Y Y Us Ty Ty Iy a1 Ay Ay

’ ? ’ ’ ’ 14

Vi Yo W l=]T1 Ty T3 ||z Qg O3 (4.8)
17 17 17 1? 7’ 7’

Y1 Y2 Ys T Xy I3 A3 Gag Qg3

On the grounds of the definition of the product of matrices
and the Cauchy theorem on the product of determinants we can
see that in the case where A + 0 the three points Y, Y', Y’
are collinear if and only if the three points X, X', X'’ are col-
linear.

Let us return to the problem of a projective transformation
of a plane which transforms a given (non-degenerated) quadri-
lateral ABCD into a rectangle with sides parallel to the axes of
coordinates.

If we want to transform the side 4B into a segment of the axis
¥1/y; and the side AC into a segment of the axis y,/y;, we must
transform

point P(p,, p,, p,) into point ¥Y° (1, 0, 0),
point @(q;, g5, g;) into point Y3° (0, 1, 0),
point A(a,, a,, a,) into point 4'(0, 0, 1).

According to formula (4.8) we must find such a matrix 3 as
would satisfy the equation

100 P P2 Ps3

010|={a1 % %:|D.
001 a, a, a,
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As we see, the matrix B is inverse to the matrix composed of
the coordinates of points P, ¢ and A.

Let us solve the following problem:

Find the projective transformation which transforms the four
points A(l, 3), B(2, 2), C{4, 3), D(2, 4) into the four points
A’(0, 0), B'(1, 0), C'(1, 1) D’(0, 1) and find the coordinates of
a point M’ into which the point M(5, 1) will be transformed
(Fig. 18).

z; ) 14
Pa__ T ] Yy
\\\\‘r\
N y \\~‘\ D
i c
A
/7 "B D '
/”/) - °M C °M'
P
q T T T T T T z, A B !1_
Xy Y,
Fic. 18

The coordinates of point P will be obtained by solving the
system of equations

12 x 4 2 x
3 2 x| =0, 34 2|_0,
11 2 11 x

since it is the point of intersection of the straight line passing
through the points A(1, 3, 1) and B(2, 2, 1) with the straight line
passing through the points C(4, 3, 1) and D(2, 4, 1). Elementary
calculation gives the numbers —2, 6, 1 as the coordinates of
point P.

Similarly, the coordinates of point @ will be obtained by
solving the system of equations

12 x 2 4 x
34z, =0, 23 2, =0,
11 =z 11 a
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since it is the point of intersection of the straight line passing
through the points A(1, 3, 1) and D(2, 4, 1) with the straight
line passing through the points B(2, 2, 1) and C(4, 3, 1). We
obtain the three numbers —2, 0, 1 as the coordinates of point Q.

Let us arrange the homogeneous coordinates of the points P,
@ and A in a matrix

—2 —21
Y = 6 03
1 11

It follows from our previous considerations that the matrix
91 should be found. The minors of the determinant || have
the values:

An_o 3]:_3, A21:_—21: ’
11 11
2 1‘
Ay = 3\=—6,

4 16 3 4 —21 3
' 11 1| A B ’
-2 1
Ay = — 6 3 =12,

6 0 —2 —2
4,;, = = 6, Ay = =0,

13 /1 1\ 23 , 1
-2 -2
Ag=| 1=z,
and since || = 18, we obtain the following inverse matrix:
—1/6 —1/6 1/3
A1=| 1/6 —1/6 0
—1/3  2/3 23

We thus have the projective transformation

Y1 Y2 %] =[x, 2 2] AL
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which transforms the quadrilateral ABCD into the rectangle
A'B'C'D’. Let us find the coordinates of the points B’ and D'.
Substituting the coordinates of the point B for z,, z,, x,, we
obtain

—1/6 —1/6 1/3
221]] 1/6 —1/6 0 |=[—1/3 0 4/3],
—1/3  2/3 2/3

and substituting the coordinates of the point D, we obtain

—1/6 —1/6 1/3
241]] 1/6 —1/6 0 | =1[0 —1/3 4/3].
—1/3  2/3 2/3

The point M(5, 1, 1) is here transformed into the point

—1/6 —1/6 1/3
5111 1/6 —1/6 0 |=[—1 —1/3 7/3].
13 23 2/3

The point B has been transformed into the point (—1/4, 0, 1),
and therefore its abscissa x;/x, must be multiplied by —4 in
order that the point B’ have the abscissa 1. Similarly, the trans-
formation of the point D into the point (0, —1/4, 1) implies that
the ordinate z,/r, must be multiplied by —4 in order that the
point D’ have the ordinate 1. Consequently, we make an affine
transformation multiplying every abscissa by —4 and every
ordinate by —4. We thus finally obtain the pair of numbers
12/7, 4/7 as the coordinates of point M’, which corresponds to
point M.

§ 5. Rectilinear coordinates. Correlation
5.1. Consider three numbers
Uy, Ug, Ug (5.1)

which are not all equal to zero. Assign to these three numbers
a straight line with the equation

U 2y Uy Ty +Uz Ty = 0, (5.2)

i.e. an equation in which numbers u,, u,, u, are coefficients.
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It will be observed that under this agreement every propor-
tional three, i.e. a triple of numbers u;, u;, u; such that
Up Uy Uy = Uy G Uy LU, (5.3)
has the same straight line corresponding to it because the equation
Uy Ty Uy Ty gy = O
is, under the assumption (5.3), equivalent to equation (5.2). It will
also be observed that non-proportional threes have different
straight lines corresponding to them.

Owing to these properties threes of numbers can be regarded
as the so called rectilinear coordinates of a straight line, more
exactly: as the homogeneous coordinates of a straight line.

For example the straight line

y=ax+b or g +b or aw—x,tbr,=0

Zy Zy
has the coordinates a, —1, b.

The coordinates of a straight line passing through two points

Ala,, ay, a;) and B(b,, by, b;) are, as follows from the equation

X, x, Ty
a, a, a;| =0,

by b bs‘

the minors of the matrix
a, a, a,
by by by’

Ay Gy
u
I 3
b by,

i.e. the numbers

Ay Ay

’bz ba

la, a,

by by

Uy = , Uy = — =

Threes of numbers can thus denote both points and straight
lines. If numbers a,, a,, a, are the coordinates of a point P and
numbers I}, l,, I, the coordinates of a straight line I, then the
point P lies on the straight line ! if and only if the equation

lLia+1la,4+1l,0, =0
is satisfied.
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The following theorem is obvious — it is analogous to a well-
known theorem of analytic geometry in which numbers denote

coordinates of a point:
Three straight lines
Uy Xy+Uy XytUy 2y = 0,
Uy Tyt Uy Tytty Ty = 0,
uy By Ty uy vy = 0,
pass through one point (ordinary or at infinity) iof and only iof
the coefficients of the equations of those straight lines satisfy the
following equation:
U Uy Uy

I I r
Uy Uy U

u ouy g
Observe the geometrical significance of numbers u;, u,, us,
which are the coordinates of the straight line [.

(orutru!) B
(ulvovo) »
~
(ullubo)
(ulvu'trul)
_u'_"!’ (ulnovu'l)
41
mg-
Y1 (0,u,0)
N ( - _ >
_i
u'
Fie. 19

If u; 7% 0, uy 7% 0 and wuy = 0, then writing the equation in

Cartesian coordinates we have

ﬁl_ . ﬁ_ -1 & . _.52.. + 1=0 or il Yy =1.
Uy Xy Uy Xy —upfu,  —ugfu,
The straight line then intersects the axes x and y at the points

with coordinates —uy/u,, 0 and 0, —ug/u, (Fig. 19).
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If u, = 0, i.e. u 2, +uyx, = 0, then the equation of the straight

line for u, # 0 in Cartesian coordinates has the form
o M
Uy

The straight line passes through the origin of the system and has
a direction coefficient —u,[u,. If, moreover, u, = 0, then the
line in question is the axis x.

If u; 7~ 0 but at least one of the numbers u; and u, is equal
to zero (e.g. u, = 0), then we have the straight line

wtuseg =0 or x= —uzfu;

if u; =0 it is a line parallel to the axis y, and if v, =0 it
is the straight line at infinity z, = 0.

5.2. If P'(ay, a9, a;) and P''(a,,ay’,a;’) are two different
points, i.e. if

a)ay ay #ay:ay:ay, (5.4)

then the point P(x,, ®,, ¥,) ts a point of the straight line P'P"’,
if and only if there exist numbers A, u not equal to zero and such
that the following equalities hold:

xy = Adaytpay’,  x, = Aagtpay’,  x, = Aagtpay’.  (5.5)

Proof. a. If z;, x,, z, have values agreeing with formula
(5.5), then of course the point P lies on the straight line P'P"’
because the equation of the straight line P’P’’ is satisfied:

Aaj+ua;” Aag-tuay’ Aay+pay |
a, as ag =0.
a;’ ay’ a;’
b. Now let P (%, ,, %) be a point lying on the straight line
P'P”, i.e. let the following equation be satisfied:

% 7, T
a; a, ag | =0. (5.6)

¥4 11 rt
a Gy ag
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At least one of the minors

a; G

éix = ’r re

et Ay

is different from zero. E.g. if
a;  a,
1 Oy
612 = re X 7/: 0,

ay, a,

then let us consider numbers Ay and p, (uniquely defined) satis-
fying the equations

ayhotaspty =2y,  ay'hytay' 1y = 2, (6.7)
Let us substitute the left sides of equations (5.7) in equation (5.6):
aydotaguy a1'dgtas 'ty
a, ay ag | =0.
ay’ a,’ ag’

Expanding the determinant on the left according to the last
column we obtain

01073 — —az0152 +a3 (—012tt0) =0,

and consequently, in view of d;55% 0, we have the equation

Ty = Agtz+pheas’.
Combining it with equations (5.7) we obtain a system of equations
of form (5.5), q.e.d.
5.3. If the straight lines U'(u;, uj, u3) and U’'(uy', uy’, uy')
are different from each other, i.e. if

’

uy Uy s Uy A uy s uy i ug,
then the straight line Uu,, u,, uy) passes through the point of in-
tersection of the straight lines U’ and U'' if and only f there
exist numbers A and u for which the following equalities hold:

uy = Autpwy’,  wy = Augtpuy’,  up = Jugtpugg.  (5.8)

Proof. a. The sufficiency of the condition is obvious since
(as follows from the theorem of § 5.1) the straight lines U, U’, U"’
pass through one point.
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b. Now let the straight line U(u,, u,, u,) pass through the point
(@), %, T,), i.e. let
Uy By Uy + Uz Ty = O
since at the same time
’ ! ’ rr 1? 1
U Ty Fup et uzs = 0, u'wuy'wytuy’zs = 0,

we have

Uy Uy U

’ ’ ’
U Uy Uz | =0,
w' g,

Hence we infer, as in § 5.2, that equations (5.8) hold.

5.4. The definition of rectilinear coordinates allows us to
define a certain special correspondence between points and
straight lines in a plane. In order to simplify our considerations
suppose that we have two planes  and n” (Fig. 20) on which the
triples of numbers z;, x,, x; and x;, x;, z; denote coordinates
of points and the triples of numbers u,, u,, u; and u;, uy, us de-
note coordinates of straight lines.

'

(’u’;vu;y’ué) = ("l’.h‘l]bm;})

&, L 72’/@—) Ug\ @y

X3 T u, \ £y
| \ —
X .
XT3 i
——
Uy Xy
U, X

Fia. 20
Let us assign to every point X(z;, x,, x;) of the first plane
a straight line I(u;, u;, u3) of the second plane if
Uy =Xy, Uy =Xy, Uy = Ty

Correspondence of this kind is called correlation.
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We shall prove the following theorem.

In a correlation, points lying on a straight line of one plane
correspond, on the other plane, to straight lines which pass through
a fized point, i.e. lines of a certain pencil.

The same can be expressed in a different way as follows:
if a point runs along a straight line on a plane z, then the straight
line corresponding to it rotates about a point.

This follows directly from the considerations of § 5.3; for
every point of the straight line passing through points (x,, z,, @,)
and (z7, x5, #3) has coordinates

Avitux],  Awgtpxy,  Axg+pas. (5.9)

On the other hand, we know that the numbers wy, u;, us,
equal to the numbers of (5.9) respectively, are rectilinear coordi-
nates of straight lines of a certain pencil.

It will be observed that the following numbers are the coordi-
nates of the straight line passing through the points (z,, ,, 23)
and (x;, x3, 23):

Ty X. X X Xy &
2 3 1 3 1 2
’ 1] - ’ AR ’ AR (5'10)
g g Xy T3 Ty Ty
and the numbers
Us Uz Uy Uy Uy Uy
! IBE; - ’ AR ’ t)o
Uy Uy uy Uy Uy Uy

equal by correlation to numbers (5.10), are the coordinates of
the point W' on the plane n’, through which pass the straight
lines with the coordinates u,, u,, u, and uj, ug, us.

It will thus be seen that a straight line of the plane 7 has,
in the correlation here assumed, a corresponding point on the
plane =’. It is essential for our further considerations that if
point P lies on a straight line I, then the straight line p’ cor-
responding to point P passes through point L’ assigned to the
straight line I.

If a point runs over a curve C with parametric equations

xl = ‘P(t)» x‘l - w(t)r T3 = X(t) >
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then the straight lines corresponding to those points

up=@(t), uy=vpE), uz=7x()
form a certain one-parameter family of straight lines R which,
if the first derivatives of the functions ¢, ¥, x, are continuous,
is the set of tangents to a certain curve C’; that curve is called
the envelope of the family of straight lines R.

Fia. 21

It will be seen that, under our assumptions, the tangent
8y to the curve C, which is the limit of the straight lines joining
point P, with point P which tends to point P, has a correspond-
ing point Sy, which is the limit of the points of intersection
of the straight line pg (corresponding to point P,) with the straight
lines p’ (corresponding to point P) (Fig. 21).



CHAPTER II
EQUATIONS WITH TWO VARIABLES

§ 6. Graph of a function

6.1. Consider a function y = f(z) defined in an interval (a, ).
Assume that it is continuous and monotone, i.e. either increasing
in the interval (a, b) or decreasing in the interval (a, b).

The graph of a function is, as we know, the set of all points
with the coordinates x and f(z), * assuming all values in the
interval (a, b).

If f(x) is a continuous function, its graph is a curve (Fig. 22).

Y

¥

8y

In problems of natural science and technology continuous
functions are the most frequent, the variability range of « being
divisible into partial intervals in which the functions are monotone.
In practice it is often necessary to find the values of the function
f(z) for a great many values of the argument. If the function
f(x) is expressed by a complex formula, the numerical calculation
of the required values would be a lengthy and cumbersome
business. We then execute the graph of the function, and, for
reasons which will later become obvious, we usually choose
different units on the axes of the system; thus points (0, 1) and
{1, 0) need not be equally distant from the origin of the system

60
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(0, 0). We find that for the required degree of accuracy the unit
chosen in the figure can be so large as to make the graph
replace the calculation of the values of the function. As follows
from the definition of the graph of a function, from point x, on
the z-axis we should draw a parallel to the y-axis and from the
point of intersection of that line with the graph we should draw
a parallel to the x-axis. The number y; obtained in this way is
the required value of the function.

We can avoid drawing lines parallel to the axes of the system
if we perform the drawing on square paper.

For example, suppose we are given the function

§ == 25-—-¢gt%[2 = 25—0-4905 £2,
defining the length of the path s (in metres) in relation to the
time ¢ (in seconds); according to the notation adopted in physics,

sS4
25 trrem T na
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)88 5t
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1] 1 2 3 4 5 6 7t
Fie. 23

we write ¢ instead of z and a instead of y. At the time ¢t = 0
the path is s =25 m; thus it is the formula for the path in
the case of a body falling freely under the influence of gravity
from a height of 25 metres.

Taking the interval (0, 7), we obtain a graph like the one
in Fig. 23. Assuming that in a drawing it is easy to distinguish
points at a distance of 05 mm from one another, we can read
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from the graph the time with an accuracy of 1/20 second and
the path with an accuracy of 0-25 metre. Obviously, if we needed
to know the path s with greater accuracy, we should have to adopt.
larger units on the s-axis. E.g., for the accuracy of 20 em we
should have to mark the division 20 c¢cm at a point 0-5 mm
distant from the origin of the system; then the point on the
s-axis which is now marked 5 m would be marked 4 m. Thus
the drawing would have the dimensions 7 cm X625 cm.

It can be read from the graph that in time ¢ = 4-5 sec the
path s will be about 15 m, for example; similarly, we find that
for s =9 m we have ¢t = 5-6 sec.

A change of unit on one axis results in certain cases in a con-
siderable drawing simplification. Thus for instance the graph
of the function y = \/ 16—0-642% for 0 < x < 5 forms an arc
of an ellipse (Fig. 24a) whose equation is

0-6422+y2 = 16

yi vy
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assuming \/0-643: = £, ie. adopting the unit A, = \/0-64 =08
on the z-axis, we obtain a circle (Fig. 24b) whose equation is

£2-1q2 = 16.

6.2. The polar coordinates of a point P on a plane are, as we
know, a pair of numbers ¢, r, 0 < ¢ << 2w and 0 < r <C oo of
which the first denotes the angle between a constant half-line
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with the origin O and the vector OP, and the other— the
length of the segment OP.

Given a function r = f(¢), we obtain its graph as the set of
those points with the coordinates ¢, » for which » = f(¢) (Fig. 25).

F1a. 26

As with the Cartesian coordinates, in some cases we can obtain
a simpler drawing by changing the unit on one of the axes. E.g.
the function r = 5 cos 2p for 0 < ¢ << 45°, whose graph is the
curve in Fig. 26a, can be represented through enlarging twice the
unit of the angle ¢ (i.e. on substituting 2¢ = ¢) by the curve
r = 5 cosg@, which, as can easily be seen, is a semi-circle with
diameter 5 (Fig. 26D).

We can use the graphs in Figs. 26a and 26b to read the values
of r when ¢ is given and to read the values of ¢ when r is given
(in the interval from 0 to 5).
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6.3. Besides the orthogonal and the polar systems of coordinates
there exist many others, for the notion of systems of coordinates
can be generalized in the following way:

We are given a family of curves R, and a family of curves
R, different from R, ; cach curve K, of the family R, has a num-
ber x corresponding to it in a bi-unique manner; each curve
K, of the family E, has a number y corresponding to it in
a bi-unique manner. If one curve K, and one curve K, pass
through every point P of part E’ of a plane ¥ and if the curves
K, and K, have no other point in common in part E’, then the
pair of curves K, and K, can be assigned in a bi-unique manner
to point P; the pair of numbers corresponding to the pair of
curves K, and K, are called the pair of coordinates of point P.

Let us take for instance points X, and Y, X, (Fig. 27)
and let K, denote a circle with origin X, and radius x and
K, a circle with origin Y, and radius y.

El
K
/ Ky—
D
x’ X<
o by Y
\ \ X, 24 A £}
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If E’ denotes one of the half-planes into which the straight
line X,Y, divides the plane, then every point P belonging to
the half-plane E’ has a corresponding pair of positive coordi-
nates # and y satisfying the inequalities

Ix—yl < XY, <z+ty;
they are the coordinates of the point P.
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We find, for instance, that in this system of coordinates
the graph of the function y = ]/ 2*+ta is a straight line per-
pendicular to XY,

Indeed, for every point of a straight line perpendicular to
X,Y, and passing through point A with coordinates ¢ and
XoYo—a we have
22— =ut=y—(X,Y,—a)?, whence «2+XZYZ--2aX,Y,=y%;

thus it is sufficient to assume X:Y2--2aX,Y,=a, whence
a = (Xi¥2—a)2X,Y,.

The function y = c]/x2+a for ¢ A1 will of course have
a curvilinear graph. Changing, as in the preceding examples,
the unit on the y-axis, we can obtain, here also, a graph in the
form of a straight line.

Another example of coordinates will be obtained if we sub-
stitute § = x4y, n = x—y in the preceding example.

It can easily be seen that the curves K, are ellipses with foci
X, and Y, and the curves K, are halves of hyperboles with the
same foci.

In all the above-mentioned systems of coordinates the graph
of the function y = f(x) may serve for reading the values f(x;)
of the function for given values of the argument z;. The reading
involves a certain error, but the drawing can be made on such
a scale that the error will be less than a given number.

Drawings of this kind often replace very cumbersome calcula-
tions and are used in technology in cases where a function (or
formula) occurs very frequently and the value of the function
for a given argument ought to be found quickly. The commonest
drawing for a function of two variables, however, is the so-called

Sfunctional scale.

Exercises
1. Find the value k for which the substitution
r'=r, @ =k

changes the graph of the function

a
”»

" bisin Bp--c cos 3p

in polar coordinates into a straight line.
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2. Concentric circles K, and straight lines K parallel to one another
form a system of coordinates in which the graph of the function

Y = }/x2—]—(a~x cot a)?
is a straight line if the point y = 0 lies on the straight line z = 0. Indicate
the position of the straight line and find the units A, and 2, in such
a way that a given function
y = }/4z*+Bx+C
have a rectilinear graph.

3. Two families of concentric circles K, and K, form a system of
coordinates; show that the equation

]/xz_az _ Vyz_bz =¢

is an equation of a straight line and indicate the system of coordinates

in which the function

¥y =V ax24+b ]/:;27—? +d

has a rectilincar graph.

§ 7. Functional scale

Suppose we are given a certain function, e.g.
y=2yz+4 for 0<w<5.

It will be observed that the function is increasing and, as x changes
from 0 to 5, y changes from 4 to 6. Let us draw the so called
Sfunctional scale of this function. Therefore, let us mark on
a segment a part of the number axis from point 4 to point 6;
we shall thus have points corresponding to the values of the
variable y. We choose the unit according to the accuracy with
which we want to read numbers y. E.g., if we require the
error to be less than 0-01, the points of the number axis marked
with numbers differing by 0-01 should be placed at a distance
of about 0-5 mm from one another; since there are to be 200
such intervals between 4 and 6, the segment will be 100 mm
long (Fig. 28). Let us mark the values of function y on the
left side of the vertical segment. Let us then substitute for
the argument x—in succession—numbers 0, 0-1, 0-2, ..., 5 and
the intermediate numbers; after substituting the given number
for z in the formula, let us mark that number on the axis at
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the point at which we have already marked the corresponding
number y. For instance, taking x =1 we find that y = 2]/ 5
2 4-47; we then mark the number 7 for z on the right side of the
segment at the point where we have already marked the number
4-47 for y.
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A drawing thus made is called the double scale of the function
y = 2\/2:_—11 Erasing the markings on the left side we shall ob-
tain the so-called single scale or the scale of function f(z).

An essential feature of the double scale is the fact that the
drawing is a part of the number axis y, i.e. that two numbers
y, and y, are always represented by two points which are end-
points of a segment whose length y,y, is proportional to the
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difference of those numbers; the scale for x need not have this
property, of course. Another characteristic feature of the double
scale is the fact that z and y determine one point only if they
satisfy the equation y = f(x).

Double scales of functions are component elements of nomo-
grams for functions of many variables, and consequently it is
very important to discuss certain properties of functional scales.

To begin with it will be observed that the double scale of
the function y = f(x) can be obtained by means of a graph
of that function. Indeed, drawing from point z, (Fig. 29) a line
parallel to the y-axis as far as the point of intersection with
the graph of the function, and then drawing a line parallel to
the x-axis, we obtain on the y-axis a point which we also mark z;
this point also corresponds to the value of y,, and thus we have
on the y-axis the same drawing as has been defined as the double
scale of the function y = f(z).
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In the special case where the function f(x) is a linear function
f(x) = ax+b the scale of arguments z is of the same character
as the scale of the values of y: points X; and X, determine seg-
ments X;X, whose lengths are proportional to the difference
X,—X, (Fig. 30). Such scales are called regular or uniform scales.

If the scale is regular, then segments bounded by points
differing by unity are equal. A segment like that is called the
unit of the scale. Denoting by 4, the unit of the scale on the z-axis,
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we can see that the length of the segment X X, determined
by the points corresponding to numbers z; and x, on the scale
is equal to A lz,—ua,], ie.

XXy = Aeley—ay].

It can easily be seen that only linear functions y = az-+b
have regular scales. If the scale is not regular (like the scale
of z’es in Fig. 28 for instance), then we can consider a mean
unit A’ between points X, X, of the scale; it is a number A’
satisfying the equation

X, X, = V|zg—a,y.
Reducing the interval (x;, x,) we come to the definition of

the unit 1, at the point x, of the scale as the limit of the quo-
tient of positive numbers:

lxo= lim XXO .

X~—>Xg [1—z0|

In drawing functional scales it is interesting to observe the
ratio of the unit A, at point w, of the scale of 2’es to the
unit 4, for the scale of y’s. As follows from the definition of the
unit 4,, we have

XX el ldy
o tim Yo g |48 W

. ’dxi

A A

xp - Ayy = Hm : lim

xooss [T v [y—gal 50
Y=Y

since the segment XX, is of course equal to (identical with) the
segment YY.
We thus obtain the formula

}*xo = }‘yo If' (o) - (1.1)

The ratio of the unit 4, of the scale of z’es at the point z; to
the (constant) unit 4, is equal to the absolute value of the
derivative of the function at the point x,.

Let us take for example the function

flx) = 2ya+4.
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We find the derivative of this function:

1
@) =2 Hatay® = o —.
\/ z+4
Substituting in formula (7.1) the value of the derivative of the
given function at the point x = 0 we obtain

Jo=LIINE| =12,

and substituting the value of the derivative at the point x = 5,
we have

}‘5 = lyil/\/§| = }‘y/3»

i.e., in the neighbourhood of the point z = 0 the unit 1, is equal
to one half of the unit 4, and in the neighbourhood of the point
x =5 the unit A, is equal to one third of the unit 4,. Thus
the reading of the argument x in the neighbourhood of the point
2 == 0 is half as accurate as the reading of the value of y, and in
the neighbourhood of the point @ = 5 its accuracy is one third
of the accuracy of reading the value of y.

ExampPLE 1. Draw the double scale of the function
flx) = (2®—32%+4-6x) /50

for the values of z in the interval 0 << x << 1-2; the error of
the reading of x should be less than 0-01 and the error of the
reading of y should be less than 0-001.

To establish the units A, and 2, let us find the derivative
f'(@)

(@) = (82> —62+6)/50 = [3(x—1)>+3]/50.

The derivative has its minimum value at the point = = 1.

We thus have
Ay idy 2 4y 14, = f'(1) = 0-06.

It follows from the terms of the problem that the unit A,

should be equal to at least 5 cm (4, > 0-5 mm/0-01 = 5 cm),

and the unit A, should be at least 50 em (4, > 0-5 mm/0-001
= 50 cm); we thus have the inequalities

Ac>b6cm, 1,>50cm, A, > 41,0006 >50cm-0.06=3cm.
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These inequalities will be satisfied if we assume that
Ax=A=05cm, ie A =4/006=5/0-06cm = 83-3 cm.
Since for the end-points of the interval we have
flO)=0 and f(1-2) = 0-09216,

with the limit 4, = 84 cm, for example, the length of the scale
for y will be slightly less than 84 em (Fig. 31).
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Remark. In cases where the function for which we are to
draw the functional scale is given only for a finite number of
arguments and is monotone, we usually draw first the graph
and then, with its aid, the functional scale. To understand this
better let us consider the following example:
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ExampLE 2. Draw a functional scale for a function defined
for the following values of the argument:
1031162237 |44(57]71)84]91 [10-7
y |09]26|32|51|56)66|74|81|84,88

Let us mark the points with given coordinates in the ortho-
gonal system of axes (Fig. 32), and then, making use of the
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Fig. 32

assumption of monotonicity, let us draw an approximate graph.
We now draw vertical lines from points 1, 2, ... and the inter-
mediate points of the axis of abscissas, and horizontal lines from
the points of their intersection with the graph as far as their
intersection with the y-axis. Thus we have on that axis both
the points corresponding to the values of « and the points corres-
ponding to the values of the variable y, assigned to the values
of z on the strength of the table and by agreement. Consequently,
we have a double functional scale.
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Exercises

1. Construct a double scale for the conversion of the degrees of Centi-
grade and Réaumur.

2. Construct a double scale for the conversion of the degrees of
Centigrade and Fahrenheit.

3. Construct a double scale for the function y = wx? in the interval
1 <2 <3 with reading accuracy up to two decimal places for =
and y.

4. Construct a single scale for the functions a. y = sin x for angles
from 0° to 90° assuming A, = 10 em: b. y = 0-8 sin z for the same A,.
Combining the two drawings in such a way that the same points for y
coincide, we obtain a double seale for the equation

0-8sinz = sinz, 1ie. x= arcsin (0-8sin z)
whenece we can read the values of # and z which correspond to each other.

5. Construet a double scale for a function y(zx) defined by the equation
y®—3zy—2x--1 = O for the interval (0, 0-5) of the variable x; the drawing
should be made to a scale that would ensure the reading error for z to
be less than 0-001.

Hint: Draw a graph of the inverse function first.

§ 8. Logarithmic scale

A scale of a linear function is regular, i.e. the unit 1, is the
same at each point x. This is an important property if reading
accuracy is to be the same everywhere. However, in most problems
of science and technology, the so called relative accuracy, given
by the ratio of the error Az to the value of z, i.e. the fraction
Azfx = b,,
for instance, we find the volume v of a sphere, then the same
reading error Av will have a different significance for different
values of v; namely its significance is less for larger values
of v; the only sensible measure of accuracy is then the ratio
Av/fv.

Our problem is to find a scale which would be Dbest in this
respect, i.e. a scale for which the relative error b, = Ax/x would
be constant at each point z of that scale.

In order to find that scale, let us observe that the smaller
the unit 1, at point x the greater the error Az of reading the
number z, i.e. that the product 4,42z has a constant value m for
every scale. Thus the condition that the quotient b, = Ax[z

is of greater importance. For it is obvious that if,
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or z/Ax be constant is equivalent to the condition that the product
A, = am[Adx = m[b, be constant. We thus have

Ax=c, ie. A|f'(x)x=c, and thus f'(z)=cfz.
The last equality gives by integration
f@) = ¢, log, x = x, log x/log e = C log =.

Consequently, the only functional scale for which the same
relative accuracy obtains for every point z is the logarithmic
scale.

Let us construct a logarithmic scale for the logarithms with
base 10 (Fig. 33a). For numbers y we have, as usual, a regular
scale. Let us take for y the interval from 0 to 1. Knowing that

logl =0, log2=0,301, .., loglo=1

we mark for « the values 1, 2, ..., 10 on the right side of the
segment, opposite the corresponding points of the scale for y.
We mark the fractional values of x in a similar way, obtaining
thus a logarithmic scale for z.

If the scale length in Fig. 33a were 2-5 cm, we could distin-
guish on it the values of y with an accuracy up to three decimal
places, since points differing by 0-001 would be spaced at a
distance of

25 em/1000 = 1/4 mm.

Increasing the scale length to 2:5 m we could obtain a double
scale which would replace four-digit tables of logarithms. Fig-
ure 33b represents a 3/20 part of such a scale, namely the part
for y contained between 0-5 and 0-65.

A characteristic feature of the logarithmic scale is the property
of the logarithmic function defined by the formula

log ab = log a--log b.

From this equation we draw the following conclusions:

a) In order to find on a (single) logarithmic scale the point
representing a number ab, we must add the segment delimited
by points 7 and a to the segment delimited by points I and b.

b) In order to find on a (single) logarithmic scale the point
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representing a number a/b, we must subtract the segment delimited
by points I and b from the segment delimited by points 7 and a.

Both operations can be performed on a slide rule by applying
the so called movable scale to the so-called constant scale.
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The multiplication result will be obtained on the constant
scale only if it is contained between 1 and 10; the same applies
to finding the quotient. The question arises what is to be done
if the result is not contained between 1 and 10. Now, the
formula

log 10a = log 10+loga = 1+loga

implies that the logarithms of numbers contained between 10 and
10.10 will be contained on an extension of the scale, between
1 and 2 of the y-scale; it should be observed here that the unit
of the y-scale is the segment between 1 and 10 of the ax-scale
since log 10—log 1 = 1. Therefore, disregarding the decimal
point in the numbers denoting the values of the argument z, we
shall have identical scales for x between 0 and 1 of the variable
y and between 1 and 2 of the variable y. The same obtains of
course for numbers x contained bhetween 100 and 1000, etc.
For the same reason the scale for x varying from 0-1 to 1, from
0-01 to 0-1, ete., is, if we disregard the decimal point, identical
with the scale of arguments between 1 and 10. It will thus be
seen that the logarithmic scale with base 10 is a periodic
scale, the period being that part of the scale which corresponds
to numbers z between 1 and 10.

On these grounds we can obtain the result of addition (multi-
plication or division) also in those cases for which no reading
has so far been possible. Namely it is sufficient to shift the scale
of the slide rule the unit of the logarithmic scale, ie. to put
10 in place of 1 or wvice wersa.

Thus, seeking the product 8.3 for example we should put the
10, and not the 1, of the movable scale against 8, and we should
read the result on the constant scale under the 3 of the movable
scale.

Exercises

1. On a given segment 4B draw a logarithmic scale for the interval
from = 310 to @ = 745 by means of a parallel projection of the scale
marked on the slide rule.

2. Construet two logarithmic scales with the same logarithmic unit
and then combine them by putting the point log 1 of the first scale upon
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the point log 10 of the second scale and the point log 1 of the second
scale upon the point log 10 of the first scale. What equation is
satisfied by the numbers appearing at the combined points of the two
scales ?

3. Construct the scales u = log * and v = log y, adopting for « a unit
twice as large as the one for v; combine the scales putting the point u = 0
upon the point v = 0 and u = 1 upon » = 2. What relation is satisfied
by the numbers x and y represented by the coinciding points?

4. Construct a nomogram for the equation y = z ]/ 3 consisting of two
combined logarithmic scales.

5. Construct a nomogram for the formula of the volume of a sphere
v= 47r3/3 consisting of two combined logarithmic scales, for the interval
3 < r <{ 50; the relative error should not exceed 59.

§ 9. Projective scale

Functions of the form

ax-+b

cx rd (9.1)

h(z) =

are particularly important for the construction of nomograms.
If ¢ 5 0, then the function A(x) is defined for all x except
x = —d]c.
Denote by H the set of all functions of form (9.1) for which
the coefficients a, b, ¢, d satisfy the condition

la ,
=le a
\

Functions of the set H are called homographic functions.
‘Obviously, if W = 0, then h(x) is a constant.

To begin with, it will be observed that:

Every function belonging to the set H is monotone in every interval
that does not contain the number z, =—d/c.

This follows directly from the fact that the derivative
(px—&—d)~c(ar+b) ad—be w

h(x) = St A S
Viw) = (cx+d)? (cx—{—d)l (cazc—f—al)z 70

for every x for which the function A(z) is defined has the same
sign. Thus if W > 0, then h(x) is an increasing function, and if



78 NOMOGRAPHY

W < 0, then A(z) is a decreasing function. Scales of homographic
functions for which ¢ 54 0 are called projective scales.

Before we proceed to the construction of projective scales,
let us list certain properties of homographic functions.

THEOREM 1. The set of all homographic functions forms a group
iof by the group operation we understand the formation of @ compound
Sunction. (The unit element of that group is the identity function
h(x) = z.)

Proof Let

a,x+b, a,x+b
k l d h — 2 2
1(@) = clx—}—d an o) cprtdy’

for
b

W, — |a1 1 | O 0,

‘Cl 1 =0, W ¢y dy .

be functions belonging to the set H. We shall prove that the
compound function A, (h2(:v)) = h(x) also belongs to the set H.

Indeed

" ayx+b,
' Ca%+dy ' 1(a2x+b2)+b1(czx+d2)
Iffa)) = b b)) 1d d
¢ a2x+ ‘l—d ¢y(ayx+by) +d;(cax+dy)
Le,a—+d,

_ (aya,--b,¢) 2 4-(a, by+b, d,)
(@01 +-cody) 2+ (byoy+dy dy) ’

and

_ayaytbie,  a by +bd,
ol aye -cdy  byeydyd,

;alb‘

o di]

a, by

= W,=£0.
Cy dz. Wil 3

We shall prove, moreover, that for every function k(z) of the
set H there exists a function y(z) such that &, (h(z)) = h(ho(x)) = x.

It will easily be observed that if

axr-+b
cx+d’

and

h(z) =




EQUATIONS WITH TWO VARIABLES 79

then
—b d —b!
ho(x) = —:d:— , where | #£0.

xr+a I —C al

The theorem is thus proved.

THEOREM 2. If h,(x) and hy(x) are different homographic functions,
then there exist at most two different values x' and x'’ such that
h(z’) = holx”)  and  h(x’') = hy(x'').

Proof. Let
a; z+b; .
() = AT —=1,2,
hy(x) o214, for =1,
Equation k() = ky(x) implies

@ x+b;  ayx-tby
o xtd,  cprtdy’

(9.2)

whence
(@16, —ap¢y) T+ (@) dy+by a—by ¢y —ydy) 2+ (bydy—bydy) = 0. (9.3)

This equation generally has two roots; in the case where the
coefficient a, ¢,—a,c, is equal to zero, one of them tends to infinity.

Suppose now that equation (9.3) has three different roots.
As we know, it is satisfied for every value of z; in that case,
however, equation (9.2) is also satisfied for every value of «.
If neither of the numbers ¢, and d; is equal to zero, then also
neither of the numbers ¢, and d, is equal to zero, and we obtain
the proportion

@y by iy idy=ay by ¢y i ds. (9.4)

If ¢, = 0, then d, % 0 and ¢, = 0 and also d, 7 0; equation
(9.4) is then satisfied. The same applies to the case d;, = 0.

Thus equation (9.4) always holds, i.e. h; = hy, contrary to
our assumption.

The theorem is thus proved.

Suppose we are given two regular scales with arbitrary units
and a point P belonging to neither of them. Projecting one scale
upon the other by means of straight lines passing through the
point P, we obtain on the second scale a double scale of a ho-
mographic function. In order to prove this let us place one
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scale on the y-axis of a system of orthogonal coordinates (Fig. 34)
and let us express the second scale by means of parametric
equations

r=a+p, y=yt+9.

Obviously, points with coordinates z, y corresponding to the same
values of the parameter ¢ form a regular scale; the unit of that
scale is the distance between the points assigned, for example,
to the numbers t =0 and ¢ =1, i.e. \/az—}—yz; we thus assume
that o192 > 0.

vy
1016

Fic. 34

Point 7", which is a projection of point 7' with coordinates
at+f and pt-- 6 from point P(r, s) (r # 0), will have coordinates 0,
y satisfying the equation

0 y 1 |
at+pf yt+0 1| =0,
! r § 1
ie.
—ylat+f—)+s(at+p)—r(yt+0) =0,
whence

_ (sa—ry)tt+sp—rd
B at+pg—r '
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This is a function of form (9.1). In order to prove that it is ho-
mographic let us compute the determinant

a f—r|
|7 d—s|

sa—ry sf—rd
a p—r
It follows from the assumption that the abscissa r from point

P is different from zero.
If W =0, i.e. if the determinant

a p—r
y 0—s

W= =r(ry—as+ad—pPy)=r

were equal to zero, then the system of equations
r=oat+f, s=ypt}0

would have a solution with respect to £, and thus point P(r, s)
would lie on the straight line ¢, which is not the case. Thus we
have W # 0, i.e. the relation between t and y is a homographic
function. This implies that a projection of a regular scale is a
projective scale or a regular scale; as can be seen from (9.5), the
projection is a regular scale if « = 0. This can be generalized by
theorem 1 to projections of projective scales.

THEOREM 3. A projection of a regular scale and a projection
of a projective scale upon a straight line are projective scales or
regular scales.

By theorems 1-3 we can construct a projective scale if we have
three points corresponding to three given numbers z,, x,, ;.

For example, suppose we are given points 6, 8, 11 on
a straight line (Fig. 35). By theorem 2 there exists only one
homographic function which assigns to those points the values
6, 8, 11. In order to draw its scale, let us consider any regular
scale whose point marked 6 coincides with the given point 6.

Connecting by straight lines the points 8§ and 8 and the points
11 and 11 of the two scales, we shall obtain at their intersection
a certain point P. A projection of the regular scale from point
P upon a given straight line is a projective scale (Theorem 3);
since, however, that projection coincides with the required scale
at points 6, § and 11, it is identical with that scale (Theorem 2).
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In connection with the fact that, having fixed the end-points
of the projective scale (in Fig. 35: 2, = 6 and x, = 1I), we can
choose an arbitrary point in the figure to represent a certain
intermediate value of the argument, we are confronted with the
following two questions concerning the accuracy of the scale:

a) How can we construct a projective scale which would give
the best possible absolute accuracy of reading?

b) How can we construct a projective scale with the best
possible relative accuracy of reading?

11

6

Fia. 35

The first question can be answered immediately. Since the
regular scale is the best scale for absolute readings, the projective
scale will be the more suitable the better approximation it is of
the regular scale. Thus the arithmetic mean of the end-points
(wg+2,)/2 should be taken as close as possible to the geometric
mid-point of the scale segment in question.

In case b we should select a projective scale which would
approximate a logarithmic scale as accurately as possible. This,
as we know, is equivalent to the condition that the product
|| 2, of the absolute value of the argument and the unit for scale
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be, in the interval (z,, z,), a function of as little variation as
possible. Seeking a homographic function satisfying the required
conditions involves very cumbersome, though elementary, com-
putations. In practice we obtain a satisfactory approximation if
we connect the mid-point of the interval (z,+,)/2 on a regular
scale (point 7, in Fig. 36) with point (xy+z,)/2 of such a lo-

2
Ly, 1515 xp

F1c. 36

garithmic scale { on a given straight line that points z, and x,
of that scale coincide with points z, and z, of the required projec-
tive scale. Projecting from point P (of intersection of that
straight line with the line joining points z, of the scales) we
obtain the projective scale r on the given straight line. This
scale will coincide with the logarithmic scale at three points:
Zg, (Te+,)/2 and ,. It can easily be shown that both in one and
in the other half of the interval (wxy, x,) there are points at
which the unit of scale r is larger than the unit of scale I and
points at which the unit of scale r is smaller than the unit of
scale I. Hence in the interval (x,, z,) there exist also at least
two points at which the units of the two scales are equal.
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In practice we often have to solve problems approaching the
one under discussion and concerning projections of logarithmic
scales. We shall explain this by means of an example:

Suppose we are given a one-parameter family of functions:

3log x
4+alogx
defined in the interval 1-5 <{ o <{ 8-5. Find a function of that
family which, in the given interval, approaches a linear function
in the sense that the arithmetic mean of the end-points of interval

y corresponds to the arithmetic mean of the end-points of in-
terval .

fle) =

This condition can be expressed as follows:

=280 5 af(5) = 1)1/ 55).

4

We thus have the equation
3logs ~~ 3logl:s | 3log85

2— = )
dtalogh 44alogls = 4talog8s

ie.
2(44alog1:5) (4+alog8-5)log b
= (4+alog 5) (4+alog8:5)log 1:54-
+4- (44-alog 5) (4-+alog1:5) log 8:5.

Performing elementary calculations we find that a? vanishes
and we obtain approximately the equation

0444041172 =0, whence a=—2-64.
The required function thus has the form

fa) = —2loBr
4—2-641ogx
For x = 1-5 we have
f(1-5) = 0-5283/3-532 = 0-15,
for « = 85
f(8:5) =2-788/1-54 — 1-81.
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Drawing a regular scale on y with end-points 0-15 and 1-81
at the points corresponding to the values x = 1-5 and x = 85,
we finally obtain the required scale of a function, compounded
from a homographic function and a logarithmic function, which
in the given interval hardly differs from a linear function.

If we wished to find only a single scale, the result could be
obtained more simply by a geometrical method. For, as follows
from our considerations in this section, it is sufficient to draw
an ordinary logarithmic scale AB (i.e. the scale of the function
y = log x) in the interval 1-5 < x <{ 85 (Fig. 37), then draw an

04

Fia. 37

arbitrary segment 4'B and finally make a projection of the scale
AB upon the segment A’B from point O, at which the straight
line AA’ intersects the straight line joining the point z = 5 of
the scale A’B and the mid-point of the segment 4B.
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Exercises

1. Construct a scale for the function ¢(z) = sinz for the interval
(0° 90°) and then, by projecting from a point, construct a scale for the
compound function
a sin z+b

csinz4-b

pla) = Mg) =

in such a manner as to make the point 45° the mid-point of the scale.

2. Approximate by means of a projective scale a segment of a loga-
rithmic scale for arguments from 1 to 10 in such a manner as to obtain
the least relative error. (A homographic function which assumes the same
values for = 1 and z = 10 as a logarithmic function is of the form

10—¢ x—1 )

v= 9 z—c

Hint: Wo should find a ¢ for which the variation of function @ (z) = xAx
in the interval (1,10), i.e. p(10)—@(l), has its minimum value.

Solution. ¢ = —564; the mid-point 55 of the scale is below the
point 5-5 of the logarithmic scale at point x = 5-2.

3. Prove that the homographic function y = k(z) which for =z, =,
%, assumes the values y,, ¥, ¥, respectively can be written in the implicit

form:
zy =« y 1
ZoYo To Yo 1
= 0.
iy B 1
ZeYe Ty Yz 1|
. Ty— T
4. Prove that by assuming for ;= ———————, k(z;)= lnz, we

Inz,—1n z,
obtain a better approximation of a logarithmic scale in the interval
(x4 ®q) than by assuming

3 ( o+, ) —1n Zy+ Ty .

2 2
Hint: Prove that
Ty—Xy o124
<
In z,—In z, 2

TpTg <

for 0 < 2y < @y (Inxz denotes a logarithm with base e).



CHAPTER III

EQUATIONS WITH THREE VARIABLES

1. COLLINEATION NOMOGRAMS

§ 10. Equations of the form f,(u)-}-fy(v)+f;(w) = 0. Nomograms
with three parallel scales

10.1. The relation
w = U-}tv (10.1)

can be represented graphically by means of a very simple drawing
composed of three regular scales on parallel lines (Fig. 38). Namely
it is sufficient to take equal units for » and v and a unit half as

u w v

6~K 124 -6
4 I]_

-5

4

W
| \V
4 7_4. L)
3 6-;/_3
(24}

<-{° 3_:
1 2 -7
11
/] 0 0
F1a. 38

large for w, and then place the scale for w half-way between the
scales » and v, the zero points of the three scales being in line.
A straight line intersecting the scales at points U, V, W delimits

87



88 NOMOGRAPHY

segments OU, OV, OW satisfying the condition
20W = OU-+OV.

If we denote by A the common unit on scale u and scale »,
then the unit on w will be 2/2 in length and the equation will
be of the form

20w, [2 = Augt+Avy,  de.  wy = uytv,.

Figure 38 represents a frequent type of nomogram for a relation
of three variables. It is very convenient to read because for given
two values of » and v (or » and w, or v and w) we can find the
corresponding value for w (or v, or 4) by drawing one straight
line. It will be observed, however, that the drawing is useful
only if there is not much difference either in the variability
ranges of w and v or in the required reading accuracies for those
variables.

10.2. Consider the case where the variability range for u is
several times less than the variability range for v, while the
required accuracy is several times greater for « than it is
for v.

The nomogram would form a trapeze with v as its greater
base and u as its smaller base. In order to enlarge the unit 2, we
should have to enlarge the whole trapeze, which in many cases
might prove practically impossible.

The question arises whether it is possible to deform the
nomogram so as to enlarge the unit for » considerably with
respect to the unit for v, retaining nevertheless the character
of the drawing, i.e. the collinearity of the three points representing
the three numbers », v, w, which satisfy equation (10.1).

Obviously, we can admit all those—and only those—trans-
formations of a plane in which straight lines are transformed
into straight lines. As follows from our considerations in § 3,
Chapter I, those transformations form the set of all projective
transformations of a plane. The problem which we are discussing
at present, however, is of a very simple nature and can be solved
by direct elementary considerations.

The task can be reduced to finding a projective transformation
of a plane in which a given trapeze UU,V,V is transformed
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into a rectangle with a given ratio of sides or into another trapeze
with a given ratio of parallel sides.

For this purpose, let us take a plane § passing through scale
u and on that plane a rectangle (or trapeze) UU,V,V' having
a side in common with a given trapeze lying on another plane
(Fig. 39).

Fi1a. 39

Since the straight lines V'V, and V'Vy are parallel, the straight
lines VyV§ and VV' intersect. Let the point S of intersection
of the lines V, V5 and V'V’ be the projection centre. Obviously,
by projecting from centre S upon plane 8 we obtain a new
nomogram, in which numbers %, v, w satisfying the equation
w = u-+v are also represented by collinear points. This follows
from the fact that a projection of three collinear points gives
also three collinear points.

It will be observed that the scale V¥V’ which is a projection
of the regular scale V,V, is also a regular scale, because the
straight lines V,V and V¥V’ (the bases of the scales) are parallel
to each other. However, if the projection centre § is an ordinary
point, then of course the units of those scales differ from each
other.

We have proved that there exists a transformation of the
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nomogram of Fig. 38 into a nomogram with parallel scales in
which the unit for # remains unchanged and the unit for v can
be chosen arbitrarily. The w-scale will be observed to have moved
from its central position towards the scale with the smaller unit.

Owing to the existence of transformations of this kind, we
shall make the drawing directly on plane 8, drawing on the par-
allel lines » and v regular scales with arbitrary units and arbitrary
senses. As we shall see, the construction of the w-scale can be
founded on properties of the transformed nomogram, i.e. without
the use of projections.

Nomograms in which readings are taken on a straight line,
ie. those in which points satisfying a given equation are collin-
ear, are called collineation nomograms.

u

20 w v
] 180 - 160
19 E —
\\ ] i
18- T S
17 i
] 1603
16 :
] 3 - 140
57 1504 |
7 1 Fumo
13 104 |
12 3 i
1 3 - 120
1] 130 ]
10 g {
1 120+ - 110
9] _// 3 i
1 - E F
J?d‘/ 104 N 100
7_ 3
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ExampLE 1. Let us draw a nomogram for equation (10.1) if
% varies from 7 to 20 and v—from 100 to 160: the unit for v should
be one-fifth of the unit for u.

On two parallel lines, » and v, we draw scales with a unit satisfy-
ing the required condition (Fig. 40). Knowing that the w-scale
will lie on a line parallel to the lines % and v, we first determine
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one point of the w-scale, e.g. w = 120, by two substitutions: ,
= 20, v, = 100, and %, = 7, v, = 113. Joining points u, and v,
and points %, and »;, we obtain at the intersection the point
120 of the w-scale. Joining point 150 on v with point 20 on u we
shall obtain point 170 on w. Other points can be obtained either
in the same manner as point 120 or by completing a regular
scale for which two points are known.

Remark. The nomogram constructed in Fig. 40 is con-
venient for finding the sum w when the components % and v are
given since the w-scale is situated inside the scales for » and
v and the reading results from interpolation. If the aim of the
nomogram is to find the difference u of given numbers w and
v, we must transform it so as to have the u-scale placed inside
the scales for w and for ». Accordingly, we pass a plane § through
the straight line » of the given nomogram (Fig. 41) and select

v

%]

w’ '

8

Fia. 41

on the plane a certain straight line »’ parallel to line . We choose
the projection centre S on the plane containing the lines » and
v’ (in order that v’ be the projection of v) between those two
lines. It can be seen in the figure that the senses of the axes
u’ and v’ will be different if they were identical on the axes » and v,
and that the scale v = ' will lie between the scales w’ and v’.

Owing to this we can draw the nomogram for the difference
% = w—v in the same way as for the sum, adopting arbitrary
units for the parallel scales w and v and choosing opposite senses
(Fig. 42).
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10.3. On the grounds of what we have so far considered we
can construet a nomogram consisting of three parallel scales,
as in Figs. 38, 40 and 42, for every relation of the form

i) +folv) +-fs(w) = 0. (10.2)
Indeed, on the strength of the substitutions
u' = fy(u), v' = fylv), w' = —fy(w) (10.3)

~14]

Fia. 42

it is sufficient to draw first a nomogram for the relation w’
= u’4v" (taking into account the limits for «’, »’, w’), and
then replace the regular scales u’, »’, w’ by functional scales (10.3).

ExampLE 2. Construet a nomogram for the formula
z = nry/3

for the volume of a cone with height y and base radius x, adopting
for x the interval from 275 ecm to 320 cm and for y the interval
from 360 cm to 600 cm.

The given formula is equivalent to the equation

logz=2logz—+ logy+ logm—log 3.
Substituting
u=2logz. wv=Ilogy+logm—1log3 and w=Ilogz
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we obtain for w and v the intervals
4-88 = 2 log 275 << u << 2 log 320 = 501,
2-576 = log 360+0-02 < v < log 600-+0-02 = 28,
We first construet a nomogram for the formula w = u+tv
(Fig. 43), adopting for » a unit about twice as large as the one

for », because every error in determining the logarithm of
« is doubled on account of the coefficient 2. Point 7-6 of the

x z v
320 3 - 600
5 6.1071f i
3 3 L 550
310 E t
3 5.1073 !
3 3 500
300 3 i
; 4.107] 450
390 ] s
3 ] - 400
E 4 -
280 7]
| ] 3.10" [ 260
275
Fig. 43

w-scale is obtained by joining the points v, = 5 and v, = 2-6
and the points 4, = 4-9 and v, = 2-7; then drawing a straight
line through the points u, = 5 and »; = 2-8 we find the point
w="178.

Having determined the regular scales for u, » and w, we re-
place them by logarithmic scales for x, y and z substituting
for z successively numbers 275, 276, 277, ..., 320, for y success-
ively numbers 360, 361, ..., 600 and finally for z the numbers be-
tween z, = (/3) 2752 . 360 = 28600000 and z, = (n/3) 3202 . 600
= 61400000.

It will be observed that the scale for z, just as the other scales
of this nomogram, has the same relative accuracy at every
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point. Since, in the neighbourhood of point z = 40000000 for
example, we can distinguish strokes differing by 100000, the
relative error does mnot exceed 100000/40000000 = 1/4000,
i.e. 0-25%,.
ExampLE 3. Let us construct a nomogram for the relation
GI-BS

d4‘97

A = 3160

considered in the intervals 40 < d << 350 and 1000 << G << 10000
with the required reading accuracy of 49,.

Introducing logarithms on both sides of the equation, we have

log 4 = 1-85 log G—4-97 log d+1og 3160.

Substituting

u=185logd, v=—497logd, w =logd—log3160
we obtain the equation

w = u-|+v;
we have the following intervals for the new variables:
5:55 = 1:85 log 1000 <C u << 1-85 log 10 000 = 7-4,
126 ——4-97.2:55 — —4-97 log 350 < v (10.4)
< —4-97 log 40 = —4-97.1-6 = —8.

The accuracy of the logarithmie scale is 4%, if the logarithmic
unit, i.e. the distance between the points corresponding to numbers
log1l and log 10 is at least 2-9 em. For, by formula (2.1) of § 2,
Chapter II, we have

, loge
7 13y = |f'(@)] = |(log 2)'| = (log eln o)’ = ===,
and thus
Acx=4,loge ~ 043 A,.

For instance, if z = 100, then in order to retain the accuracy
of 4% we must distinguish 96 from 100, ie. we must have
42100 = 0-5 mm. We then obtain

0O
1100.100 > _45— == 12'5,
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ie.
0-43 4, > 125 mm, whence 1, > 29 mm.

Accordingly, we must construct a nomogram in which the
logarithmic unit for A4 will be at least 2:9 cm. Let us first sketch
a nomogram (the scale being 1:2) for the equation w = u+v in

-8 =74

~9—

~10 —

-11 1

-8
-12 -

L _; ]

-12:6 - L -555

Fic. 44

the intervals (10.4). Adopting for » the unit 10/1-85 cm and for
v the unit 10/4-97 cm, we obtain Fig. 44, which shows that the
unit for w is more than 3 cm. The ultimate shape of the nomo-
gram will be obtained by drawing instead of », v, and w the cor-
responding logarithmic scales; this is shown in Fig. 1.
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10.4. In many cases a nomogram of the three parallel scale type
requires further transformations in order that it should assume
a form satisfying the required conditions.

For example, suppose we are given the equation

2% = 2a2-hyB. (10.5)

We construct a nomogram for the intervals 0 <z <5,
0 <y <4 in the same way as before.
We substitute

=22 wv=1y, w=2?

and draw regular scales for « between 0 and 50, for v between
0 and 64, and for w exactly in the middle if the units are equal
and the senses identical (Fig. 45).

4_

- 60
xr u zlw vy1Tv
5% 101100 50

[ [ 354
140 9180 - 40
1 8T 60 130
- 3_
= o 7_-: -

- - ]
2 20 61 40 ‘r—20
- - 251
_~1o 5T 20 }-10

2 44 24
4 3+
1 2+ 1
00 0="-o0 oo
Fia. 45

Replacing the regular scales for u, v, w by functional scales,
we find that the units A,, 4,, A, increase very fast as numbers
z, ¥, = move away from 0. The reading error would thus be very
great in the neighbourhood of zero, while the accuracy for large
2, ¥, z would be excessive. A proportional enlargement of the
drawing in order to obtain greater accuracy in the neighbourhood
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of the zeros would result in dimensions practically unattainable.
In that case it is advisable to deform the nomogram in such a way
as to enlarge the neighbourhood of zero of the scales z, ¥, z and
at the same time diminish the units for large z, ¥, 2.

This can be achieved by means of projection upon another
plane.

We choose plane f, upon which we shall project, in such
a way that the edge k of its intersection with plane a intersects
the scales z, y, z (Fig. 46). Projecting from a certain point S the

Fig. 46

parallel lines x, y, 2, we shall see that the straight lines z’, y’, 2’
corresponding to them will intersect at one point. The regular
scales u, v, w will be transformed into projective scales with
a common point N’ constituting the image of the point at infinity
of the straight lines under consideration.

Let B and C be the end-points of the v-scale. As we know, by
a suitable selection of the position of the projection centre § we
can obtain a nomogram in which the points N’, B’ and C’ will be
given a priori; on this ground we shall draw the transformed
nomogram for equation (10.5) in the following way (Fig. 47):

a. Adopting on the projective scale points 0, 10, 60 for the
variable u, we complete it by means of the regular b-scale. The
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point at infinity lying on the b-scale is then transformed into
point N lying on the wu-scale.

b. We draw the transformed scale for v through point N and
select on it point 700 and point 0 for example since it is already
known that N will be a point corresponding to the point at infini-
ty. The projective scale for v is obtained by a projection of the
regular a-scale from point P, ; if we choose P, = P, then we must
also have a}|NP.

100

Fia. 47

c. Knowing that the line w must pass through point ¥, we
find only one point of that line in the same way as before (in the
case of a nomogram in the previous form), i.e. by determining
straight lines passing for instance through point 0 on the u-scale
and point 70 on the v-scale and through point 10 on the u-scale
and point 0 on the v-scale; other points on the w-scale are obtained
also by projection, e.g. by projecting the wu-scale from a point
on the v-scale.
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d. Replacing the projective scales for w, v, w by the scales
sor z, ¥, z by the same method as that applied to the regular
scales, we obtain the ultimate form of the nomogram, in which
the scales have undergone the required deformations.

The above method of constructing nomograms is complicated
and inexact because the ultimate forms of the scales x and y are
obtained as a result of two drawing operations. We shall regard
those nomograms as exact which are obtained directly by replacing
a regular scale by a corresponding functional scale.

Such direct construction of a nomogram on the basis of regular
scales will be discussed in the following section.

Exercises

1. Construect a nomogram for the relation between vibration frequency f,
induetion L and electrical capacity C

1 1
f=5x ]/ﬁ
for the intervals 0-2 < L <{ 30 microhenrys and 2 <{ O < 300 microfarads.
2. Construct a nomogram for the equation
zty-+z = 100
taking for each variable the interval from 0 to 100.
3. Construct two nomograms for the equation
2= 2yt
for the intervals 0 < z <( 8, 0 <{ y < 10, absolute accuracy being required
in the first interval and relative accuracy in the second.
4. Construct a nomogram for the equation
2 = 2r/(z+3y°)
taking for x the interval (0, 3) and for y the interval (1, 5).

5. Construct a nomogram for the equation

2= alYairyt
where 10 <z <{ 100 and 5 <Cy < 10.
Hint: Write the equation in the form y/z = Vijz/z
6. Construct a nomogram of the equation

drcr
T2

a =

for 1 <\r <10, 1 << T < 100.
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§ 11. Equations of the form 1/f (u)+1/fs(v)+1/f;(w) = 0. Nomo-
grams with three scales passing through a point

11.1 Let us draw three regular scales #, », w with a com-
mon unit (Fig. 48). Assume that both the axes % and w and the
axes w and v form angles of 60°, i.e. the axes % and v form an
angle of 120°,

A straight line I which does not pass through the zero point
ntersects the axes at points u,, v, and w,; the sum of the
areas of the triangles Ouyw, and Owgyy, is equal to the area of
the triangle Ougv,, i.e.

Uy W, sin 60°+w,yv, sin 60° = wu,v, sin 120°,
and after reduction
UgWoTWolg == Uy OF  1]ug+1[vg = 1]wg.

Consequently points u, » and w lying on a straight line which
does not pass through the zero point satisfy the equation

ljut+1fv = 1/w. (11.1)

If we changed the units, taking 4,, 4, and A,, instead of 1, the
drawing would be a nomogram for the relation
14, /4, 1/, a b

+ = or w + i

u v w

c
o

Let us subject this nomogram to an affine transformation
(Chapter I, § 4). Accordingly, let us pass a plane 8 through
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a straight line k intersecting the scales u and v at certain points
U and V (Fig. 49). On that plane let us select an arbitrary point
O’ and project our nomogram from the point at infinity of the
straight line OO’. Obviously, in this manner regular scales
will be transformed into regular scales with units proportional
to the segments UO’, VO' and WO’; it will also be seen that,
given the ratio UO': VO’, we can select the point O’ in such
a way as to make the angle UO'V equal to an arbitrarily chosen
angle ¢. Using the fact that the angle UO'V and the units on the
scales » and v are arbitrary, in practical problems we make

Fic. 49

a direct drawing of the nomogram lying on plane f3: on arbitrary
two straight lines passing through the point O’ we determine
regular scales with the zero point O’ and arbitrary units, and then
find the w-scale (also regular) by locating one of its points as in
10.1, § 10, i.e. by drawing lines uyv, and u,v, selected so as
to give 1fug+1fvy = 1]uy+1/v,.

ExampLE 1. Let us represent by a nomogram the equation

3Jut2/v = 4jw

for 5 << u << 10, 10 << v < 20.
We draw arbitrary regular scales » and v with a common
zero point (Fig. 50). Then, in order to find the point w = 10 of
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the w-scale, we find two parts of corresponding values of wu,,
vy, %y, Uy, S0 a8 to have our equation satisfied:
3/ug+2/20 = 4/10, whence uy, = 10,
3/u;+2/10 = 4/10, whence w, = 15.
Having located the point w = 10 of intersection of the line
joining the points u,, v, with the line joining the points u,, v,
we draw the regular w-scale with zero at point 0, = 0,.

15u

Fia. 50

11.2. Basing ourselves on equation (11.1) we can represent
by a nomogram with three scales starting from one point any
relation of the form

Lfy(w)+1/fy(v) = 1[fy(w). (11.2)
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Namely, it suffices to substitute

u' = fiu), v =f0), w = fiw) (11.3)
and draw a nomogram for the equation 1fu'41/v" = 1jw’. The
intervals on #’, »' and w’ are determined by the given limits
of the variables u, v and w; finally the regular scales %', »’, w’
should be replaced by the functional scales of the functions
fi(w), fo(v) and fy(w).

Every equation (11.2) is of course reducible to the form (10.1),
ie., to the form w"’ = 4" +v", and represented by a nomogram
with parallel scales; for that purpose it suffices to assume

w =1[fiw), v =1/f), w’'=1/fitw). (114
The selection of substitution depends on the shape of the
function f; in the given intervals and on the required degree of
accuracy. E.g. if the variability interval of % contains the zero
point u, of function f;, then we should of course use substitu-
tion (11.3); then the point of intersection of the scales will corre-
spond to number u,. If the variability interval of u contains the
point u; at which function f; tends to infinity, substitution (11.3)
is impossible because the scale of function f; would then be
unlimited. We then choose formulas (11.4), because number
u, will be marked at an ordinary point at the spot where 4’ = 0.
The same remarks can be applied to the cases where the
variability intervals contain points of very small values of the
function and to the cases where the variability intervals contain
points of very large values of the function.

ExampLE 2. Let us construct a nomogram for the function
22 — 2x2+y3

for the intervals 0 <Cz <5, 0 <y < 4.

Let us write our equation in the form

24 204+b = 2(a?+-a)+y3-+b
and assume
u = 1/(a*+a), ©v=1/+b), w=1/(z*+2a+b);

we shall obtain an equation in which % and v will vary in the in-
tervals 1/(25+a) < u < 1/a, 1/(644b) < v < 1/b. (An analogical
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substitution % = 1/2* and » = 1/3 would not give the desired
results because the scales for # and v would be unlimited.)

The numbers a, b are arbitrary; taking a small number for
a we shall see that the length ratio of the interval (1 [(254a),1 /a)
to the interval (0, 1/a) tends to unity as @ — 0 since we have

1 1 1 a
—_—— — =1l 1.
a 254tal «a 25-+a a0

For large numbers a this ratio tends to zero. Thus for small
numbers the point O would be very close to one end of the scale
and for large numbers it would be very far from it. Let us take
intermediate values, e.g., @ = 20 and b = 50. We shall obtain
the intervals 1/(254-20) <Cu <C1/20, 1/114 < v < 1/50.
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The nomogram (Fig. 51) is constructed as in Example 1.
Equation
2[u+1/v = 1/0-01
will be satisfied for v, = 1/50 and w, = 1/25 and for u, = oo
and v, = 0-01.

We now replace the regular scale w by the functional scale
of the function u = 1/(22--20) in the interval 0 <{ z <5, the
v-scale by the functional scale of the function v = 2/(334-50)
in the interval 0 <{ y <{ 4, and finally the w-scale by the functional
scale of the function w = 1/(22--90) in the interval 0 < z < ]/ 114.

CXAMPLE 3. Let us represent by a nomogram the relation
p = pj if the variables are contained in the intervals 0-9 < u < 1-5,
02 < n<l.

The required numbers are the values of u;.

Let us first take u in the interval from 1 to 1-5 and write

logu = nlogu,;, loglogu = logn+loglogu,. (11.5)
It will be observed that the first term is contained in the
interval
—oo = loglog 1 < loglog u < loglog 1:5 = —0-75,
and the second term in the interval
—07 =1log0-2 Clogn <Clogl =0
in view of which the third term is in the interval (—oc, 0-25).
n

08 06 015 0{4 013 012

(S O W I St
T T
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If we drew for the relation

log log u, = — log n+log log u
a nomogram with three parallel scales, we should have to substitute
U= —logn, V=loglogy, W =loglogu,.

This nomogram is represented in Fig. 52. The scales x4 and
4 would be unlimited, and both of them would have too small
units in the neighbourhood of their greatest values. In order to
extend these scales in the neighbourhood of those values and at
the same time draw nearer the points 7, and 1, situated in
infinity, we shall make a transformation changing the line passing
through the points —0-7, and 0-5, into a line at infinity;
it intersects the U-scale at the point U = W—V = 0:5+4-0-7 = 1-2.
This means that we use the substitution U’ = U—1-2, V'’
= V407 and W' = W—0-5 in order that the points 0-7y, 0-5y,
1-2;; should form a new zero axis, and then assume u = 1/U", v
= 1/V’, w = 1/W' in order that this axis be transformed into
a straight line at infinity. We thus finally have

1 1
= —, == 5
—1-2—logn 0-7+ log log 1

w — 1

—0-5+ log log
in the intervals —2 <C% < 03, —182 v << 0.

We first determine a nomogram for the equation 1/u-+1/v
= 1/w, drawing the scale for » from 0 to —2 and the scale for
v from 0 to —20, and finding the point —2 on the w-scale by
intersecting the line joining the points —2,, oo, by the line
joining the points co,, —2

(11.6)

-
Finally we replace the scales u, » and w by functional scales
according to substitution (11.6). We obtain the nomogram given
in Fig. 53, which has finite scales for y and u, and can serve
for reading the values of ;.
It will be observed that for numbers u contained in the
interval 0-9<u<(10 the equation can be written in the form

1 [y
u Hl)
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Fic. 53

1/u and 1/u, being numbers already marked on the nomogram.
Thus to complete the drawing we add the numbers y = 09,
0-91 ... and g4, = 09 ... using a different type in order to avoid

€rrors.
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11.3. The method of transforming an equation so as to ob-
tain the required nomogram can be generalized.

Suppose we are given an equation W = UV and let a nomo-
gram of the three parallel scale type have the form given in
Fig. 54. Assume that none of the scales extends from —oco to oo

4

and that in order to improve the accuracy of readings in the
neighbourhood of point U and of the point ¥V we want to obtain
scales in which the point U, will pass into the mid-point of the
transformed segment UU and, similarly, the point V, will pass
into the mid-point of corresponding segment V V. Tt follows from
the considerations of § 4 (Chapter 1) that we can find points
U, and V, such that the fours (UUU,U;) = —1 and (VVV,V)
= —1 will be harmonic. Making a transformation in which the
straight line U,V is transformed into a straight line at infinity,
we obtain scales for # and w in which the points U, and V, are
the mid-points of the scale segments under consideration. The
method of doing that is the following:

We write the given equation in the form W—-U,—V;
= U—U,;+V—V,, whence by substituting «=1/(U—U,), v
= 1/(V—V,), w = 1/(W—U,;—V;) we obtain the equation 1/w-+
+ 1ju = 1jv.

The scales for %, v and w will be regular; replacing them
according to the substitutions by the projective scales U, ¥ and
W, we shall easily observe that the values of U, and V, will be re-
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presented by points at infinity. Hence numbers U, and V, will
be the mid-points of segments U and V on the scale.

According to the above observations let us modify the trans-
formation of the nomogram of the equation u = uf for

1< <15, 02<n<l.

Let us set ourselves the task of transforming the scale u so
as to have the point 1-25, situated at the mid-point of the segment
with end-points 1, and I1-5, and the point 0-4, at the mid-point
of the segment 1,0-2,.

To begin with, it will be observed that if, instead of exact
numbers, we took their approximations, then the selected points
1-25, and 0-4, would not lie at the mid-points of the correspon-
ding scales but in the neighbourhood of their mid-points.

Since V =—co and V =loglogl:5=—075 and V,
= log log 1-25 =—1, the harmonic point ¥V, is —0-5 because

(VTV V) = (Vo V¥ ) = L. LoV
v,.v V,v
078 .
_q. OIS
—0:75+0-5

Since U =-logl =0, «=In02=07 and Uyj=—In0-4
= 0-4, the harmonic point U, corresponds to the value of U, satis-
fying the equation:
uvv, vo,  04—0  U,—0 1

vu, UU, 04—07 U,—07
whence we obtain U, = 2-8.
We now write the equation W= U-+V in the form
U—28+V+405=W-—28405

and then substitute

(UUUU,) =
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ie.

1 1
N V=,
—log n—2-8 log log u+-0-5
1
W= —

log log p;—2-3

U =

The variability intervals are

—05 = S S e S S = —0-35,
— log 0-2—2-8 —log1 —2-8
—4 = 1 Lo 1 0.

B —log log 1-54+0-5 SO loglog 14+0-5 B

Fia. 55

We thus draw a nomogram from the limits determined for
n and v (Fig. 55a), and then, using the substitutions, we draw the
scales n, u and y, (Fig. 55b).

Exercises

1. Construct nomograms with three convergent scales for the following
relation: 1/R = 1/R,-1/R, for R, and R, in the interval from 1 to 1000;
R, R, and R, denote electrical resistance in ohms.
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2. Construct a nomogram for the relation

9KG
G1 3K

E =

between the Young module E, the rigidity module G and the compression
module K for 0.2 < G < 0-8 and 0.3 < F < 5-2.

§ 12. Equations of the form f(u) fy(v) = f5(w). Nomograms of
the letter N type

Take two regular scales with equal units and different senses
on parallel lines # and » and a straight line w passing through
their zero points (Fig. 56). Draw on line w a scale with the same
unit, assuming w = 0 at point 0, and w = a at point 0,, where
a is the distance of the points 0, and 0,.

Oy Ow [5

Fig. 56

It will be seen that the points u, » and w of the corresponding
scales lie on a straight line if

ufv = w/(@a—w). (12.1)

Thus, by aid of a nomogram of this type, we can represent
graphically a relation between u, v and w of form (12.1).

The variables » and v, occurring in the numerator and in the
denominator, are marked on regular scales parallel to each other,
and the variable w is marked on a projective scale on the line
joining the zeros of the scales » and ». The assumed equality
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of the units is inessential because the constant factor which would
have to be written in the numerator or in the denominator if the
units A, and 4, were different can be transferred to the w-scale
without altering the character of the homographic function.

In practice we usually need only a part of the nomogram
corresponding to given intervals on « and v. If that part does not
contain points 0, and 0, then it is necessary to find other
points of the w-scale. This proves very simple. E.g., suppose we
are given the intervals 5 <Cu <7 and 15 < v < 20 (Fig. 57).

B c20h,
5 20
051“A
-19
1,
l/ ‘ 18
u 61 w Av|
gy
] 16
B 15y
7 W 15
A’
Fra. 57

In order to find point W of the w-scale on the line joining points
5, and 20,, let us observe that the ratio of the segments
5,W:20,W is equal to the ratio 51,:201, where 1, and A,
are unit segments on the regular scales » and ». Drawing from
points 6, and 20, segments 5,4 and 20,B parallel and propor-
tional to 54, and 202, we obtain at the intersection with the
line 5,20, the point W of the w-scale. We can also divide the
segment 4,20, in the ratio

5,W: 20,W = 51, : 20,.

Similarly we can find point W’ on the line 7,15,.
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We can obtain points of the scale on the straight line WW’
by joining together points of the scales u and v.

By means of nomograms of the type under discussion we
represent functional relations of the form

fi(w) fo(v) = fi(w); (12.2)
as in the case of the sum of funections, it suffices to assume
w' = fiu), v =folw) and (a—w)lw = fy),
ie.
_a
1-+f3(v)
Remark. Relation (12.2) gives us by applying logarithms

log fi(u)+log fo(v) = log fa(w),

ie. an equation which can be represented by a nomogram with
three parallel scales, or by a nomogram with three convergent
scales; in many cases, however, it is more convenient to retain
the product form and draw a nomogram in the shape of letter N.

w

ExampLE 1. Let us draw a nomogram for the equation
T = T[T, —T,)

in which we could read the variable 7% given T, and the ratio
T,/T,. The intervals are given by the inequalities 0 <C T'; < 30,
1< 1,7, <2, 5T < 100.

The equation in question gives the relation between the growth of
temperature of a body under the influence of a supply of heat constant
with regard to quantity. Let T, denote the temperature of the environ-
ment. If from the instant 0 a body receives in every unit of time
increments of heat constant with regard to quantity, then, by well-
known physical laws, we have

dT = a dt—bT dt;

a is a coefficient dependent on the quantity of the heat supplied in & -unit
of time and on the physical properties of the body, T is the difference
between the body temperature and the temperature of environment a,
and bis a positive coefficient which is the measure of the speed of cool-
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ing (as we know, cooling is proportional to the difference 7' of the body
and the environment temperatures). Integrating this equation we obtain
ar 1
——— = |dt, —--In(@—bT)=t—c, a—bT = ebi-bc
a—bT b
and finally
T = (a—cbebt)/b or T = A—Bebt
where 4 and B denote constants. Since at the instant ¢ = 0 we should
have T = 0,
0=A—Be, 1ic. A =B,
we thus have T = A(l—eb1).
If t — oo, then T° = A; therefore we can write
T = T%(1—e by,
Let T, denote the temperature at the instant ¢ = ¢, and T, the tempe-

rature at the instant t, = 2¢,; we then have

Ty = T(l—e-bt), T, — T%(1—ebiz),

whence )
(1=T,/T7) = (e7bh)? = e=20i = 1T, /T
or
— 2Ty T 4 (1, T*) = —Ty|T®
i.e.

T® = T3(2T,—T,).

Assuming 7* =w, T, =u and T,/T; =v we obtain an
equation

w=u/2utuw) or wuf/2—v)=w or uly =w

where v’ = 2—wv.

The variables w and v’ should be drawn on regular scales
parallel to each other; since v’ varies in the interval from 2—2 = 0
to 2—1 =1, we draw (Fig. 58) two regular scales:

1. the u-scale in the interval from 0 to 30,

2. the v’-scale in the interval from 0 to 1.

We now find the points of the w-scale through the intersection
by lines joining such points of the scales u and ¢’ that the
equation u = wv’ is satisfied; in our case this is obtained by
projecting the wu-scale from point 1, of the v’-scale (or from
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point 1-5,, but inscribing numbers w twice as large as the
corresponding numbers ).
Replacing the scales u, v’ and w by the values T, 2—£/’2/T1
and 7% we obtain the required nomogram.
ExampLeE 2. Let us draw a nomogram for the relation
z = 0-85y*

for 1:2 << 2 << 14 and 12 < y < 20 retaining a regular scale for «.

0 1
} 11
512 12
1 10 13

10 -

Fic. 58

This equation can be written in the form

log z—log 0-85
R =

log 4.

Assume

u = log z—log 0-85 = log z0:0706, v =2z, w = logy;
we then have an equation »/v = w in which » varies in the interval
12 v<<14 and w in the interval log12 < w < log 20, i.e.

1079 < w < 1:301, and therefore « varies in the interval
12,1079 << u < 14.1-301, ie., 1-294 <u << 1-821.
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Proceeding to the construction of the nomogram, we begin by
drawing the regular scales of 4 and v on parallel lines (Fig. 59)
and then, by means of the construction given in Fig. 57, we
locate the points W and W' of the line w.

The scale of the variable w is usually obtained either by
projecting the u-scale from a point of the v-scale or by project-
ing the v-scale from a point of the u-scale. The value w, which
arises by the projection of the point u, from the point v, (or
vice versa) is found from the equation uy, = vyw,.

The ultimate form of the nomogram (Fig. 60) is obtained by
replacing the scales u, » and w by the scales z, y and z according
to the substitutions.

ExampLe 3. Let us construct a nomogram for the equation
T = 2=\/lg (12.3)

assuming the variables in the intervals 978 <{ ¢ <{ 983, 80 <!
< 100.

Equation (12.3) can be written in the form Ijg = T?/4x2.
We draw the scales for I and ¢ on parallel lines (Fig. 61) and the
scale for w = T?/4n? on the straight line WW’, the points W and
W’ being found as in Fig. 57. Having determined the w-scale by
means of projecting from point 980 on the g-scale, we replace
it by the T-scale in virtue of the formula w = T2/4x2.

Exercises
1. Construct a nomogram for the function
zyz = 10

or the intervals § <z <6, 1 <y <2.

2. Construct a nomogram for the function
z = 1/2zy

for the intervals 10 <z <{20, 1 <y < 4.

3. Construct a nomogram for the funection
z = y/(22-+3y)

for the intervals 4 o <5, 2 <y < 4.
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4. Illustrate by means of a nomogram the Poisson law p*~1/T% = 0-0002
for the exponents z between 1-3 and 1-5 and the absolute temperatures
between 280 and 350.

W :"1'4
1 o
20 3
4‘1-4 :_
z T v [ x=0
}-15 -
] 15 o
30 13
116 3
B -
1 20 5
40 4, -

= 25 :‘
50“5 18 L

3 b 12

LT T
-
< -

13
16 3
! 13 -
17 -
14 o
3 _Wlas S

L 2

Fia. 60

5. Construct a nomogram for the formula m = mo/\/l-—'vz/c2 for
the initial masses m, between 100 kg and 1000 kg and velocities v between
8000 km/sec and 14000 km/sec (¢ = 300000 km/sec).
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6. Construct a nomogram for the motion of satellites around planets
r3T% = 1.672.M
or masses from 3.10% kg to 2-10°® kg and distances » from 160 km

to 1000 km. 7' denotes the time of a rotation around a planet measured

in seconds.

3 983 —_— 180
[ 18- E

5 1|82
i 1T
982 JEss
- {86
- 951 1l g8
-7 7 19N 90 ¢
i—980 ] lgz
2 19594
- 979 1fs6
i 1T

u 1198
- 1}

i /.fiTj
978 L 100

Fra. 61

§ 13. Equations of the form f,(x)fy(y)f.(z) = 1. Nomograms with
scales on the sides of a triangle

13.1. Let us draw on the sides of an equilateral triangle three
regular scales with units equal to the side; let the zero points
0, 0, and 0, and the points 1,, I, and 7, be the vertices of
the triangle and let them be situated in such a way as to
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observe the cyclic order, i.e. to have 0,=1,, I, =0, 1,=0,
(Fig. 62).

Let us take a straight line ! intersecting the scales at points
U, V and W different from 0,, 0, and 0, and different from
the points at infinity and find the relation between the numbers
u, v and w. Drawing from point 1, a straight line I’ parallel to
{ and denoting by w, the number ascribed to the point of inter-
section of [’ and the w-scale, we have

Fic. 62

w/(l—v) =wy/l  and  w/(1—w) = 1/(1—wy),
whence we obtain
w/(l—v)-+(1—w)u =1,
ww-+1—v—w-tovw = u—uv,
ww-~ur+rw—u—v—w-+1 =0 (13.1)
or
(1—-1/u) A—1/r) 1—1jw) = 1. (13.2)

If the line ! passes through a vertex of the triangle, then,
as can be seen from the form (13.1), the equation is satisfied;
similarly, if { is parallel to one of the sides, the cquation will
be satisfied in the form (13.2); e.g., if I{ju, then we have

(1—-1/0)(1—1/u) =1 or wvituw=1,

which accords with the agreement concerning the cyclicity of
senses on the scales v and w.
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Changing the unit of the scales u, v and w, i.e. substituting

’ ’

w =cqu, v =cv, w =cw,
we obtain the equation
(1—afu) (1—b/e) (1—c/w) = 1.

Our nomogram, consisting of three regular scales (which now
have arbitrary units), can be changed by an affine transformation
into a new nomogram, in which, on the grounds of our considera-
tions of § 4 (Chapter I), the scales are situated on the sides of an
arbitrary triangle. Now it is only the location of the zero points
at the vertices of the triangle and the regularity of the scales
that are essential.

ExampLE 1. Let us construct a nomogram for the equation
uvw = (u+2) (v—3) (w+1) (13.3)

for the intervals 0 <u <1, 1 v 2.
This equation can be written in the form

(14-2/u) (1—3/v) (1+1]w) = 1

or in the form

(o)) )=

We shall thus have a nomogram consisting of three regular

scales, and, according to the agreement concerning the position
of the points U,, 0, and 0,

1. The point 0, will coincide with the point —2,,

2. The point 0,, will coincide with the point 3,,

3. The point 0, will coincide with the point —1,,.

The shape of the nomogram is shown diagrammatically
in Fig. 63a; the intervals of the variables » and v which are
marked on it explain the construction of the ultimate form
(Fig. 63Db):

1. We draw an arbitrary regular scale on v for the values
from 1 to 2,
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2. We select an arbitrary point 0, and then connect it with
point 0, and with point 3,,

3. On the straight line 0,0, we draw an interval (0, 1) of the
u-scale, which has its point —2 at the point 0,,

4. On the straight line 0,0, we draw the w-scale, where
point —7 coincides with the point 0,.

''''' =05 a-r—2

15v
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13.2. By means of a nomogram with three functional scales
on the sides of a triangle it is possible to represent any relation
of the form

Jil) fo(y) f5z) = 1; (13.4)
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it is sufficient to substitute

1—-1ju = fi(z), ie. u=1/[1—fi(2)],
1=/ =fily), de. v=1/[1=f,u),
1—1/w = fy(z), ie. 1w =1/[1—f,(2)],
to draw a nomogram for the equation
(1—1fu) (1—1/v) (1 —1fw) = 1

and finally to replace the regular scales of the variables u, v,
w by the functional scales fi(z), fo(y) and f.(2).

For equation (13.4) it is also possible to construct a nomogram
of the letter N type (§ 12)—by means of other substitutions
of course. It must then be assumed that

w' =fix), o' =1/fy) and wlla—w)=1[fi).

We can thus suppose that there exists a close connection
between the nomograms which we have been considering. Indeed,
by a projective transformation of a plane in which a vertex of
a triangle becomes a point at infinity we obtain for equation
(13.4) a nomogram with two parallel scales.

ExampLE 2. Let us draw a nomogram for the equation

z =085y (13.5)
for the intervals 0-1 << <{1, 001 <<y << O-1.
Transforming the equation we obtain
log z— log 0:85 = z log v,
1 1
-+ ——— (log z—1log 0-85) = 1.
v Tlogy (log z—log 0-85)
Substitute
1—-1ju =1z, ie. u=z/z—1),
1—1jv =1flogy, ie. v =logy/(logy—1),
1 -
1—(log z—log 0-85)

1—1/w =logz — log 0-85, ie.  w=

Thus if x—1 then u—oo; therefore, the regular scale on w, and
consequently the projective scales on , would be unlimited.
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Accordingly, let us write the equation in the form

;lx— . ngy (ablog z—ab log 0:85) = 1

and let us try to find such numbers a and b that the nomogram
be contained in a finite domain; let us add the condition that the
deformations of the scales of the variables « and y should be as
small as possible, i.e. that the values of the unit A, (or 1,) for
all x (or z) in the intervals under consideration should differ
very little,

Obviously we now have

_ax blogy o — 1

w = ——-— P = ———

ax—1" blogy—1 ’ C 1—ab (log z—log 0'85).

Let us deal first with the condition that the scale on z should
be deformed as little as possible.

As follows from equation (13.5), the function z/0-85 assumes
the least value for x =1 and y = 0-01 and the greatest value
for £ = 01 and y = 0-1 (since the function ¥} is decreasing for
every y, from the interval 0-01 <{y, <1 and the function y*
is also decreasing for every z, < 1). We thus have the inequalities

¥y <yl < 019Y  and ¥* > 0-01F > 0-01%,
froin which
0-011 < 2/0-85 < 0101,  —2 < log z— log 0-85 < —1/10.
Sinee z varies in the interval from z; = 0-0085 to z, = 0-675,
we shall obtain for z a scale similar to a regular scale

if we assign the mid-point of the scale to the mean value, i.e.
to z; = (0-6754-0-0085)/2 = 0-34175. Let

1
w, = - — ,
1— ab (log z,— log 0-85)
1
u"2 = )

1—ab (log z, — log 0-83)
1

w. — -

1—ab (log z, — log 0-8;3) ’
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we demand therefore that
1 1 2
1+2ab  14ab/l0  1+0-4055ab

Performing the operations and solving the appropriate quadratic
equation, we obtain approximately

w;tw, = 2w, le.

ab = 3.

An analogous postulate for the variable z leads, on following
the same procedure as for z, to the result

a= —03.

We thus obtain ultimately the substitutions

" — 0-3x Yy — 10 log v w — 1
0-3z-+1" 1+10logy’ 1— 3 (log z — log 0-85)
%, v and w varying in the intervals
0029 = _03_91_ <u< 03.1 = 023,
0:3-0-1+1 0:3+1
105 = 210 o B0 gy
1—-2.10 1-1.10
014 = 1 <w< ———Lh = 0-77.

143.2 1+43.1/10

Let us make a diagrammatic drawing of our nomogram, marking
the intervals for the variables u, v and w. Since the equation is
of the form (13.2), the units of the scales are equal to the sides
of a triangle (Fig. 64a).

This figure shows that in its final form the nomogram will
consist of a part of side » from point ¢, to point 0-25,, almost
the whole side w and a part of the extension of side v from point
1-05, to point 1-11,,.

Proceeding to the construction of the nomogram (Fig. 64b)
we transform the triangle in an affine manner as follows:

1. We draw an arbitrary regular scale 4 marking on it points
from 0, to 0-25,,
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2. Selecting an arbitrary point 0, we draw the scale 0,71,
taking 1, = 0,,

3. We draw a straight line v through the points 0, and 1,
i.e. we draw through 0, a line parallel to the straight line
joining points 0-25, and 0-75,,,

- 0-9
\
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©
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\ ' 1 o020
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J----%

4-015

}-o10

T 005
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4. We mark the point 0-9, at the intersection of the line v
with a line parallel to w and passing through point 0-1,.

Having obtained a nomogram for %, v and w, we replace the
regular scales by the functional scales on the strength of substi-
tutions.
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Exercises
Construct nomograms for the equations:

1. (1—1/u) (1—1/v) (1—1/w) = 1 for v and » varying in the intervals
05 <{u<{038, 07T <o <1

2. (u—1) (v—2) (w—3)—(u—4) (v—5) (w—6) = 0 for v and v varying
in the intervals 2 <Tw <3, 0 <{v <1

3. sin x sin y sin 24+ (1 —sin &) (1 —sin y) (1 —sin 2) = 0 for x and y vary-
ing in the intervals 0 <z < 30°, 45° <y < 90°.

4. tan’x tan®*y tan®z4-1 = 0 for # and y varying in the intervals
0 <o < 30°% 60° <y <C90°.

5. z = 3-22% for x and y varying in the intervals 1 < x < 1:5, 0 <y
< 0-3.

§ 14. Nomograms with three rectilinear scales

The nomograms which have been dealt with so far consist of
rectilinear scales. By their means we can represent graphically
the following relations:

(I)  falz) = fil2)+foly) (the scales of functions u = f,(z),
v = fo(y) and w = f,(z) are para-
1lel),

(A1)  1/fs(z) = 1/fy(x)-+1]/fo(y) (the scales of functions u = f,(z),
v = fo(y) and w = fy(z) have
a point in common),

(III)  f3(z) = fi(@) foly) (the scales of functions u = f,(x)
and w = f,(z) are parallel; the
scale v = fy(y)/[a—/fo(y)] is situ-
ated on a straight line inter-
secting v and w),

(V) fi@) foly) falz) = 1 (the scales u = 1/[1—fi(2)], v
= 1/[1—fy(y)] and w =1/[1—
— fa(2)] intersect in pairs at
three different ordinary points).

It is not difficult to write the general form of an equation
containing there variables which can be represented by means of
nomograms with three rectilinear scales.
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For this purpose let us take three scales, Ij, I, and I3, on
a plane a. If the lines I] and I; are not perpendicular, we trans-
form the plane a by projection in such a manner as to make the
corresponding scales {; and [, intersect at right angles. Let {; be
the z-axis and [, the y-axis of an orthogonal system (Fig. 65).

The scale of the function X = fi(x) is marked on the X-axis,
and the scale of the function Y = f,(y) is marked on the Y-axis.
The scale I; is defined by the equations

X =9k), Y=y
and

aq)+byE)+c = 0 (14.1)

St rTrrr.r

@ XL
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for every value of z because the points with the coordinates ¢(z),
p(z) are situated on a straight line. Now if points 4, B and C lie
on a straight line, then coordinates X, 0, 0, ¥ and ¢{z), 9(2)
must satisfy the equation

X o0 1 lfiley 0 1
0 Y 1/=0 or | 0 fiy) 1/ =0. (14.2)
¢ () 1 !w(z) p() 1

Three cases must be distinguished here:
1. ¢ =0,
2.a=0 (or b =0),
3. @, b and ¢ are different from 0.
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In the first case equation (14.1) gives

P() = kolz)
and consequently equation (14.2) assumes the form
fi 01
0 fo 1| =ffai—fop—kfipg=0
¢ kp 1

or
1/kp = 1/kfi+1]f;
ie. form (II).
In the second case, taking for example a = 0, we have
P(z) =m

and consequently

= fifo—fap—mfi =0

| O
IS o
Pt el d

or

_ flfz;:”'hfl —f, fzjzm —f,F, where F,= fz;m

ie. form (III).
In the third case we find from equation (14.1)

@

p(z) = mo(z)+n

and substitute this in equation (14.2); we obtain

i 0 1
0 f 1| = fifi—fop—mfip—nf; = 0,
¢ mep+n 1

which can also be written in the form
(mfi+n) oo = fi(fo—n) (mp-+n)
or
mfy+n . fo . '4 —1=—o0.
i fo—n  me+n
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Assuming
mf,+n —n
N pw, I Ey, T — B
fi f me-+n

we obtain formula (IV).

We have thus proved that only those relations can be repre-
sented by collineation nomograms which can be written in one
of the forms (I)-(IV).

This criterion can be expressed in another (equivalent) form.

A necessary and sufficient condition for the equation

F(z, y, 2) =0

to be representable by a collineation nomogram is that it should
be of the form

Pi(x) @) ()
vi(y) wly) wly) | =0, (14.3)
12) k2 #a(2)

in which the functions ¢,(x), @.{(z), @,(x) are linearly dependent,
functions ,(y) v.(y), ws(y) are linearly dependent and functions
721(2), %o(2), #al(z) are linearly dependent, i.e. that there should
exist constants @y, such that

@y 71 () F g pa(2) Fapp,(x) = 0 for every z,  (14.4)
Ay P1(Y) Fa(y) Fanysy) =0 for every y,  (14.5)
g1 Y1 (2) F g0 %0 (2) + 33 xa(z) = 0 for every 2 (14.6)
and
ahtabtal 0 for i=1, 2,3,
and
Q2 & By 75 Oy T Oy Ty, for b FE 4. (14.7)

This is obvious because:
1. Satisfying equation (14.4) is a necessary and sufficient
condition for a point with homogeneous coordinates

= @i(2), X = @a(x), T3 = @3()

to lie on a certain straight line ;
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2. Satisfying equation (14.5) is a necessary and sufficient
condition for a point with homogencous coordinates

=) Yo=Y, Y=y

to lie on a straight line [,;
3. Satisfying equation (14.6) is a necessary and sufficient
condition for a point with homogeneous coordinates

21 =2, 2= (), zm= k)

to lie on a straight line I,.
Condition (14.7) means that [, I, and I; are three different
lines.

§ 15. Nomograms with curvilinear scales

15.1. Let the equation
r=g), y=vyl), a<it<bh (15.1)

define functions which assign to every value ¢, of the interval
(@, b) a point of a plane with the coordinates zy = g(ty), ¥ = y(ty).
If the functions ¢(f) and y(f) are continuous and if for two
different values ¢, and ¢, the point ((p(tl), z,u(t,)) is always different
from the point ((p(tz), w(t2)), then equations (15.1) represent a certain
line L, called an arc. The correspondence between the values of
the parameter ¢ of the interval (@, b) and the points of the arc
is then one-to-one. If the arc is a segment, i.e. if there exist three
numbers a, b, ¢ (with a®+5* > 0) such that

apt)+by(t)+¢ =0 for every value of ¢,

then the segment in question can be regarded both as the scale
of the function

ag(t)+c

—_— if b0
y b
and as the scale of the function
_by®te o, £ 0.

a
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If the arc L is not a segment, we shall call it a curvilinear
scale. Thus a curvilinear scale is an arc whose points correspond
in a one-to-one manner to the values of the parameter ¢ of the
interval (@, b) by formulas (15.1).

ExawmprLe 1. Draw a curvilinear scale defined by the equa-
tions

x =1, y=3[t
for ¢t belonging to the interval (1, 3).

Here the arc is a part of the hyperbola zy = 3 (Fig. 66), and the
coordinates of the points corresponding to the value ¢, =1,
t, = 1-1,...,1, = 3 are obtained by substituting those numbers
in formulas x = 2 and y = 3/

vi
5
‘
s 1
2 15
N R ’s
1 L] s
0 1 2 3 4 5 6 7 8 9x
Fic. 66

15.2. Consider three curvilinear scales,

@y =q(u), =) for  ay<u<h,
Ty = @a(V), Yo = Pu(v) for ay < v < by,
xy = @y(w), Ya=1pslw) for a;<<w<b,

The question arises what relation is satisfied by the three
numbers %, v and w if the points corresponding to them lie on
a straight line.

As we know, the determinant formed from the coordinates
of these points must then be equal to zero; we thus have the
equation

L) pi(w) 1_[
Po(v)  qa(v) 1] =0. (15.2)

Pa(w) psw) 1
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Conversely, if equation (15.2) is satisfied for three numbers
%, v, w, then the corresponding points with the coordinates
@ (u), p(u), @u(v), pa(v), @s(w), wy(w) are collinear (Fig. 67).

A drawing consisting of three curvilinear scales u, v and w is
thus, by definition, a nomogram for relation (15.1).

By means of a nomogram of this type we can represent any
relation between three variables which can be written in the form
of determinant (15.2); it is an essential condition that there
should be functions of one variable only in each row of the deter-
minant,

ut
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Examrrr 2. Draw a nomogram for the equation

—Jr 1
v —blogv 1}=20 (15.3)
2w 3w 1

where % and w vary in the intervals 0 {u <9, 03 w2,
The nomogram (Fig. 68) consists of three curvilinear scales:

X, = _‘\/&: Y = U, (u)
Xy =, Yy = —blogu, (v)
T3 = W, Ys = 3[w. (w)

The u-scale is obtained by substituting for % in equations
(u) numbers from the interval (0,9); similarly the curvilinear
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scale v is obtained by substituting in equations (v) numbers from
the interval (0-3, 2).

On the basis of equation (15.3) and of the given limits for
u and w it would be possible to find the limits for the variable
v; in simple cases, however, it is more profitable, after drawing

the curve z, i.e. the graph of the function y =—5 log x, to obtain
the limits by joining the end-points of the scales « and w. In our
case, proceeding in this way, we obtain for v approximately the
interval 0-01 <C » <C 0-85.
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ExAMPLE 3. Draw a nomogram for the equation

y2 4 u
sin?v cos?v sinvcosvi=0
0 Sw? 1 !

for the intervals 1 <Cwu <C2, 14° < v < 26°.

The result can be obtained through reducing the equation
to the essential form by division in such a manner as to have
the last column consist of three unities. There are two ways of
achieving this:

1. Dividing both sides of the cquality by usinwvcosv we
obtain

v 4fu lf
tanv cotv 1 =0;
0 Su? 1

2. Dividing both sides of the equality by 20 w? cos®v and
interchanging column two with column three, we have

| w4 w/d 1
[tanzv tanv 1| =0.
L0 1ser 1

In the first case the equations of the curvilinear scales have
the form

2= u, Yy, = 4ju,
r, =tanv, y,=cotv,
23 =0, Yy = bw?.

Proceeding to the execution of a nomogram for the equation
in form 1. we determine the curve (u) for the values from 1 to 2;
we obtain an arc 4B of a hyperbola (Fig. 69).

The v-scale also lies on a hyperbola because

Y, = tanveotv =1,
and for the angles from 14° to 26° we have
02493 < 2, <{ 04877, 4011 << gy, << 2:050.
We thus have an arc €D of the hyperbola xy = 1.
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The scale of the variable w lies on the y-axis because z, = 0.
In order to find the limits let us observe that every straight
line joining a certain point of the arc 4B with a certain point
of the arc CD should hit the w-scale. Thus joining point 4 with
point D and point B with point C we obtain points ¥ and ¥ which

04

1 ()'3
L2

Fic. 69

are end-points of the v-scale. Point E is seen to be near the origin
of the system and point F has an ordinate of about 4-3. We thus
have 0 < 5w? <{4'5, ie. 0 << w << 0-927.

Let us construct one more nomogram, when the given equa-
tion is of form 2. We obtain the following scale equations:

z, =4, y,=uld, T,=tan’v, ¥y, = tanv,
2, =0, y,=1/502
The u-scale lies on the parabola

52—1 = 45? ’
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the v-scale lies on the parabola

Ty =Y
and the w-scale is a part of the y-axis (Fig. 70).
11 /
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On drawing the straight lines BC and 4D it will be observed
that the w-scale has extended to infinity in the positive direction
of the y-axis from point E, whose ordinate is about 0-24.

ExampLE 4. Draw a nomogram for the equation of the second
degree

wtuw-tv =0 (15.4)
if the coefficients 4 and v» vary in the intervals

0<u<<3, —2<<vL0.
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It will be observed that equation (15.4) can be written in

the form

|—u 1 1 |
'vOl“

Let us divide both sides of this equation by w—1: we shall
obtain

—u 1 1]
v 0 1/=0,
w(w—1) w/(w—1) 1 {
ie. the scale equations are
T = —u, v =1, (u)
x2 =7, y2 == Oy (V)
Zy = w(w—1), gy, =wf/(w—1), (w)

where (u) is a regular scale on the straight line y =1, (v) is
a regular scale on the y-axis, and (w) is a curvilinear scale on
a hyperbola, since by eliminating w from equations (w) we
obtain in succession

i_—_w and y = :r/y =

y Y=y~ ==y’

or aISO
X D 1 + -

The equation
v =y+1+1/(y—1)

represents, as we know, a hyperbola with the asymptotes z
=y-+1and y — 1 =0.

Drawing the functional scales (u), (v) and (w) we obtain
a nomogram (Fig. 71) which permits us to determine with a high
degree of accuracy the positive root w, of an equation of the
second degree. The other root, w,, can be obtained with the same
accuracy from the well-known formula w;+w, = u.
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Changing the units on the z-axis we can construct a nomogram
for a wider range of coefficients » and v (Fig. 72).
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15.3. Reducing an equation to form (15.2) is in many cases
a difficult task; we deal with it in the last chapter of this text-
book. The difficulty lies in the circumstance that in each row of
the determinant appearing on the left side of equation (15.2)
only one variable occurs. In practice this problem is usually
solved in two stages. We first try to reduce the equation to one
of the following canonical forms:

Si(x) g3(2) +fo(y) hy(z)+1 = 0 (the Cauchy equation),
Ji®) fo(y) 9:() + [fu(®) +fo()] hs(2)+-1 = O (the Clark equation),
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f ’/)‘l‘fa(
filx) =

O ) o
f1(T)+f2(7/) — .f &) oz
71(2)+-95(y) (@) +g5(2

Secondly we reduce each of these equations to form (15.2).
The manner of doing this will be discussed in § 24.

{(the Soreau equation T),

(the Soreau equation II).

)
)
)
)

Exercises

1. On the basis of Example 4 give the determinant form and draw
a nomogram for the equation s = rwr-}-2r?% for the intervals 0 <{r <{ 10,
0 <Cw < 20.

2. Verify whether the equation w = uv can be written in the form

1 0 —u
0 v »—1] =20
-1 w w

and draw nomograms for the equations

a. V = 4a%m/3
for the intervals 0 <Ca <5, 0 <{b <20,
o Ll om
760 273+t
for the intervals 0 <(¢ <{ 35, 630 < H < 800,
c. v = c\/2‘gz (g = 9-81)
for the intervals 01 <{z<{1-5, 085 <c <097,
d. J = V2/R
for the intervals 10 <{ R <{ 100, 110 < V < 220,
e. B = ab?*[12
for the intervals 0 <Ca <{100, 0 <{b <5,
f. utv = ufw
for the intervals 0 <{w <6, 0 <C» <30,
3.3
& I=Troimye

for the intervals 0 <{r <( 5, 40 <{ L < 50.

3. Verify whether the equation w = wv can be written in the form

1 u 1 'l—{—uz
—— v 1 142 [=0
““Plo 1 1-w

A
<

N
=3

and draw a nomogram for the intervals 0 <{u <5, —5
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4. Verify whether the equation w = u-+4v can be written in the form
1+u? u wu?
1402 v ot

w 1 w

=0

and draw a nomogram of the equation
log B = log a3 log b—log 12
for the intervals 0 <{e <{10, 10 < b < 100.
§ 16. The Cauchy equation
16.1. The Cauchy equaiion

Ji(u) g5w)+fo(v) hy(w)+1 =0
can be reduced to form (15.2) by the identity

1 0 —f,
0 1 —fo| = 111,05+ ohs (16.1)
g5 hq 1

If fi(u) £ 0 for u belonging to the interval under conside-
ration and fy(v) 5% 0 for v belonging to the variability interval
of the second variable, then dividing both sides of the equation
by the product fi(u)fo(v) we have

—1/f 0 1|
0 =1/, 1=, (16.2)
93 hy 1

The nomogram consists of three scales:
1. A rectilinear scale on the z-axis—

Ty = '—1/f1(u)’ Y= 0,

2. A rectilinear scale on the y-axis—

=0, y=—1/fz),
3. Generally a curvilinear scale defined by the parametrie
equation
xy = gy(w), Y5 = hy(w).
If functions f,(u) and f,(») bad a zero place in the intervals in
question or in their vicinity, another procedure could be followed :
Let @ and b be arbitrary numbers different from 0 and sat-
isfying the condition that the function ag,(w)-+&hyw) = f()
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should be different from 0 in the whole variability interval of
the variable w. Let us multiply the terms of the first column of
determinant (16.1) by a and the terms of the second column by b,
and let us then add them; we obtain the equation

| a 0 —f
b b —f, =0.
}ag+bh bho 1

Dividing both sides of this equation by ab (wg,--bh,) £ 0 and
interchanging the first and the third column we obtain the
equivalent equation

y fila 0 1
—folb 1 1 =o. (16.3)

‘ 1/(ag+bh) bh[(ag+bh) 1
On the basis of this equation we can construct a new nomogram

for the same equation (16.1), in which the scales will have
the equations

7, = —fi(u)]a % =0, (w)
Ly == '—fz(’l))/b, Yy = 1’ (V)
Xy = 1 — i‘ﬁv‘)__ (w)

3 ————, Y3 = .
ags(w)+bhs(w) ags(w)+bhy(w)
The first two scales lie on parallel lines, the third is generally
curvilinear.

16.2. The method described above can be generalized:
Let 3 be an arbitrary non-singular matrix (Chapter I, § 4)

an G Qg3
W = |y Gy Qo (2] £ 0)

g1 Qgp Qg3

and, for brevity, let ¥ denote the matrix of three homogeneous
coordinates of three points on a plane

§1 b2 S
X =&y & &l (16.4)
€n & &n
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Multiply matrices ¥ and 9:
XA = (16.5)
The product 9 is a singular matrix if and only if X is a sing-

ular matrix, ie. if the points A4,(&y;, &1p &13)y Ao(Eors Loy &),
Ag(&5y, &ap, &) are collinear. The terms of matrix 9

Ny = 01181+ E1p 51 Eras M2 = Grabpy a0 &ipt i,
o = O Ent oy Ep T Eogy Mon = yg EayHanp Eopt 50 €,
Ns1 = Opy Ea1 105 Epat sy Eagy e = Ayo &gy a0 Eop 30 i,
s == g &y gy Eppt oy &y,
Neg == (g Eg1 0y Enp g &g,
733 = a3 31+ Aoy Egot Aoz Eas,
are homogeneous coordinates of the points B (171, 750 Mia)s
By(1a15 M2z as)> Ba(Ma1 Nas» Nea), Which, as we know (Chapter I, §4),

correspond to the points A4;, A,, A4, in the projective transforma-
tion defined by matrix 9, i.e. by the equations
Y1 = A %)+l X1y X,
Yo = A&y Ugp Ty{-Agp 3, (16.6)
Y3 = Q3%+ Apa Tt Caa X5

Substituting in (16.5), instead of an arbitrary matrix X,
a matrix consisting of the terms of determinant (16.1), we shall
obtain matrix 2}, which is singular if and only if ¥ is a singular
matrix. Thus, instead of the equation X = 0, we shall have
an equivalent equation, 3 = 0.

The procedure described above is of fundamental importance
for nomography; as can be seen from the examples given in the
preceding sections, a nomogram obtained through the direct appli-
cation of certain rules very often has a geometrical form which
is unsuitable for practical use: for the accuracy at the various
points of the drawing often differs widely, and in order to ensure
the required accuracy we should have to enlarge the drawing
so as to obtain suitable dimensions at the least accurate spot.

The total dimensions of the drawing might then prove too
large.
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Through a suitable selection of matrix ¥ we shall try to
transform the nomogram by projection in such a way as to
increase the accuracy where it is too small and at the same time
to reduce it where it is too great in the original drawing.

We shall explain the procedure by means of examples.

ExawmprE 1. Construct a nomogram for the equation of the third
degree

Blaztb =0
where the coefficients ¢ and b satisfy the inequalities —1 < a << 0,
1<<be <10

a. Dividing both sides of the equation by 23,

afz?+b[z34+1 =0

we can see that it is of the Cauchy form. Using transformation
(16.1) we can write this equation in the form of a determinant,

i1 0 —a
0 1 —bl=0 (16.7)
RICAED A
or
"—l/a, 0 1|
0 —=1/b 1]=0
R VR V- |

The scales of the variables @, b and z are defined by the equations

z, =—1fa, y =0,
xy =0, Yo = —1/b,
@y = 1/22, ys = 1/3,
Basing ourselves on these equations we outline a nomogram,
marking on it the variability intervals of a, b, and z (Fig. 73).
b. This nomogram gives a too great accuracy for large values
of b and has unlimited dimensions since the zero point of the
a-scale is at infinity. It is thus necessary to extend the neigh-
bourhood of the side DA and to reduce considerably the
sides CD and AB by reducing the point at infinity B* to an
ordinary point.
In order to make the required deformations of the drawing,
we shall transform the plane by projection in such a manner
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as to change the quadrilateral ABCD (with one vertex at infinity)
into a rectangle A’B'C’'D’; then of course the opposite sides,
i.e. the lines A’B’ and C'D’ on one hand and B'C’ and 4'D’ on
the other hand, would have to be pairwise parallel. This means
that the point of intersection P of the sides 48% and CD would
become a point at infinity and the point of intersection @ of the
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opposite sides 4D and CD would also hecome a point at infinity.
Let those points be points on the axes of coordinates and let
point A’ be the origin of the system on the new plane.

The coordinates of point P are 0, 0. The coordinates of point
Q will be obtained by solving the system of equations of the
straight lines 4D and B>C,

zfl+y)(—01) =1, y=—1,

whence v = —9, y = —1.
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We are thus to find a projective transformation which assigns

point X'®(1, 0, 0) to point Q(—9, —1, 1),
point Y'*(0, 1, 0) to point P(0, 0, 1),
point O’(0, 0, 1) to point A(0, —1, 1).

Let us write this in the form of a matrix:

-9 —11 100
I= 0 01 is to correspond to I =110 1 0].
0 —1 1 001

Thus the unknown in our calculation is the matrix N = [a;]
satisfying the condition

—9 —1 1|fa; o, ay 1 00
0 0 1j)ay ap ax}=101 0f.
0 —1 1]]as agp ag 001

Since we have a unit matrix on the right side, we can, by using
a well-known formula (see Chapter 1, § 4), represent the elements

a; in the form
Xii .
Qi = >
X
X,; denotes here a minor of the determinant |¥| corresponding to
the term which is found in place %, ¢ (!), and X denotes the nu-
merical value of the determinant |X|.
Putting the common factor 1/X before the symbol of the
matrix, we obtain the equalities

TR TR T
WA=]ay ayp ay

a3y Ggp Qg3

0 1 11 =1 11y
!--1 1“ —1 1‘ o 1|
I YA R NN R :_1_(1)’3‘;
X o 1| 0 1‘ 0o 1 X0 Co o
I 0 o_|_9_1’ '—9—1i
| 0 —1| o—-1] | o ofl

(1) It should be noted that the order of the indices ¢, k in the terms
ajx and Xjy; is reversed.
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The common factor 1;X plays no part in our calculations
since it appears in all the terms a; and on multiplying X9 it
will pass into all the terms of the product, i.e. into all the triples
of homogeneous coordinates. Disregarding this factor, let us
write our projective transformation, which turns points P, ¢ and
A into points P, @'® and A':

Y11 Y2 Yis ERETER 1 0 —1
Y1 Yoo Yoa| = | %a1 Tap Zpa] JO —9 9O
Y1 Y32 Yaz | Ta1 Taz Tap 0 —9 0
(2, —92,—92,  —x 97y,
= |2y Oy —Ory Xy 1+ 97y |-
Ty — Oy —9%  — 2y + 92

Substituting for matrix X a matrix formed of the terms of
determinant (16.7) we finally obtain

Y11 Y12 Y1z 1 9a —1
Yo1 Y2 Y| =1} O 95—-9 9
Ya1 Yoz Yas z2 9289 240923

Returning to the non-homogeneous coordinates we obtain
the following scale equations:

& =ynlys= —1,

g = YralYra = — 92,

& = Ynlys =0,

Ny = Yoalos = b—1,

& = Ynlys = 2/(9—2),

Nz = YolYse = (953+9)/(z—9).

We have obtained for the variables @ and b regular scales on
parallel lines, the end-points of our scales forming the four vertices
of a rectangle (Kig. 74); the curvilincar scale z is contained
between the scales ¢ and b.
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In order to make the drawing easier to read, let us mutliply
the abscissas by —5 and the ordinates by 10/9:
&, =5, 7, = —10a,
&, =0, 1, == 10(b—1)/9,
£l =5z[(z—9), 7= 10E+1)[(z—9).
The nomogram defined by these equations is shown in Fig. 74.
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ExamMPLE 2. Draw a nomogram for the relation
T3

=1 6.
o7, — T, (16.8)

TOO
where T', and T, vary in the interval from 0° to 30°, and we always
have T, < T,.

These conditions do not define the variability limits of 7°;
let us assume that 10 < 7 < 100.
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We already considered this equation in § 12, Example 1 (Fig. 58),
where we assumed reading the rise of temperatures T, and T, and
finding (possibly by means of a slide-rule) the ratio T,/T,.

a. Writing equation (16.8) in the form

1 1

we can see that it is of the Cauchy type. It can thus be expressed
by means of a determinant in the following way:

1 0 T,
0 1 1/2T%|=0. (16.9)
121, T, 1

We thus have, on dividing by 7,/27, the scale equations
& =1/T,, m =0,
& =0, 1y = 20,
& = 12Ty, 7 =T,

Taking into consideration the given variability intervals
of T, and T', we shall have a nomogram shown in outline in Fig. 75
(since the relevant points of the Ty-scale lie on the £-axis on the
segment from 0-02 to 0-1 and the points of the 7'°-scale lie on the
n-axis on the segment from 20 to 200, for the sake of clarity
we have taken on the £-axis a unit that is 1000 times as large
as the unit on the x-axis).

b. This nomogram is not suitable because it has unlimited
dimensions; the 7,-scale has its zero point in infinity. Moreover,
the units of the scales 7', and 7, have large variations in the
interval from 0° to 30°.

Let us turn the quadrilateral AB*C*D into a rectangle.
To do this we must find the coordinates of the diagonal points
of our quadrilateral. One of the diagonal points is the origin of
the system as the intersection point of the sides 4B8% and C°D.
The second point is the intersection point of the sides A0 and
B>®(C>, ie. the point at infinity of the straight line CD. Let us
write the equation of this line: since point 4 has coordinates
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1/30, 0 and point D has coordinates 0, 20, the equation of the line is
302+y/20 =1,
or in the homogeneous form
30x,+,/20—x, = 0.

T& ('l'm
100771200

0-02 004

Lo ——

P Cgpe20° 10° B>
T

F1a. 75

Since we have z; = 0 for the point at infinity, let us assume
=1 x,= —600.
Therefore we look for a projective transformation that will
assign
point (1, 0, 0) to point @(1, —600, 0)
point (0, 1, 0) to point P(0, O, 1),
point (0, 0, 1)  to point C*(0, 1, 0).
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The matrix of our transformation should satisfy the equation

[1 —600 0 100
0 0 1{A=]01 0}
[0 10 001
As before, we have
| 101 —600 0 —600 O
1o/ 10 01
oo 101 |1 0 Il 01 _(1) g '60?
A= —1 —_— == -
00 0 0] 01 0 1 0
|0 0] |1 —600] {1 —600
0 1{ |0 i o 0

The equation of the transformed nomogram is of the form

1 0 T,]1f—1 0 —600 -1 -7, —600
0 27> 1 0O 0 —1|= 0 —1 —27*
1 27% 27, 0 —1 0 —1 —2T, —600—2T%
and consequently the scale equations are
&; = 1/600, 71 = T,/600,
& =0, g = 12T,

£l = 1/(2T%1-600), 75 = T,/(T3+300).

The first two scales lic on parallel lines and the third on an ellipse
since from the equations with parameter T, we have successively

n 1 22
7]:2T1§, le—_, &= = 2 s
2£ 2(7’]/25)2—{—600 7*>+1200 &2

7P41200£2 = 2E,  1200(£—1/1200)* 472 = 1/1200.

We can see that the scales 7', and 7™ lie on tangents to the
cllipse. Les us divide the ordinates by J/1200 in order to obtain
a circle instead of an ellipse and then let us multiply all the coor-
dinates by 600:

£ =1, 7. = Ty[20/3,
’EII =0, Ny = 5]/3/]100’
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£y = 600/(2T24-600),  9.4g = 10}/ 3 T,/(T24300).

Fig. 76 shows the ultimate shape of the nomogram.

n
', 3

10°

0 os v

Fia. 76

16.3. The procedure described here does not comprise cases
where the smallest convex multilateral containing the nomogram
is a triangle. In those cases the ultimate form is obtained by
writing the formulas of projective transformation of a plane in the
form

Ty +a, . byx+byy+bs
CLT4-CoY 3 ’ CLx4-Coy ¢4 ’

where ¢, x+¢,y ¢, is the left side of the general equation of the
straight line which is transferred to infinity, a,2+a,y+a, is the
left side of the general equation of the straight line which is trans-
formed into the straight line & = 0, and b,x-}-b,y-+b, is the left
side of the general equation of the straight line which is transferred
upon the axis = 0.
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Exampre 3. Draw a nomogram for the equation
w = vu’

where # and » vary in the interval from 0 to 1.

By logging we obtain log w — logv — vlogu = 0. This is
an equation of the Cauchy type which can be written by means
of a determinant

1 0 —logw 0 —logw 1 !
[0 1 —logu|=0 or 1 —logu 1 | =0.
1 —v —logw —v —logw ]—v\

The latter form implies the following scale equations:

X, = 0, X, — 1; X, = 1}/(’0—1),

Yo = —logw, y,= —logu, y,=1logv/(v—1). (16.10)

27001 -0-01

01 01
02 02
03 03
05 05
F . P
i T T T 1 T 1 O
-2 -1 2 1 2 x
Q 03
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As can be seen in Fig. 77, the nomogram lies in a triangle
with an ordinary vertex (1,0, 1) and two vertices at infinity
(0,1, 0) and (1, 0, 0).

The curve » has two asymptotes: the y-axis and a straight
line a parallel to the z-axis; the equation of the line a is obtained
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by finding the limit of the expression y, for v — 1. By the L’Hos-
pital rule we have

1 1 ) 1/v
im 2800 _ im 1% 100 o 0.4343 lim 1LY = 04343,

vl p—1 el p—1 vl

We shall now convert our triangle into a finite-dimensional
triangle in such a way as to have 1. the origin of the w-scale,
i.e. point 1, at the mid-point of the segment with end-points 1,
and I, and 2. point 0-5,, at the mid-point of the transformed
w-scale. The fulfilment of condition 2. will make the w-scale
similar to a regular scale.

Condition 1. will be satisfied if point P(2, 0, 1), forming
a harmonic four with points 1, 1,, 1, turns into a point at infinity.
Similarly, condition 2. will be satisfied if point @ (0, log 0-5) on
the y-axis, forming a harmonic four with points ¢-5,, 1, and 0,,
turns into a point at infinity. It can thus be seen that the straight
line joining points (2, 0) and (0, log 0-5) must be transferred to
infinity. Replacing log 0-5 by number —0-3 we obtain the
equation of the straight line PQ:

3r—20y—6 = 0.

Leaving the w-scale on the y-axis and the line 1,1,1,, on
the x-axis, we obtain a projective transformation in the form

- T . y= y (16.11)
3x—20y—6 3x—20y—6

Substituting into the right sides of these equations expres-

sions (16.10) defining the scales w, w and v in the original system
of the axes z and y, we finally obtain the equations

of the w-scale: £, =0, - —log w -,
20 log w—6,
of the u-scale: &, = _ 1! , e = — —logu ,
20 log u—3 20 log u—3
—v —logw

of the v-scale: & Ny = .
3v+20logv—6

v

20420 logv—6
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The nomogram defined by these equations is shown in Fig. 78.
As we know, the asymptote ¢ with the equation y — log e has
turned into a tangent a’ to the curve v; the equation of the tangent
a’ will be obtained by (16.11) in a parametric form:

& =xz/Bx—20loge—6), n =Iloge/(3x—20loge—6).

Fic. 78

By eliminating parameter x we obtain
3loge.&—(201loge+6)n—loge =0.

Exercises
1. Draw a nomogram for the equation
2itaztb =0
for the intervals 0 <{a <1, 1 <Cb < 10.
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2. Make the transformation described in Example 2 taking instead
of the origin P of the system a point P; with coordinates 0, —20, 1.

3. Construct a nomogram for the equation
W = (H*—h")[6H,

where h varies in the interval from 10 to 25 and H varies in the interval
from 20 to 30.

4. Construct a nomogram for the equation
l\/l1+l2 =1L \/l—;:
where the two variables /; and [, run over the interval from 1 to 10.

5. Draw a nomogram for the equation
T = TY(T1—T7),

where T, is the rise of the temperature of & motor in the time from
t, to ¢,

6. Draw a nomogram for the equation of the third degree
az®-+bz2—1 = 0

where the coefficients a and b assume all values greater than 10; only
a positive value of z is required.

§ 17. The Clark equation
The equation

Li®@) oY) 95(2) + L1 (2) +/o(y)] 2a(z)+1 = 0O
is called the Clark equation. For all values of x and y such that

fi(@) # foly) (17.1)
this equation can be written in the form
A A

—fo fEl =0. (17.2)

fi(@) —fz(yy 9 hy 1

The scale equations will be of the form
&L =1/f}=), m=—1/i(x)
& =113,  m=1/k)
§3=05(2), M= hyl).

It can easily be seen that the first two scales are the same
curve of the second degree & = n2.
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We shall thus obtain a nomogram (Fig. 79) consisting of three
scales two of which lie on a parabola and the third on a curve
with parametric equations defined by the functions & = g,(z),
7 = hy(2).

Each straight line joining two points x and y, a so called
cord of the parabola, intersects the third scale at a point z which,
together with the given = and y, satisfies the Clark equation.
In the limiting case, where instead of a curve we take a tangent,
i.e. where f(x,) = f,(y,), we shall obtain, if the functions occurring
in the equation are continuous, a point z, which also satisfies
the Clark equation.
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ExamprLe. Construct a nomogram for finding v from the
equation
Sutv—1

T T
Sv—uv?

where 0 <w <1, 1w
This equation can be reduced to the Clark form:

—wPw4-5 (w—u?)v4+1 = 0.
We have here
fi=w, fo=—u? g3=1v% hy=bv
Writing this equation in the form of a determinant,

1 —w w?
1« ut|=0
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(inequality (17.1) being always staisfied under our conditions
because w %= —wu?), we can see that

L =1/,  n=—1/w,

&= 1/u4, Ne = 1/’“«2,

& =1 73 = bv.

An outline of the nomogram defined by these equations is
shown in Fig. 80. We can see that the u-scale is an arc of a pa-
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I/ \\
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/’ \\
// NS C
Q 1 3D~
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rabola from point 4 to point B, the w-scale is an arc lying on
a half-plane with negative ordinates from point C to infinity, and
the v-scale is an arc of the parabola 72 = 25¢ from point 4 to
point E with coordinates 1, 5. This arc cannnot be replaced by



158 NOMOGRAPHY

a smaller arc in this drawing because we also want to read values
of v that correspond to numbers % and v close to unity.

Our nomogram is unsuitable because it has infinite dimensions;
moreover, the reading of the v-scale involves considerable error
since that scale lies outside scales # and w.

In order to give this nomogram a more convenient form we
transform the plane by projection in such a manner as to turn
the quadrilateral A’'B’C'D’ into a rectangle and make the arc
A'E’ of the v-scale lie inside that rectangle. In order to do this
we must transfer two diagonal points of the quadrilateral to
infinity. Since the (only) point at infinity of the parabola lies
on the axis of symmetry of the quadrilateral, joining pairs of
vertices by diagonals we shall obtain diagonal points P, @ and E.
The drawing makes it obvious that the w-scale can only be carried
over to the other side of the v-scale by intersecting the plane by
the straight line PQ and by transferring it to infinity. Therefore,
we must assign points at infinity to points P and @, leaving
point 4, for example, at the origin of the system.

Since

point (1, 0, 0) is to correspond to point P (1, 0, 1),
point (0, 1, 0) is to correspond to point @ (—1, —1, 1),
point (0, 0, 1) is to correspond to point 4 (0, 0, 1)

we obtain matrix 9 from the matrix

1 01
—1 —1 1
0 01
by inversion; we then have
—1 0 1
W = 11 —2]).
00 —1
Multiplying the matrices
1 —w w]f—1 0 1] —w—1 —w 14+2w—u?
1 w2 1 1 —2i=|—14+u4% u2 1—2u2—ut

v Sv 1 0 0 —IJ By—op? 50 »—10v—1
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we obtain the scale equations
& = (1) (W —2w—1),
7, = w/(w*—2w—1),
£ = (1—w)/(ut+2u2—1),
My = —u[(ul 20t 1),
& = (Bv—v?)/(v2—10v—1),
7y = bv/(t?—10v—1).

The scales # and w are still on the same curve of course; after

the transformation it is a hyperbola, which is shown by the
following:
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& w+l 1
S g
77 w w
y — n(€—n) Bl 1/
=2 (E—n)—(E—m)2  E—2p2
Boonf = £,

(§+1/2)2—2(7]+1/4)2 = 1/4~1/8,
8(£-+1/22—16(n+1/4) = 1.

Substituting values from the interval (0, 1) for the variable
w and values from 1 to infinity for the variable u we verify
that the arcs corresponding to these intervals indeed have their
end-points at the vertices of the rectangle 4'B'C'D’.

Let us now find the »-scale. Using the parametric equations
we must find the coordinates of points corresponding to values
from the interval (0, 1). We shall obtain a scale lying on the arc
A'E’, i.e. extending from the origin 4 of the system to the point
with coordinates £ =04 and 5 = —0-5 (Fig. 81).

To give the nomogram a more convenient form we make the
ordinates of all the points five times larger.

Exercises

1. Write the equation
) u | B
u sin w— — cos? w+ — sin? w =0
v v

in the Clark form and construct a nomogram for the intervals —2 < u < 0,
1w
2. Regarding the equation

uwww+1 =0

as a Clark equation (h; = 0) draw a nomogram for this equation making
two scales lie on the same curve of the second degree and the third scale
on a straight line.

Find in which cases this nomogram is better than a nomogram consisting
of three rectilinear scales.

3. Given the equation of the second degree
wrt4+wix+2 = 0,

with the parameter w varying in the interval from 2 to 4, draw a nomo-
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gram from which it would be possible to read the value of the root z,
of this equation if

=39 <Cw< -1, —=39<Lr L
4. Draw a nomogram for the equation
zy®?tylztaz = 3

where the parameters z and y vary in the interval from 1 to 3.

§ 18. The Soreau equation of the first kind

The equation

) = AL (18.1
92(y) +9a(2)

is called the Soreawu equation of the first kind.

.t,sO

Fic. 82

An equation of this type can be written in the form

|f1 1 O‘
fo o ge —11 =0. (18.2)
’fa g3 1

The homogeneous scale equations

xlzfl’ xz”—“l’ Xy = 0,
r=fy Ty=g = —1,
T=fy Ty=gs B= 1,

show that we are dealing with one rectilinear scale (on a straight
line at infinity) and two curvilinear scales (Fig. 82).
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Usually the scale on the straight line at infinity is transferred
by means of a projective transformation upon an ordinary
straight line.

Exampre. Draw a nomogram for the equation

3mo (R?—r2) = 4(R3—1r3)
for the intervals 0 <<r <4, 5 < R<10.

From this formula we can find the distance ¢ of the centre of gravity
of a quarter of a circular ring with radii » and R from the geometrical

centre of the ring.
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Let us write this equation in the form
3 R3—13

It obviously belongs to the Soreau type which we have been
considering; using form (18.2) we obtain

2mo 1 0 —3m —1 0
|¥|=| R*® R* —1/=0 or R3 Rz 1|=0.
—r3 —r2 1 3 2 1

The sketch in Fig. 83 shows us that the scale which gives the
readings of the values of g lies outside the scales r and E. In order
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to locate it between them we must make a transformation
transferring the straight line dividing the scales » and R to
infinity; then the g-scale will appear between the scales r and R.

Let us do this in such a manner as to make the end-points
of the scales r and R the vertices of a rectangle. The end-points
of the r-scale are the points

0(0,0) for r=0, B(64, 16) for r =4;
the end-points of the R-scale are the points
0(125,25) for R=25 and D(1000,100) for R = 10.

In order to find the coordinates of the diagonal points P and @,
let us write the equations of the lines OB and CD; we obtain

y = x4
and
! x oy 1
125 25 1{=0, ie. —T752+875y—12500 = 0.
‘1000 100 1|

Solving these equations we obtain as the coordinates of point
P numbers
xp = 2000/23, yp = 500/23.
Similarly, to find the coordinates of point ¢ we write the
equations of the lines OC and BD:

y = x[b
and
z y 1
64 16 1|=0, ie. —84x+936y—9600=0.
1000 100 1.

These equations give us
xp = 4000/43, y, = 800/43.
Leaving point O at the origin of the system we shall require
that
point (1, 0, 0) should correspond to point P(2000, 500, 23),
point (0, 1, 0) should correspond to point Q(4000, 800, 43),
point (0, 0, 1) should correspond to point O(0, 0, 1).
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The inverse of the matrix

2000 500 23
4000 800 43
0 0 1
is the matrix
800 —500 3100
N =1} —4000 2000 6000|.
0 0 —400000

Let us take instead of 9 a matrix with terms multiplied by
0-01:

8 —5 31
A=1—-40 20 60{.
0 0 —4000

Multiplying matrices ¥ and 2

—3np —1 0 8 —5 31

R3 R 1]-]—40 20 60

r3 r2 1 0 0 4000
—6mp+40  Brp—20 —2rp—60

= | 8R3—40R? —5R*+20R* 31R®*+60R2—4000],
8§r3—40r2  —5r34+20r2  31/3--60r2—4000

we finally obtain the scale equations

£ — 247p—160 __ 80—15wp
' 93mp+240 T 93mg 1240
5 SRS _40R? _ —5RL20R:
2T IR 60R—4000 " BLRS{60R—4000
o 8r2—40r? =53 42007
t T 3184 60r2—4000 T 1 60r—4000

By interchanging & with % and wvice versa, by changing the
signs and by a suitable choice of limits we shall obtain the nomo-
grams shown in Fig. 84.
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5.t

Frca. 84

Exercises

1. Construct a nomogram for the equation
o R3—3
E ' R—r

for 0 < r <{ 10and 20 < R < 30.
2. Construct a nomogram for the equation
w—uw-tv(l—w) =0

giving the readings of the values of w when w and v vary in the intervals
0<Cu<4and 1 <v<8.

3. Draw a nomogram for the equation
uw = vw-Fud vt

where u varies in the interval from 1 to 2-5 and w varies in the interval
from 1 to 1-5.
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§ 19. The Soreau equation of the second kind

The equation

S1 (x)"|‘f2(?/) . Ji(@)+-fal2)

T @) +9:(y) q1(@)+g.(2)

is called the Soreau equation of the second kind.

4

ey
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An equation of this kind can be written in the form

L & 1 ]
fo g2 —11=0. (19.1)
fa g2 —1

As can be seen from equation (19.1), in the general case each
of the three scales lies on a curve (Fig. 85). The scale equations
are:

& = filx), 7 = g1(®),
&= —hl), 1= —0)
&= —f32), M= —gs2).

ExaMPLE. Draw a nomogram for the equation

32224202y -6y — 2ay?—6yz2—3a%z = 0

where each variable runs over the interval (0, 1).
This equation can be written in the form of the Soreau equa-

tion
x—2y xr—3z

5

T .
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and thus also in form (19.1):

’ x 22 1
i—2y —2y2 —1| =0.
‘t——Bz —322 —1

We obtain hence the following scale equations:
=2 9 =42,
=2y m=24,
=382 7= 324
The nomogram defined by these formulas is shown in Fig. 86.

nj Q™
3 c

Fia. 86

This nomogram does not give great accuracy because the
straight lines joining the points of the u-scale with the points of
the w-scale that are close to unity intersect the v-scale at acute
angles. In order to give the nomogram a better shape we should
have to enlarge considerably the distance of point 0-5, from the
diagonal line x = y leaving unchanged the points on that diagonal.
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This can be achieved in a number of ways, e.g. by transforming
the plane so as to turn

point ¢(1, 1, 0) into point X'=(1, 0, 0),
point A(0-5, 0, 1) into point ¥'*(0, 1, 0), (*)
point O(0, 0, 1) into point 0(0, 0, 1).

Since point A is a pole of the straight line y = x with respect
to the parabola on which the w-scale lies, the arc 0,1, of the
parabola, as we know, turns into a half of an ellipse or of a circle
(the straight line 4¢> does not intersect any of the three parabolas
in question).

This does not seem the best way, however, because the neigh-
bourhood of point 0-5, would be enlarged much more than,
for instance, the neighbourhood of point 0, which is not abso-
lutely necessary here. Let us choose another method. Take an
affine transformation of the triangle OBC into another triangle,
in which the ratio of the sides OC to the remaining sides will be
considerably less. We shall perform this in a purely geometrical
manner without writing the equations.

We draw an arbitrary triangle O’C’B’ transferring in an
affine manner (i.e. by retaining the ratios of parallel segments)
the network of lines x = @ and y = b as in Fig. 86. We obtain
an oblique system of coordinates, in which we draw the scales
x, y and z, using the original equations (Fig. 87).

Since the tangents at points 0-5,, 0-5, and 0-5, to the corre-
sponding parabolas are parallel to the straight line OC, in the
new nomogram the tangents at the corresponding points will
be parallel to the straight line O'C’.

Exercises

1. Make the transformation (*) of the nomogram shown in Fig. 86 for
example.

2. Write the equation of the nomogram shown in Fig. 87 where 0Q™
and OA are axes of coordinates.

3. Draw a nomogram for the equation
uv? - ulw? 4 we — vdw? —uto —uw = 0

where u varies from 0-6 to 0-7 and w from 0-5 to 0-6.
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§ 20. An arbitrary equation with three variables. Nomograms
consisting of two scales and a family of envelopes

Let the equation
Fu,v,w) =0 (20.1)

be an arbitrary equation with variables u, v and w.



170 NOMOGRAPHY

Consider arbitrary functional scales
z = gy(u), Y = pi(u), (20.2)
T = ga(v), y = pe(0)- (20.3)

We assume that the function F(u, v, w) has partial continuous
derivatives and that the functions ¢; and y; have continuous
derivatives.

Let us choose a certain value w, and a family of straight
lines w, joining such pairs of points » and v on selected scales that
the following equation is satisfied:

F(u, v, wy) = 0. (20.4)

The straight lines of the family w, have an envelope wuy,
which is a curve or a point (Fig. 88).

8Y
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The equation of the envelope w, is obtained in the following
manner:
We write the equation of the straight line joining the point
w with coordinates ¢;(u), y,(u) with the point with coordinates
@o(v), wy(v) in the form
y—yp () = wolv) (). (2 ga(a)-
Palv) —pa(u)

Substituting for v the function

v = g(u’ wo)

found from the relation F(u, v, w,) = 0, we transform the equation
into the equation of a family w, of straight lines
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y—pa(w) = f(u) [z—p,(v)) (20.5)
depending on one parameter u.
The equation of the envelope w, is obtained, as we know,
by differentiating (20.5) with respect to u:

—pi(w) = f'(w) (x—w;(w)) —f(u) . gi(u) (20.6)
and eliminating # from equations (20.5) and (20.6).

Thus, for different values of the variable w we have obtained,
in general, different curves w (Fig. 89).

Fic. 89

The manner of using a nomogram consisting of two scales and
one family of envelopes is obvious: three numbers u,, v, and w,
satisfy equation (20.1) if and only if the straight line joining
point u, of the u-secale with point v, of the v-scale is tangent to
the curve wy,

The calculations necessary to determine the envelope equations
are generally cumbersome. In many cases we can simplify them
considerably by choosing the scales » and v on straight lines.

For instance, if the scales u and » are regular and lie on

parallel lines, i.e., if
X = 0, Yy = u,

x:l’ y:blj
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and the given equation is of the form v = g(u, w), then the envelope
is defined by the pair of equations

Yy—u = (bg(u, v)—u)x,

—1 = (bﬁ ——1>x,
Ju

from which the parameter ¥ must be eliminated.

ExampLE. Construct a nomogram for the equation

w(u+v— \/172—{»272) = uv
for
O0Cu<C10, O0<<ov<h

Let us select for the variable u a regular scale on the
y-axis,

Finding from the given equation

U—w
v = 2w

u—2w

and substituting, we obtain the equation of the family of straight
lines w dependent on parameter u

(u2—2uw) x 4 2uwy — 2wy = 2uw—2uw’.
Differentiating with respect to u,
2{u—w)z+2wy = duw—2u?,

and substituting into the preceding equation, we obtain—after
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a certain amount of calculation—the equation
(2w—2) [w?—2uw (w4 y)+a2+y?] = 0,
which contains the envelope
w2—2w (x+y)+2+y? = 0.
This is a circle tangent to the axes of the system,
(@—w+ (y—w)® = w.

Thus our nomogram consists of the u-scale on the y-axis, the
v-scale on the z-axis and a family of circles tangent to both axes
of the system (Fig. 90).

10

9A
8
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By means of an affine transformation we can obtain a form as
in Fig. 91. The family of circles w has been turned into a family
of ellipses.

As can be seen from the example given (where the function
has been of a very simple form) the calculations necessary to
write the equations of a family of envelopes are usually very
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cumbersome. That is why, in more complex cases, we follow a
different procedure in drawing a nomogram.

Finding for a certain value of w, several pairs of values of
u, and v, we draw lines joining the points u, and v, of the chosen
scales w and v, and we draw the envelope w, on the grounds
of knowing several tangents. Similarly, we draw another
curve w.

This remark refers particularly to cases where instead of the
equation F(u, v, w) = 0 we have a table of values, of the variable w,
for instance, in relation to the variables v and w, which is the
case in numerous experiments in technological research.

Exercises
1. Construct a nomogram for the equation
(0—2)2—8w (u+v)—16w? = 0

for 0 < u < 10 and 0 < v < 10, choosing for « and v two regular scales
on parallel lines.

yA
3

117/
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2. Construct a nomogram for the equation

w \/u2+v2 = uv—10u+12v
for
0

)
/
AN

w5, 0 v<4,
choosing for w and v two regular scales on intersccting straight lines.

3. Construct a nomogram consisting of two scales and one envelope
family for the relation between z, y and z shown in Fig. 92.
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II. LATTICE NOMOGRAMS

§ 21. General form of lattice nomograms

Let f(x, y, w) = 0 be any function of three variables satisfying
the following condition:

There exists on the plane (2, y) a domain D such that, if the
point (z,, ¥,) belongs to D, then there is at least one value of
w, such that

(g, Yo, wy) =0, f:?(xo» Yo» wo)—i—f;z(xo, Yo» Wo) > 0.

This condition implies the existence of a curve passing through
the point (z,, y,) each point of which satisfies the equation

f(xr y: wo) = O'
The set of all points satisfying the equation
f(x: Y, wo) =0

forms one or more curves. This set is called the w,y-line. The
x4-line is the straight line x = x,; the y,-line is the straight line
y = y,. We thus have three families of lines (Fig. 93):

vA
Lo
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E 1 1
-
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1. the family of straight lines parallel to the y-axis,

2. the family of straight lines parallel to the xz-axis,

3. the family of curves f(z, y, w,) = 0.

As follows from the definition of lines z,, y, and w,, they
have a point in common if and only if numbers z,, y, and w,
satisfy the equation

F(®o» Yo, wo) = 0.
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We can make another drawing. Let us take three families of
lines (Fig. 94) on a plane (&, %)
U na)=0, Viny =0 WEnw=0,

selected so that the curve U(&, n, x) = 0, the curve V(§, 7, y,) = 0
and the curve W(&, 5, w,) = 0 have a point in common if and
only if the following equation is satisfied:

f(xm Yo, wo) =0.

Our assumptions regarding Fig. 94 recall an analogous property
of collineation nomograms, where numbers %, v and w were

ni
Lo

Yo

Wy
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represented by points and the fulfilment of a given equation by
numbers u,, v, and w, was equivalent to the collinearity of the
points representing those numbers. Now we have lines instead
of points, and instead of the collinearity of three points we have
the possession of a point in common by three lines. Drawings
such as Figs. 93 and 94 play a similar role to that of collineation
nomograms. We call them lattice nomograms.

In §§ 10-19 we considered only certain types of equations and
showed the methods of drawing nomograms for them. Now
we can draw a lattice nomogram for practically every function of
three variables. Moreover, as can easily be observed, lattice
nomograms can be subjected to any continuous and one-to-one
transformations on a plane or in space, because any three lines
having a point in common will then turn into three lines having
a point in common. This is a very important property since,
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in case where the domain D, which contains our nomogram,
has different degrees of accuracy in its different parts, we can
alter this by enlarging less accurate parts and reducing those
which are too accurate.

Tor example, let us take the equation

W = UV

in the intervals 0 <Cu <{4 and 0 < v < 4.

The equation x = u and the equation y = v represent two
families of straight lines parallel to the axes of coordinates, and
the equations xy = w represent hyperbolas whose asymptotes
are the axes of coordinates (Fig. 95).
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In order to find, for instance, the product 3-5.1-5 we make
the lines # = 3-5 and v = 1-5 intersect and read what number,
approximately, is represented by the hyperbola which passes
through that point: the figure shows that the number is 5:25.

Let us now make another drawing for the same equation,
substituting v = 2]"’/55_ and v = 2]/ y. (This is not a projective
transformation of course.)

Lines parallel to the axes of coordinates turn again into lines
parallel to the axes of coordinates; but the regular scales on the
axes have been changed to scales of the second powers in order
to turn the hyperbolas corresponding to the values w = 1.2, ...,
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which in the former nomogram ran more and more closely together
with the growth of w, into curves more evenly spaced.
With our substitution we have

w:uv:Z]/;.2]/§ or zy = w?/16;

we have again obtained hyperbolas, but now they intersect the
straight line y = x at points of the regular scale.

The nomogram of Fig. 95 can be used when a relative accuracy
of reading on the w-line is needed, and that of Fig. 96—
when we require absolute accuracy on the w-line. In the latter
nomogram the accuracy of reading the products wv is rather
small when the ratio of those numbers is great.

u
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That accuracy can be improved without enlarging the dimen-
sions of the drawing. It is easy to see that this can be done by
changing the lines « and v, which in both nomograms were parallel
to the axes of coordinates, into curves deviating from the axes more
and more as their distance from the origin of the system increases.
Let us simply join by straight lines the points of intersection of
the u-line and the line y = 4 in the first drawing with the points
of intersection of the u-line and the z-axis in the second drawing;
let us do the same with the v-lines (Fig. 97). We obtain a lattice
of lines which, in point of density, has properties intermediate
between the first and the second drawing.



EQUATIONS WITH THREE VARIABLES 179

How can we now draw lines corresponding to the different
values of the variable w? The simplest way would be—without
entering into calculations, which are unnecessary here—to draw
the lines by means of this very system of coordinates u and
v by using the equation uv = w. That is how the third form of
our nomogram has been executed.

vl 1 2 3 4

IWAVAVAVAYANAS

AR

AN
A

8

Fia. 97

Obviously, lattice nomograms admit a much greater variety of
forms than collineation nomograms. We make our choice, drawing
in an entirely arbitrary way two families of lines corresponding
to two values of the variables, and then, assuming a certain
value of w, we find, as in every system of coordinates, those
pairs of numbers u, and v, which satisfy the equation Slug, vy, wy)
= 0.

Now, having drawn the line w,, we follow the same procedure
in drawing other w-lines.

Comparing lattice and collineation nomograms we can observe
that each of the two types has its advantages and disadvantages:

1. Lattice nomograms can be used to represent any relation
of three variables; collineation nomograms can represent only
those relations which can be written in the form

[73(2)  pulz) 1]
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(As we know, reducing a given equation to this form is a complex
problem even for relatively simple functions.)

2. The drawing and calculation labour involved in making
a lattice nomogram is much greater than that necessary for
making a collineation nomogram. The former necessitates the
drawing of several curves each of which must be determined by
a large number of points.

3. The ease and precision of reading is, as shown by experience,
much greater in nomograms where a number is represented
by a point and not by a line or curve, i.e. in collineation nomo-
grams. This is due to the fact that the lines and curves drawn
in a lattice nomogram cannot run so densely as the points marked
on functional seales; to a certain extent, what makes it more
difficult to use lattice nomograms is the fact that the mark
denoting the numbers assigned to a line is removed far from
the place of reading the line, while in functional scales the marks
are close to the points. Finally the drawing itself is in the case
of a lattice nomogram densely covered with lines, which hamper:
the user and increases the chances of making mistakes. Colli-
neation nomograms, on the other hand, are clear and easy to
use, excluding the possibility of mistakes altogether.

4. The wear of a lattice nomogram is much greater wit1
and that is what nomograms are for—than that of
a collineation nomogram, for in order carry out an interpolation

frequent use

in a lattice nomogram we draw the missing lines in pencil and then
rub them out damaging the drawing proper. With collineation
nomograms we can put over the drawing a thin piece of cellophane
with a straight line drawn on its reverse.

The features we have mentioned of the two types of nomograms
show that we should always endeavour to represent an equation
by means of a collineation nomogram. Only when the execu-
tion of such a nomogram is impossible or very difficult we have
to content ourselves with a lattice nomogram.

The drawing labour involved in making a lattice nomogram,
which has been mentioned in 2., is much simpler if all the three
families of lines #, v and w consist of straight lines. Lattice
nomograms of this kind are called rectilinear nomograms.
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We shall prove the following theorem:
If for the equation:

fl, v, w) =0 (21.1)

there exists a collinealion nomogram, then there also exists a recti-
linear lattice nomogram for that equation, and conversely.

Let N be a collineation nomogram for equation (21.1). Consider
a correlation on a plane (Chapter I, § 5) which assigns to every
point X(z;, x,, x;) a straight line p(uy, us, u3). As we know,
every point X, lying on the u-scale has a corresponding number u;
let us assign to that number a straight line p, which corresponds
in the correlation to our point X, ; we have thus obtained a family
of lines p, assigned to the variable u. Similarly, we define two
other families of straight lines, p, and p,,, which correspond to
the variables » and w. Now let X% X? and X? be points of
the scales u, v, w, respectively, which lie on a straight line .
Since the straight line I, has in the correlation a corresponding
point L, through which pass the lines p5, pJ and p?, corresponding
to the points X9, X and X9, the condition that three lines repre-
senting three valueq Uy, vy and wy such that flug, vy, 109) = 0
should pass through one point is seen to be satisficd. The drawi ing
which corresponds in the correlation to the collineation nomogram
is thus a lattice nomogram consisting of three families of straight
lines.

Exercises
1. Draw a lattice nomogram for the equation
v = xrihf3
for the intervals 1 < r <6 and 3 < h <12

2. Draw a lattice nomogram for the equation

Y = 0-0017[1

for the intervals 0 <(¢ <{ 40 and 600 = I{ = 800.
3. Draw a lattice nomogram for the equation
w o= ur

taking concentric circles as the w-lines and parallel lines as the wv-lines.
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4. Construct a lattice nomogram for finding the roots of the equation
of the third degree
aw?-+2aw-+b = 0

in relation to numbers a and b assuming that a runs over the interval
from 2 to 5 and b—from —5 to —O0-1. Does there exist a collineation
nomogram for this equation? Does there exist a lattice nomogram con.
sisting of three pencils of straight lines?

5. Draw a lattice nomogram for the equation
w¥% = uv+1

for the intervals 105 <{v < 145 and —0-5 <{ uw < —0-45.

§ 22. Rectilinear lattice nomograms

As follows from the considerations of § 20, all types of equa-
tions which have been considered in §§ 10-19 can be presented
by rectilinear lattice nomograms. Although we already know
the methods of constructing collineation nomograms for those
equations, yvet on account of the so called combining of nomograms
for functions of many variables it is necessary to discuss the
construction of lattice nomograms for those equations.

a. The equation
w=utv (a)

can be represented by means of a lattice nomogram consisting
of three families of straight lines: the family of lines x = u, the
family of lines ¥ = v, and the family of lines x+y = w. They
are families of parallel lines (Fig. 98); by analogy with scales
they could be called regular families because the distances between
pairs of lines of the same family are proportional to the differences
of numbers corresponding to those lines. Nomograms based on
such three families of parallel lines are called the Lalanne no-
mograms.

An affine transformation of a plane retains the parallelism
of lines belonging to the same family but alters the angles and the
ratios of the units of distance of the line families. For example,
transforming the triangle ABC (Fig. 98) into the triangle 4'B’C”
(Fig. 99) we shall obtain a nomogram in which the units and the
angles will be different.
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If we make a projective transformation of the plane, then
each of the three families of parallel lines will turn into a family
of lines of a certain pencil; since in Fig. 98 the vertices of the
pencils are points at infinity, we shall now obtain three pencils

whose vertices U, ¥ and W will lie on a straight line (Fig. 100).
The manner of assigning, for instance, numbers « to the elements
of the pencil U is obvious: on an arbitrary straight line I parallel
to the line UVW we draw a regular scale and then assign the
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value » to that line of the penecil U which passes through point
u of the regular scale; for any straight line drawn on the plane
will intersect the lines of the pencil U in the projective scale, but
only those lines which are parallel to UV W retain the regularity
of the scale, since it is the point at infinity of the scale that
corresponds to the value oc.

ExamprLe 1. Draw a Lalanne nomogram for the equation
A = 3160 G185 )¢9

for the intervals 40 <{d < 350 and 1000 < G < 10000.
This equation is equivalent to the equation

log A—log 3160 = 1-85 log G—4-97 log d.

Assuming w=log 4—log 3160, » = 1-85log @, v = —197logd,
we have
55 Cu<{ 74, —126< v —85,
i.e. the equation
w = Uu+uv.

Figure 98 shows that the nomogram is contained in a rectangle
with the horizontal side equal to 7-4—5-55 = 1-85 in length and
the vertical side —8-5--12-6 = 4-1 in length; the lines correspond-
ing to the constant values of parameter w will then be inclined
with respect to the axis x(u) at an angle of 135°. Changing the
units on the axes x and y we shall obtain a different angle
between w and the z-axis. The required nomogram will be
obtained by replacing the uniform scales on « and v by
logarithmic scales on G and d according to the substitutions
(Fig. 101).

Since all the scales appearing here are logarithmic, we can make
the construction, without basing it on the system of axes ¥,
v, as follows.

G. From points of the logarithmic scale from 1000 to 10 000
we draw parallel lines, marking them with numbers from 1000
to 10000, the unit being chosen arbitrarily.

d. From points of the logarithmic scale from 40 to 350 we
draw parallel lines (but not parallel to the G-lines), marking
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them with numbers from 40 to 350, the unit being chosen arbi-
trarily.

A. We draw one line A—in Fig. 101 A = 1 has been chosen
by joining two points, (G, dy) and (G, d;), which satisfy the
equation
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1 = 3160 G /d§®" = 3160 G135 /d}*7
or
1.85 log G, —4-97 log d, = 1-85 log G;—4-97 log d, = —log 3160.

Substituting G, = 1000 we obtain d, = 66-2, and substituting
@, = 10000 we obtain d, = 1563.

We then select the point (G, dy) so as to satisfy the
equation

100 = 3160 G485 /447,

Substituting G, = 10000 we obtain d, = 61-7.

We draw through the point (G,, d,) a straight line parallel to
the one drawn before. We denote the first by number 4 =1 and
the second by number 4 = 100. We obtain the family of lines
A by adding the missing lines and using the logarithmic scale
as before. It will be observed that the procedure described
here is dual to the well-known method of drawing a nomogram
consisting of three parallel scales.

ExavpLE 2. Draw a lattice nomogram for the equation
1R =1/r+1]r,
for the intervals 0-01 <{r, <{ 1 and 0-01 <, << 1.

Substituting = 1/r;, v = 1/r, and w = 1/R we can sce that
u and v vary in the interval from 1 to 100.

Using the remarks given above we draw a lattice nomogram
for the equation w = u-+v by means of a regular scale y and
of projecting it from two points, U and V, lying on a line parallel
to this scale. The vertex W of the w-scale, which, as we know,
must be on the straight line UV, is found by drawing a straight
line joining point 50 of the auxiliary scale with the point at which
the 0 line of family » intersects the 100-line of family » or by using
the symmetry of the drawing through cutting the segment UV
in two (Fig. 102). The lin= passing through point y of the auxiliary
regular scale receives the notation 2y,

Proceading to the construction of our nomogram for the
given equation, we find in the lattice thus obtained lines of the
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family « corresponding to numbers r; = 0-01, 0-02, ..., 1, lines
of the family v corresponding to numbers r, = 0-01, 0-02,...,1
and lines of the family w corresponding to numbers E = 0, 0-005,
0-01, 0-02, ..., 05

The method of drawing this nomogram can be simplified consi-
derably by using the following properties of the projective
scale.
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Suppose we are given two axes x and y, situated so that the
zero point O, does not lie on the y-axis and the zero point O,
does not lie on the wx-axis; let the point P be the intersection
point of a straight line PO, parallel to the y-axis and a straight
line PO, parallel to the z-axis. We shall show that the projection
of a regular scale on one axis is a scale of the inverses on the
other axis.

Indeed, similarity of triangles (Fig. 103) implies that:

y:b=ax;
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thus, if we draw a rcgular scale on the straight line y, we shall
obtain on x a projective scale by projecting from point P:
y = ab/x.

Thus, instead of drawing an auxiliary y-scale in Ifig. 102 and
then replacing it by a projective scale 1/r, we can use a regular
scale 7 ona straight line parallel to UO, and take O, on the line UV.

Fia. 103

The manner of making the drawing in Fig. 104 has been as
follows:

1. The {family of straight lines », has been drawn by projecting
the regular scale r from point U.

2. The family of straight lines r, has been drawn by projecting
the regular scale 7, from point V.

In order to obtain a nomogram of a slightly different shape
than Fig. 102, we have changed the sense of the y,-axis (and at
the same time of r,), which in Fig. 102 was the same as the sense
of the axis y;, = y. Therefore:

3. The family of straight lines has been drawn by projecting
from point W* (and not the mid-point of UV) the points at
which lines of family r, intersect the straight line Vr3®> and assign-
ing to them numbers R equal to the corresponding numbers r;.

b. Equations of the type

w = uv (b)
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were dealt with in § 14: we drew for them lattice nomograms
with two families of straight lines and one family of curves. It
is not difficult, however, to give a rectilinear nomogram for this
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equation; it is sufficient to substitute ¥ = x and w = y, since
then v = w/u = y[z will be the value of the slope of the straight
line y = va.

The new nomogram for this equation consists therefore of
the family of straight lines & = u, the family of straight lines

= w and the family of straight lines y = vz (Fig. 105).

Because of its simple construction this nomogram is often
used in practice; it is called the Crepin nomogram. A special
variety of the Crepin lattices are those drawings in which the
scale on the z-axis, the scale on the y-axis or both scales are
replaced by logarithmic scales.
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From the point of view of projective geometry we have here
three pencils of lines whose vertices do not lie on the same line,
i.e. they are not equivalent by projection to a Lalanne lattice.
By means of a projective transformation of the plane a Crepin
nomogram can be changed inte a lattice whose three pencils
all have ordinary vertices.
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A transformation of a plane which turns a lattice nomogram
containing a family of curves (e.g. a family of hyperbolas for the
equation w = ww) into a nomogram constructed from straight
lines only is called an anamorphosis.

ExampLE 3. Draw a Crepin nomogram for the function
2=y~
Reducing the equation to the form
logz = xlogy

we assume u =logy, v= 2 and w = log=.

Number y is assigned to the straight line £ = log %, number z to
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the line # = logz, and number « to a line with the slope z, i.e.
to the line with the equation n = z&.

This nomogram (Fig. 106) is often used in practice owing to
its simplicity and the facility of executing it with precision.
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¢. The Cauchy equation

Jiw) gaw)+1fo(v) hg(uw)+1 = 0 ©

can also be represented by a rectilinear nomogram; for, if we
assume

z = fi(u), @

y = f(v), (IT)
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we have on substituting these in equation (c)
gaw) @+ hy(a)y+1 = 0, (I1D)
ie. we have a straight line for every value of w; equations (I)
and (II) also represent straight lines of course. A schematic
image and the method of drawing are shown in Fig. 107:
1. From points of the scale of function (I) drawn on the

x-axis we draw the straight lines of family (I), assigning to them
numbers contained in the given interval (u, w).
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2. From points of the scale of function (II) drawn on the
y-axis we draw the straight lines of family (II) assigning to them
numbers contained in the given interval (», ).

3. Using equation (III) we find the intersection points of
the straight line corresponding to the selected value of w, with
the sides of the rectangle u, %, v, v. According to the inclination
of the line w,, we take either the intersection with the vertical
sides %, u or the intersection with the horizontal sides v, v. This
means that we draw the functional scales which family (III)
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determines on the sides of the rectangle; e.g. on the side 4D
(Fig. 108), by substituting in equation (III) z = f,(u), we obtain

— vQ')(“f’)fl(@)tl_
ho(w)
Similarly on the side BC' we have the functional scale
y= — g"(w)fﬂ)‘}'l
hy(w)

which is obtained by substituting number f,(%) for .

This method of constructing a nomogram, which can also be
applied to equations (a) and (b), requires certain modifications
in cases where the density of the lattice in different parts of the
drawing does not answer the assumptions. If we want to retain
the rectilinearity of the nomogram, only projective transformations
are admissible.
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For example, suppose that the line families w and « are both too
dense in the neighbourhood of point ¢ (Fig. 109a) and that we
want to move a certain point N on the side DC to the mid-point
of that side and a certain point M of the side BC' to the mid-
-point of that side.
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It is admissible to begin by moving the system of coordinates
r=a'te, y=—y+o
so as to make point C{c;, ¢,) the origin of the system.
We now determine the coordinates of the points P(0, p, 1)
and @(g, 0, 1), which form with points 3/ or N harmonic pairs

separating the vertices B, (' and D, C of the rectangle, i.e. such
pairs that

(BCMP) = —1 and (DONQ) = —1.

Finally, let us make such a projective transformation of the
plane (z, y) as will turn points P and @ into points at infinity

yhy> d I npP"™ 2
D N_iC__,
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(
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| et
5 x
A B
x> /
x /
a) Y’ b)
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on the axes of coordinates and leave point € in place. As we know
(Chapter I, § 4), this is done by multiplying the three homogeneous
coordinates x;, #,, 23 by an inverse of the matrix

g 0 1

0 p 14,

001

ie., by the matrix
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The two families of parallel lines, « and v, will be turned in
this transformation into pencils of lines. E.g., let us find the coor-
dinates of the vertex X’ of pencil v (Fig. 109b). It is a point
corresponding of course to the point X(1, 0, 0); we thus have

p 0 —p
(L 0010 ¢ —qj=1Ip 0 —p],
0 0 pq

ie., point X' has non-homogeneous coordinates —1, 0.

Similarly, we find that point @ has non-homogeneous coordi-
nates 0, —1.

In order to draw the pencils # and » it is now sufficient to find
the equations of the scales which those pencils determine on
the axes of coordinates. Family u, which determined the scale z
= fi(u) on the z-axis and the scale

z’' = x—c; = fi(u)—c;

on the z'-axis, will determine after the projective transformation
a scale with the equation

p 0 —p
[ 0 1110 ¢ —qf=1I[p2" 0 —pz'+pql,
00 pg
i.e., the scale
P O (e SN,

—pa'+pg —fiu)Fe g

Similarly, we find the v-scale on the n-axis:

Yy = y—c; = fylv)—cy,
p 0 —p
0y 11l0o ¢ —q|=100 o' —aqy'+pql.
0 0 opq
! V) —Co
£,=0, 7,= @ fv)—c

—qy'+pg —h@) tetp
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The equation of family w is obtained after the transformation
also by multiplying the parametric equations of that family by
the matrix of the mapping. Family w had in the original system
of coordinates the equation

gs(w) x-+hy(w)y-+1 = 0.

We must represent it in a parametric form since that is the only
form in which we can make a projective transformation by
multiplying matrices. This can be done by taking

ga(w)t+1

z=¢t and y=-—"—"——.

hg(w)
Passing to homogeneous coordinates we have
2y = hy(w)t, = —gy(w)t—1, 3= hy(w).

It is only now that we multiply by the matrix of the
transformation

p 0 —p
[Ast —gst—1 —hg}10 q9 —q
0 0 opg

= [phyt —qgst—q —phst+qgst--q-+pghs]

and obtain the parametric equations of family (IIL'):

Phst fome = —q9:t—q
> I .
—phst--q95t+-q+pghy —phyt-+q9;t-+q-+pghs

It will be observed that the procedure here described can
also be applied to the case where we want to make a projective
transformation of a given quadrangle drawn on a lattice nomogram
into a rectangle. What is essential in this method is that for
each family of lines (I), (II) and (IIT) we must write parametric
equations and then multiply the one-row matrix whose terms
are the right sides of the parametric equations by the matrix
of the transformation.

d. For the Clark equation
fi(u) fo(v) gs(w)+[fi(w) +1o(0)] As(w)+1 = O, (d)

SIII =
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the construction of a lattice nomogram is not so direct as it
is for the equations discussed in points a, b and ¢, where either
three or two families of lines were pencils of straight lines.
Here the geometrical aspect is more complex—we are confronted
with three families of straight lines tangent to certain curves.

Analytically, however, we have the same kind of difficulties
to deal with as before, such as occur with all the types considered
in the chapter on collineation nomograms.

As we know, the Clark equation can be written in the form

AR
%1 _fz fg;:()-
9z b 1!

In § 12 we assumed the terms of the first, second and third
row of this determinant to be the coordinates of three points,
u, v and w. We now regard these numbers as the coordinates
of a straight line and assume

u =1, uy = —fiw), wuy = filu),
ui = 1! ’LL; = ‘fz(@')a u:; :f22(,v)’
u]’., = g3(u’)> u"é’ - }13(7,0), u’:’;' = 1

We obtain the following three families of straight lines, whose
equations on dividing by «, can be represented in a non-homo-
geneous form:

r—fy(Wy+fiw) =0 (family w),
T—f)y+f3) =0 (family o),
ga(w)z+h(w)y4-1 =0  (family w).

Of course, if the domain which interests us in a given problem
requires certain deformations, we can do it by means of the same
method as before, consisting in multiplication by a suitably
chosen matrix.

For example suppose that the variables « and w vary in the
intervals 4 <C u < u, w < w<Cw (Fig. 110). Suppose we want
to turn a quadrilateral with sides w, u, w. w into a rectangle



EQUATIONS WITH THREE VARIABLES 199

with sides parallel to the axes of coordinates. Accordingly, we write
the matrix of the coordinates of the diagonal lines p, ¢ and r:

Uy, Uyp Ugp

N —

A= tuy, uy Uy
Uy Uy Uy

and we find the inverse matrix -1,
Reasoning as in § 4, where we transformed a plane by writing
formulas for the coordinates of points, we can see that the

YA

Fic. 110

transformation of the coordinates of straight lines is defined by
the product of matrices

L —fi fi

1 S

g3 hy 1

e. The Soreau equation of the first kind
_ [0} +f5(0) , (e)
ga2(0)+g5(w)
can be written, as we know (§ 18), in the form
il 0

foo 92 —1 =0.
Ja 93 1
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Regarding the terms of each row as threes of coordinates of
straight lines, we have, just as in the case of the Clark equation,
fwa+y+0 =0 (family w),
flo)xtg(v) y—1 =0  (family v),
folw0)z4gs(w) y+1 =0 (family w),
The lines of the first family form a pencil with the vertex at

the origin of the system; the lines of each of the other two families
are tangents to certain curves C,, or C, (Fig. 111).

Uy

Uy

Fie. 111

In cases where the given range for the variables involves
a deformation of the drawing, and we want to retain its recti-
linearity, we make a transformation of the plane as described in
point d.

f. The Soreau equation of the second kind
Ji(w)+Hfa(v) - Ji(w) +f3(w) (f)
91(%)+g2(v)  ga(w)+g5(w)

can be written, as has been seen in § 13, in the form

fi 1
Jo 92 1{=0.
fo 95 —1
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Again, let the numbers figuring in the rows denote the coordi-
nates of straight lines. Their equations are obtained by writing
h (u)x+g1(1c)y+l =0 (family u),
L@z+g,(v)y—1 =0 (family v),
fa(w x+g3(w)y~1 =0 (family w).

If the problem required a deformation of the domain in which

the nomogram is contained, the procedure would be similar to
that shown in d.

Exercises
1. Draw a rectilinear lattice nomogram for the equation
3Q = 10(B—0-24) H3?
for the intervals 0 <{ H <5, 0 < B < 5, 0 < Q <{150.
2, Draw a rectilinear latticc nomogram for the equation
2342t —32%y —3ey2+2 = 0,
in which the parameters x and y run over the intervals 1.5 7 x < ¢
1<y < 23.
3. Draw a rectilinear lattice nomogram for the equation
w = 095 Y (utv)fuv,

where « and v run over the interval from 3 to 80.

Iv

-5,

4. Draw a rectilinear lattice interval for the equation

2 V 2 L, RpRrir

h R4-r
for the intervals 0 <{r <3, 3 <{ R < 10.
5. Draw a lattice nomogram for the equation
0 = vt} gi*

for 0 <C vy, << 10 and 0 < ¢ = 60.



CHAPTER IV

EQUATIONS WITH MANY VARIABLES

§ 23. Collineation nomograms of many variables

In Chapter IIT we dealt with the method of constructing
collineation nomograms for certain types of equations containing
three variables and with the ways of drawing lattice nomograms
for any equation with three variables. Passing to equations
with four or more variables we shall observe that certain types
can be solved by the reduction to two or more nomograms for
functions of three variables; however, there exists no method
for constructing a nomogram on a plane for every function
of four (or more) variables.

We shall list here those equations of more than three variables
which can be represented in a simple manner by nomograms
similarly constructed to those discussed in Chapter III.

23.1. Suppose we are given the equation of four variables
flu, v, w, t) =0,

which can be reduced to the form

ie. in which we can separate two pairs of variables. In this case
we introduce a new (fifth) variable s, writing instead of one
equation (23.1) two equations,

pu, vy =s and (e t) =s. (23.2)

Let us now draw a lattice nomogram for the equation
s = g(u, v) adopting a system of coordinates in which u (or v)
is represented by a family of straight lines x = %, and s by a
family of straight lines y = s (Fig. 112); the lines of family
v (or ) will, on the whole, be curves.

In addition, let us draw a lattice nomogram for the equation
s = (v, t), adopting a system of coordinates in which v (or {)

202
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is represented by lines x = w, and s by lines y = s; in this
system to the values of the variable ¢ corresponds a family of
curves with the equation y = y(, t).

The manner of using a nomogram prepared in this way is
obvious; e.g. given the numbers u;, v, and ¢,, we find the point
P of intersection of the straight line u, with the curve v, we draw
through it a parallel to the z-axis, intersect the curve ¢, at point
¢ and read the value w, assigned to the straight line of family
w which passes through .
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This suggests a few remarks concerning the nomogram in
Fig. 112. Tt consists of two lattice nomograms for the two equa-
tions (23.2) having a common family of lines s. The identity of
family s for both parts of the nomogram is its only essential
feature. We can thus change the scale on the z-axis, assuming
" = g(x) for the first equation of (23.2) and «’ = g,(z) for the
second equation of (23.2), where ¢ and ¢, are arbitrary continuous
and monotone functions, and change the scale on the ordinate
assuming %’ = h(y); the manner of reading a nomogram con-
structed in this way in the system of coordinates a’, ¥’ will be
the same. Finally, we can subject the drawing to any transform-
ation, e.g. a projection transformation.

In cases where the functions @(u,v) and w(w, t) have simple
shapes, we can construct for equation (23.2) a more exact
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nomogram, consisting of functional scales. They are the subject
of the next section.

23.2. A special class of equations of four variables is formed
by those equations which can be written in the form of a determi-

nant,
[

Log(u)  py(w) 1 |
7o(v)  wlr) 1l =0, (23.3)
| Fuuleet) e 1]

which contains functions of the variable # in the first row,
functions of the variable » in the second row and funections
of the variables w and ¢ in the third row. Assume that the terms
of the third row satisfy the following condition:
There exist two intervals,
w<w <<w, bttt (23.4)
in which the functions ¢g(w,t) and y,(w, ) have continuous

partial derivatives of the first order and we have

O34 Oy
cw ow

#0. (%)
s Ona

ot at |

As we know, in this case equations

T = (’734(7”, t)> Y= "/)34(7'0’ t) (‘235)

define a correspondence between points of the rectangle (23.4)
and points of a certain domain D (Fig. 113) on the plane (z, y)
such that for every point (w,, ¢;) of the rectangle there exists
a neighbourhood which has on the plane (x, ¥) a certain small
domain D, corresponding to it in a one-to-one manner.

Drawing nomograms for equations (23.3) we shall always
divide the rectangle (23.4) into small rectangles in which the
correspondence (23.5) is one-to-one.

Let us take a certain number w, of the interval (w,w) and
draw the curve

T = @y(Wo, £), Y = Wyy(wy, B).
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We shall call it the wy-line. It will be observed that the assump-
tion of the bi-uniqueness of transformation (23.5) implies that the
lines w, and w, corresponding to different numbers w, and wy
have no point in common in our domain.

Similarly, for every number ¢, of the interval (¢, t) we have

a tg-line defined by the equations
T =, 8y), Yy = yylw, b)), (23.6)

and the lines corresponding to different numbers have no point
in common in the domain under consideration.

t y)
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Proceeding to the construction of a nomogram for equation
(23.3) we draw
1. A functional scale with equations containing the parameter u

x = @y(u), Yy = py(u),

2. A functional scale with equations containing the parameter v

Xy = @a(V), Yoy = wy(v),

3. Two families of lines: lines (23.5) of the w-family, each
of them corresponding to a certain value of the variable w, and
lines (23.6) of the {-family, each of them corresponding to a cer-
tain value of the variable ¢.

Let us take threc points: .4, of the u-scale, A, of the v-scale
and A, the intersection point of the w-line and the ¢-line
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(Fig. 114). Since the coordinates of point 4, are the terms of
the third line of determinant (23.3), the points 4,, 4, and A,
are seen to lie on a straight line if and only if the corresponding
numbers u, v, w and ¢ satisfy equation (23.3).

Figure 114 is thus a collineation nomogram. It differs from the
collineation nomograms for equations with three variables in
having a lattice composed of two families of lines instead of one
functional scale.

Y

Fia. 114

Assume that condition (x) is not satisfied at any point of
a certain domain D, i.e., that

in domain D.
Then, as we know, there exists a function of one variable
f(x) such that the equation

Pag(w, 8) = f(¢34(w: t))

is satisfied for all points of domain D.
In this case every pair of values (w,¢) has a corresponding
point lying on the curve

y = f(x).
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Consider the following two figures:
1. A collineation nomogram of the equation

}‘771(“) p(u) 1 .
par) () 1] =0,
ro f(r) 1‘
i.e., the figure shown in Fig. 115.

2. A lattice nomogram of the equation

in which the values of y are represented by straight lines parallel
to the z-axis, the values of w (or £) by lines parallel to the y-axis,
and the values of f(or v) by curves y' = yy,(w, t), the value of
¢t (or w) being constant. This nomogram is shown in Fig. 1186.

8y

Fic. 115

Let us join the two nomograms. We shall obtain a nomogram
shown in Fig. 117, which is a combined nomogram of equation
(23.3) in the case of the interdependence of functions ¢,
and ,,.

We use this nomogram in the following manner. Choosing, for
example, arbitrary values for v, w, and ¢, we find the lines w,
and ¢, and then we draw from their intersection point a line
parallel to the z-axis as far as the intersection with the curve
r at the point R. Joining the points R and v, by a straight line we
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find at the intersection with the u-scale the requirved value of u,.
If we were given the values u,, v, and, for instance, f,, we should
first determine point R by the intersection of the straight line

_ t t_\ yA
Y34
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joining wu, and v, and then, drawing from R a parallel to the
z-axis and intersecting the fy-line we should find the value .

Remark. Since in Fig. 112 from the intersection points
of the lines w and ¢ parallel lines to the z-axis are drawn, no
deformation of the lattice [w, ¢, y] that turns lines parallel to y
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into lines parallel to y will alter the significance of the nomo-
gram. This means that the scale of the variable w on the
z-axis can be chosen arbitrarily.

23.3. We shall now deal with the question what equations can
be reduced to form (23.3).

On the basis of the considerations in Chapter III it can easily
be observed that if in the equations

f19s+fohs+1 =0 (the Cauchy equation),
Jifa9s+(fiHfo)hs+1 =0 (the Clark equation),
h= fitts (the Soreau equation I),

go+9s

fith _ Sty
+92  Git9s

the functions gy(w), hy(w) (or fy(w)) were replaced by functions
of two variables, then, using the determinant forms of these
equations, we could obtain equations of type (23.3).

It is thus obvious that the following equations can be represen.
ted by collineation nomograms with two scales and one lattice
of lines:

(the Soreau equation II),

J1(#)gsq (w, 8)+fo(w) by (w, 1) +1 =0,
J1(%) fo(0) gaq (w, 8)+ [ f1(w) +-fo(0)] hgg (w, £)+1 = 0,
fiu) = fz(”)+fa4£w’_t)_’
92(v) +gaa(w, 1)
FO)HA0) _ i) gl )
7(w)+9x(v)  qu(w)+-ga(w. ?)

ExampLE. Construct a nomogram for the equation

6 = R2(m,,[2-+my) (23.7)

where R varies in the interval from 30 to 160, while m, and m,
vary in the interval from 0-0005 to 0-01.
Equation (23.7) can be written in the form

o L oym L.

R*m, 2 my
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This is a Cauchy equation in which the factors containing two
variables, R and m,, are the functions 1/R%mn, and 1/m,. Therefore
we can use the transformation shown in §16 and write the equation
in the form of a determinant:

i 1 0 o
[ 0 1 —my,[2] = 0.
1/R*my 1[m, 1 l

The nomogram is composed of
1. A rectilinear scale with equations

2 =1/, 1y, =0, (23.8)
2. A rectilinear scale with equations
=0, y,= —2/m, (23.9)

3. A lattice of two families of lines with parametric equations

Tgy = 1 R?mg, 4y = 1/my. (23.10)

The @-scale will be a part of the x-axis. The m,-scale will

be a part of the y-axis from y = —-2/0-01 = —200 to ¥
=— 2/0-0005 = — 4000 (Fig. 118).

The partial derivatives of the functions x,, and y,, satisfy
condition (*) because

‘ 1 i
| R mg _ 2 o
_9 I R3m}
0
E3m,

The lines B = R, are straight lines y = R?z; they pass through
the origin of the system and have slopes contained between
numbers 30° = 900 and 160° = 25600.

The lines corresponding to the constant values of m, are
horizontal straight lines y = 1/m, contained between the lines

y=1/0-01 =100 and y = 1/0-0005 = 2000.

The nomogram is contained in a quadrilateral with vertices
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yi

2000 R=160 1my=00005
D V"c
y=25600x
1000
R=30 ‘
100 - m0=0'0}-',f

0 3 >
~200 <A;-—6 1 2 X

~1000 -}

~2000 A

g

O e

~4000

Fic. 118

B(0, —4000), C(20/9, 2000), D(5/64, 2000) and O(0, 0). Figure 118
shows that it should be transformed so as to make the scales
m, and O regular and to give to the pencil of lines R, which is
very dense in the vicinity of the value R = 160, a form approaching

the regular.
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The first objective will be reached by transferring point O to
infinity; it will then be observed that every line R will intersect
the pencil of lines m, in a regular scale. The second objective, i.e.,
increasing the accuracy in the pencil R near R = 160, will be
gained by transferring to infinity a certain line of that pencil
contained between the y-axis and the line R = 160. We shall
choose that line so as to make the end-points of scales m, and
© the vertices of a rectangle. Accordingly, we must transfer to
infinity point @, which is the intersection point of the lines BC
and AE, E lying at the intersection point of the lines m, = 0-01
and B = 160.

Point E has coordinates yy = 100 and zy = 100/25600
= 1/256.

The straight line 4E has the equation

300
+200 = x or = 76800x—200.
Y 1/256 Y
The straight line BC has the equation
600
y+4000 = 0 x or y=2700x—4000.
20/9

These equations give us the coordinates of point @:
ro = —2[39, yo = —50200/13,

and the equation of the straight line 0O, which we have decided
to transfer to infinity:

y = 75300x.

Moreover, let us transform the y-axis into an 5-axis and the
line at infinity into an £-axis. Passing to homogeneous coordinates
let us write explicitly that:

the straight line 75300z, —z, = 0 is transformed into the line
at infinity,

the line at infinity x; = 0 is transformed into the line 5 = 0,

the y-axis, i.e. the line x; = 0is transformed into the line £ = 0.

From the considerations of § 4, p. 39, we derive the formulas
of transformation
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Y1=2, Yp=17% Y= "153002,—2,

Assuming z, [z, =z, Byfr, =y, ¥ /y; = & and y,ly; =17, ie.,
passing to non-homogeneous coordinates, we finally obtain

& = 2z/(76300z—y), n = 1/(75300x—y). (23.11)
We obtain the equations of the @-scale by substituting the
right sides of equations (23.8) in equations (23.11):
£o = 1/75300, 7o = O]75300.
We obtain the equation of the m,-scale by substituting the
right sides of equations (22.9) in equations (22.11):
£, =0, 5, =m,2.

The equations of the lattice of two line families are obtained
by substituting the right sides of equations (23.10) in equations
(23.11):

£ —=1(75300—R?), n — R*m,[(75300—R?).

Taking a constant for B, we can see that lines m, form a pencil
of lines with its vertex at the origin of the system,

7 = 756300 m, &,

and taking a constant for m,, we can see that the lines B form
a pencil of lines parallel to the 5-axis,

£ = 1/(75300—R2).

By a suitable choice of units on the axes of the system we
obtain a nomogram represented in Fig. 119.

23.4. Assume that we have an equation with five variables
S, v, w,t,8) =0
which can be reduced to the form
l IR

@oa(v, W) wos(v, w) 1 1 = 0.
Pust, 8) sty s) 1]
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0 0 0
?—0001 N0+
] 50 0-001
0002 N0002
3 100
5—0'003 0003
3 150
—-0-004 7
3 T 0-004
E ™ o
o - (]
—0-005 - 200
3 - 0005
E ]
<0006
3 250 0006
E-0007
E 200 0007
3 0008
F 350
E-0-009
3 0009
=001 400
001
Fia. 119
Equations
ry = @(u), Y= ypy(u) (23.12)
represent, in general, a curvilinear scale Z,.
Let us take equations
Ty = (v, W), Yy = Yau(v, W). (23.13)

If the variable » runs over an interval (z, b) and the variable
w over an interval (¢, d), then on a plane where the axes are
marked with the letters v and w pairs of numbers v, w denote
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points contained in a rectangular domain. Equations (23.13)
define the transformation of this rectangle into a certain set Z,,
of the plane (Fig. 120), where x and y are orthogonal coordinates.
Now let us assume that the set Z,; is a domain and that the
equations in question define a one-to-one correspondence between
the points of this set and the points of the rectangle on the plane
(v, w).

8y

Fic. 120

Let us mark on the set Z,, the lines corresponding to constant
values of v, and the lines corresponding to constant values of w,.
The curve corresponding to the value of v, has of course an
equation with parameter w,

Z = @aa(Vg; W), Y = Waa(vp, W),

and the curve corresponding to the value of w, has an equation
with parameter v,

T = @u(v, 1w,), Y = Wu(v, w).
In addition, let us assume that the equations
Tys = Pa5(t, 8), Y5 = Pa5(, 5) (23.14)

also transform a certain rectangle of the plane (¢, s) defined by
the inequalities

e<t<f, g<s<h

into a plane domain Z,; in a one-to-one manner. Moreover, let
us mark on the set Z,, as on set Z,,, lines corresponding to constant
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values of the variable ¢ and lines corresponding to constant
values of the variable s.

We have obtained a drawing consisting of a scale Z;, on which
points assigned to the values of the variable u are marked, of
a set Z,,, which is a lattice of lines assigned to the values of the
variables v and w, and of a set Z,;, which is a lattice of lines assigned
to the values of the variables ¢ and s. It will be observed that the
five numbers

Uy, Vg, Wy, by, Sp (23.15)
have three points in the drawing assigned to them: number %, has
a corresponding point 4 of the set Z,, the pair of numbers v,
w, have a corresponding point B of the set Z,; and the pair of
numbers £, s, have a corresponding point C of the set Z,,. Obviously,
points 4, B and C lie on a straight line if and only if numbers
(23.15) satisfy equation (23.7); Fig. 120 is thus a collineation
nomogram for that equation.

Replacing in the Cauchy, Clark, Soreau I and Soreau II equa-
tions two functions of the first variable by a pair of functions
dependent on two variables and two functions of the second
variable by a new pair of functions depending on the new variables,
we shall obviously obtain types of equations with five variables
which can be represented by collineation nomograms with two
lattices of lines and one scale.

23.5. Collineation nomograms can also be constructed for
certain equations containing six variables, u,, u,, u;, u,, u; and u,.
This holds when the equation is of the form

P12 Y2 1
Pag Yag 11=0, (23.16)
@56 Yoo 1

where g, and v, are functions of the variables u;, u, satisfying
the condition of bi-uniqueness of the correspondence

T = ulu, w), ¥ = pi(ws, ).
The drawing then consists of three lattices: Z,, with lines

uy and w,, Zy, with lines 4y and u, and Z,; with lines u; and ug

(Fig. 121).



EQUATIONS WITH MANY VARIABLES 217

Points A4,,, A3, and Agg lie on a straight line if and only if
the pairs of lines u passing through them,

Uy U, Uy, Uy, Ug, Ug,

satisfy equation (23.16).

¥4

Ug

8Y

F1a. 121

§ 24. Elementary geometrical methods of joining nomograms

In this section we shall present a few very special types of
equations with four and more variables, for which nomograms
composed of collineation and lattice nomograms can be constructed
by simple geometrical methods. They are equations frequently
encountered in practice, and that is why it is particularly import-
ant to know the methods of working them out.

24.1. Consider the equation
Jilw)+£5(v) = fo(w) +-4(0). (a)

In this case we draw two nomograms:

1. A nomogram with three scales on parallel lines for the
equation

fl(u)+f2(v) =a,

2. A nomogram with three scales on parallel lines for the
equation

a = fa(w)-+/4(t).

We then join the two by superposing identical scales on one
another.
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This method can be gencralized to a greater number of vari-
ables. Given the equation

Si(w)+£5(v) = falw)+fo6) +f5(s),

we construct three nomograms for the equations

filw)+Hfow) =a, a=f(w)B, B =Ff{E)+f(s)

and join them together by superposing the a-scale of the second
nomogram upon the (identical) a-scale of the first nomogram,
and then superposing the f-scale of the third nomogram on the
(identical) fi-scale of the second nomogram.

IExamrLe 1. Construct a nomogram for the equation
T = 5pM [d3

for the intervals 30 <d<C100, 1-5<p <4, 5<{M <100,
0-001 << 7 << 0.

Write the equation in the form
logz+3logd = log 54 log ¢ + log M
and assume
logr=u, 3logd=v», logg+tlogh=w, logM =1t.
To begin with, let us draw a nomogram for the equation
u+v = w4,
as follows from the intervals of the variables ¢, M and d, we have
—3<u<<—1, 45<v<<b, 08<w=<<1l3 07Tt
Accordingly, let us construct two nomograms for two equations
ut+v=c¢ and wii=a.

1. We draw a nomogram (Fig. 122) for the first equation
selecting scales % and v and marking only the construction of
points 2, and 3,; similarly, we draw a nomogram for the second
equation selecting 2, and 3,, and also 1, and 2,, and finding
1, and 2, by construction.
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2. Tt is now easy to join the two nomograms so as to make
points 2, of the two drawings coincide and points 3, of the two

drawings coincide.

v a u t a w
| 2 l
6 . AN
| o
L1, N
- T o 4
lL ks
Py AN ig-ob.g o oteT?
1+ T
6100 2-E 100 a| 1 o1
PPN & | F 006
) _—70‘\ | - 004
L 80 6o - | u
i 50 ! - 002
70 L0 | t
- - N 2+ g
; '\40 [ 24001
SN Fooos
i "~ Fooo4
L N s T
F LN Foooz
= ol
5 T F N
~-‘—;z‘"- -‘jg’ll’ F15. -31-0-001
0 e | L 00006
! “E 10 l - 00004
[ -8 f i
5 E7 ! - 00002
i 6 | i
[ 20 L5 ! -4+-00001
Fra. 122

We have obtained a nomogram in which we replace the scales ,
v, w and ¢ by logarithmic scales 7, d, ¢ and M.

24.2. Equation

1 1 1 1
= + (b)

+ —
fi(w) fo(v) falw) FAQ)
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can be reduced to the preceding form by assuming 1/f; = ¢,
since then

P1(w)+@a(v) = @a(w)+-@4(t);

it is now possible to draw a nomogram composed of four parallel
scales.

In certain cases, however, particularly when the scales of func-
tions @; are unlimited, it is more useful to draw two such nomo-
grams, as shown in § 11.

We then assume u' =fi(u), v’ = fo(v), w’ = fy{w) and ¢’
= f,(t) and draw two nomograms for the equations 1/u—+1/v = 1/a
and lJa = 1jw'+1/t', with four regular scales and a common
zero point.

By joining the two nomograms so as to make the a-scales
coincide, we obtain a combined nomogram for the equation
1u'41[v" = 1/w'+1]t’. Replacing scales w’, v’, w’ and ' in it
by the corresponding functional scales, we finally obtain the
required nomogram.

Remark. Let us construct for the equations u+v =«
and w+¢ = « nomograms in which the a-scale will be a line at
infinity. The senses of the scales u and » will then, of course,
be opposite and the units equal; similar senses of the scales
w and ¢ will be the same and their units equal (Fig. 123a). Joining
the two nomograms means identifying all the points of the straight
line of the a-scale. We must therefore choose the units and the
distances of the scales w and », and also w and £, in the two
drawings so that points 25 will coincide, i.e., that the invar-
iants 27 on the two drawings will be equal; and, similarly,
that the points 35 and 4; will coincide. This means that the
rectangles —2,—3,6,5, and 2,1,2,1, must be similar and simil-
arly placed.

The construction of the nomogram in Fig. 123 does not
essentially differ from the method shown in Figs. 43 and 122;
after determining equal and identically directed scales u and v and
a parallel scale ¢ the point 1 of the scale has been found by inter-
secting the straight line 2,1, parallel to —2,5, and the straight
line 1,1, parallel to —3,5,.
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The reading of nomogram 123 is performed by superimposing
a transparent sheet on which a family of parallel lines has been
drawn (Fig. 123a): when one line of the family passes through
the points %, and v,, then another line, passing through ¢,, deter-
mines on the scale the required value of w,.
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ExampreE 2. Construct a nomogram for the equation

3 3z ]/37z2
U = — —
x]/y —z? ]/y+2xz2

where each variable runs over the interval (0, 1).

Write the equation in the form

3 1 1 2
Sb—= b

woox 22 Vy

' —
and assume v’ = u?, 2’ =22, y' = ]r/?/-
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We shall now draw two nomograms for the equations

3 1 1

_I T T, (I)
u x a

1 1 2

=t (IT)
a 2 Yy

I. We select arbitrary points 1,, 0,, = 0,, and 1, and find
the point 0-5, by drawing a line joining 0-5, with co,, and & line
joining 1-5,, with oo, (for we have 3/oo+1/0-5 = 1/0-5 and
3/1:5-+1/c0 =1/05) (Fig. 124).

(1724 Oy' Ou’ O’

0, Oy’

II. We select arbitrary points 1.,, 0,, =0,,, 1,, and find
the point 0-5, by drawing a line joining 1,, with co,, and a line



EQUATIONS WITH MANY VARIABLES 223

joining 0-5,, with oo, (since we have 1/0-5 = 1/co+-2/1 and 1/0-5
= 1/0-542/c0).

We now make a joint drawing in such a way as to make
the a-scale common, i.e., to have a common point 0, and a common
point 0-5,.

Finally, we replace the regular scales w’, y’, and 2z’ by scales
w =ud, 2’ =22 and y' = ]/5

24.3. Consider the equation

Silw)+fo(v) = fo(w) fi(0). (c)
An equation of type
u' +v = w't’
can also be replaced by a nomogram composed of two nomograms:
it is sufficient to write
u'+v =a, (D
a=wt (I1)
and join together a nomogram with regular scales u’, v and a and
an N-shaped nomogram for equation (II), in which a is a regular

scale. Then of course only one variable, w’ or t’, will be given
by a regular scale.

Examprr 3. Draw a nomogram for the equation

R

oy

for the intervals 01 <r <02, 0-7<<R<3, 1Yo,
2:5 < ¢ < 10.
Write the equation in the form
r-+01/Y = R/p
and assume 0-1/Y = », and then
r+u =a, )
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I. We draw a nomogram for equation (I), in which u varies
from 0-01 to 0-1, marking the points 0:1 and 0-2 of the a-scale
(Fig. 125).

II. We draw an N-shaped nomogram for the equation R/a = ¢
having regular scales for @ and R with a given a-scale.

O'Zj
018
016
r —
014

: 4 -

012 5 C

] 73 25
-4 lo: :
01- I—m Lo r
L3
Fra. 125

Joining the two nomograms by making the a-scales coincide,
we obtain a drawing which, on replacing the u-scale by a functional
scale w = 0-1/Y, becomes a nomogram for the given equation.

In cases where functions f,(%) and f,(v), in the given intervals,
have very large values or tend to infinity, we can assume

fiw) = 1/py(w),  fov) = 1/@y(v)
and write the equation in the form
1 1

p1(w) W = fo(w) fu(t);
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we then construct nomograms for the equations

1 1 1
: = I
Puw) @0 a @

1
pt

fa(w) fo&) = (I1)

For example, let us take the equation
1u+1lv = wit
and the intervals 0 <u <1, —1<v<<O0, 05 Cw<4,1<1¢
<2
< 2.

I. We draw a nomogram for the equation
llutlfv = 1lla
taking arbitrary points 1,, 0, = 0,, 1, and finding 1, so as to
satisfy the equation (Fig. 126a).

II. We construct a nomogram for the equation
la = wjt

with a regular a-scale, selecting the a-scale and a regular ¢-scale
on parallel lines (Fig. 126b).

By joining the two nomograms so as to make points 0, and 1,
of the two drawings coincide, we obtain the required nomogram
(Fig. 126c).

24.4. Considering the equation

Si(w) fo(v) = f3(w) fy(®)
we proceed in the same way as in the preceding cases: we use
the substitutions v’ = f,, v’ = f,, w' =f, and t' = f;, we draw
nomograms for the equations
w'v' =a and a=w't,

we join them together, and then introduce functional scales
instead of the regular scales ', »’, w’ and ¢'.
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ExamprLe 4. Draw a nomogram for the equation

e Y
where » and t vary in the interval from 1 to 2, and w varies in
the interval from 1 to 4.

We write
vlogu = tlogw

and substitute vu’ = a and a = tw’, where v’ = log u, w’ = log w.

I. A nomogram for the equation #’ = a/v with regular scales
a and v is shown in Fig. 127a.

IT. A nomogram for the equation w’ = aft with regular scales
a and t is shown in Fig. 127b.

Joining the two nomograms and replacing numbers «’ and
w’ on the projective scales 4’ and w’ by the values of v and w which
are assigned to them by equations #’ =logu and w' = logw,
we obtain the required nomogram (IFig. 127c).

Scales # and w can also be drawn by projecting an ordinary
logarithmic scale drawn of the straight line a.

The problem can also be solved in a different way.

Assume

vjw' = tlu'
and construct an N-shaped nomogram for equations
vJw' = a, (I
tlu' = a. (I1")

The scales » and w’, ¢ and «’ will now be regular and the scale
on a will be projective; we mark on the a-scale three points,
0,, 2, and co,, both on the nomogram for equation (I') (Fig. 128a)
and on that for equation (IT') (Fig. 128b). On the grounds of
the theorem on the unique determination of a projective scale
by giving three points of that scale, we can see that the nomograms
should be joined in such a manner as to make the points 0,,
2, and oo, of one figure coincide with the points 0,, 2, and oc,
of the other.
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The nomogram obtained is shown in Fig. 128¢; replacing the

regular scales w’ and u’ by logarithmic scales, we shall obtain
the ultimate drawing.

-
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24.5. Consider the equation

fi(w)+fo(v) = fag(w, 1) (e)

If the function f,,(w, t) is neither a sum nor a difference of two
functions each of which depends on one variable, then we replace
equation (e) by two equations,
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fi(w)+-fa(v) = a, (H
a = fyuw, t); (II)

for equation (II), however, we must draw here a family of curves
in the Cartesian system a, ¢ or a, w. E.g., if we have chosen the
axes a and ¢ (Fig. 129), the values of a will be represented by

il
T T

- : A

w

Vg, 3
4 °- N

~~Ju, W,

] X | [~ w,

v ]| Fu [~ w,

st
H-"

Fra. 129

a regular family of lines ¥y = a or by a regular a-scale (we can
have an arbitrary scale on the f-axis). Joining with this drawing
the nomogram of equation (I), composed of three scales, of which
the a-scale is identical with the previous scale on a, we obtain
the ultimate form of the nomogram for equation (e).

It can easily be seen that equation (e) is a particular case
of equation (23.3) on p. 204.

Namely, let us assume that functions @g(w,t) and wy(w,f)
are linearly dependent and that, for example,

Y3 = a@z+b.

Multiplying the terms of the first column of determinant
(23.3) by —a and the terms of the third column of that determinant
by —b and adding them to the terms of the second column, we
obtain

Lo yi—ag—b 1
P2 Yp—ag—b 1| =0.
P4 0 1
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If, also, y,—ap;—b = —1 and y,—ap,—b =1, then ob-
viously

¢ —1 1
P2 1 11 = gy(u)+@o(v) —2¢5(w, t) = 0,
P 11 ‘

ie., form (e).
24.6. For the equation

fi(w) fo(v) = fog(w, £) t9]
the procedure is the same; the difference lies in the fact that,

instead of a nomogram for equation (I), we have an N-shaped
nomogram for the equation

i(w) f(v) = a,
in which the regular a-scale coincides with a regular scale of
a lattice nomogram for the relation a = fy,(w, t) (Fig. 130).

a{\ -t

] AT

1 // 1t
o / / w,
u ] v / LT ¢
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- e
U, ;? /,w,
to ¢
Fia. 130

Equation (f) is also a particular case of equation (23.3) on
p. 204. In order to obtain equation (f) from equation (23.3) it
suffices, as before, to assume

Y5 = ap;+b
and yp,—ag;—b = 1 and g, = 0. We obtain the equation

@1(1) Yofv)—{1—py(v)) gogla0, ) = 0
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or
(v)
@y (u) . LA Paa(w, 1),
1—py(v)
ie., an equation of type (f).
24.7. Considering the equation
Ji(w) fo(v) = fa(w) fu(8) +-94(t) (2)

we substitute

(@) fo(v) =, fi(w) f{)+9,() = a.
The nomogram for the first equation is N-shaped; the second

is a Cauchy equation since it can be written in the form

faw) A, L 1o,
94(t) 94(t)

as we know, the nomogram for this equation has a regular or a pro-

jective scale on a. In the case of a projective scale we must draw
a projective scale on a also in the first nomogram. We shall obtain
Fig. 131 or Fig. 132.

Fia. 131 Fia. 132

24.8. Equation
Si(w) +-£0) g1 () = fy(w)+fy(f) gs(w) (h)
can be decomposed into two Cauchy equations,

Hithgi=a  fit+higs =«
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or
1 1
A s r1=0 %" 110
1 1 k3 2

The nomogram will be composed of two nomograms with
a common regular or projective scale « (Fig. 133).

Fia. 133

24.9. Consider the equation

Si(u) — Sa(w)+f4(¢) .
fa(v) 14-f5(w) f3(t)

(i)
Assuming

fo_, o ek
fa V+f5 /s

Fic. 134

we have an N-shaped nomogram for the first equation, and for
the second a collineation nomogram consisting of a rectilinear
a-scale and two scales, w and ¢, on a curve of the second degree,
since it is a Clark equation,
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fofim () +1 =0,

where a occurs only in one component. The combined nomogram
will be of the form shown in Fig. 134.

24.10. For the equation
Sfi(u)+/5(v) — Fa(w) +£,(8)
g1(w)+92(0)  ga(w)-+g4(t)

we can also construct a nomogram composed of two nomograms
with a common q-axis. Assuming

Stk

@

— I
9119 ¢ @
and
fathy
= % II
* 93194 b

we can see that both equation (I) and equation (IT) are of the
Soreau I type and can be represented by nomograms with a regular
a-scale and two curvilinear scales. It is then sufficient to put
them together, superimposing the a-scales on one another, in
order to obtain a nomogram for equation (j) (Fig. 135).

(24

/*\

/

-

’
/ \]

:
,
|

Fia. 135

Exercises
Construct combined nomograms for the following relations:
1. ¢t = u/vw for the intervals 18 < u < 500, 3-5 < v < 85, 6 < w < 50.
2. d = w}/Ijmy for the intervals 1 <1< 25,13 <y <3,3<m< 8T
3. py = pye" for the intervals 0-75 < pq << 095, 12 <&<20, 1-2
<n <15
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4. p = K(M+L) for the intervals 5§ <K <50, 1<<M< 58,
31 < LgT2

3
5. Q = D*Ywjr for the intervals 3 <<D <4, 11 <w <38, 15<r
< 170.

2 3
5 _ r_; (third law of Kepler) for the intervals 024 <{T, < T,

T3 3

< 2486, 58 <y < ry < 5917

7. Q¢ = Qo+ Rmp/2-+m,) for the intervals 0-02 < @, <11, 30T R
< 160, 0-0003 < my << 0-008, 0-0005 < mp < 0-01.

8. z8+y* = 284+ u* where each variable runs over the interval from
1 to 10 under the assumption that it is desirable to have increasing accuracy
as the number draws nearer to unity.

9. u = 5Ajw+3py for the intervals 7 <CA<19, 50 <w <500,
4 <p <8 Ty <14,

10. w = 95 ]/(T-kv)/uvt for the intervals 5 < u << 200, 5 <v < 200,
70 < t < 5000.

11. u+tv—w—1t = uvw-++uvt —uwt—vwt where each interval runs over
the interval from 5 to 8.

12. u+tv = (w+2)/(14wt) for the intervals 3 (v <8, 2<Tw<(5,
7 <t <11

13. uv = (w+1?)/(t+w?) for the intervals 1 <Cw <20, 2<{#<8,
4 <o <11,

14. (w+1)/(1+wt) = f(u, v) where f is a function of the variables u and
v which assumes values between 5 and 7, and w and ¢ vary in the intervals
3<Cw <8, 10 <2< 15

U—v w--1
15, —— = x for the intervals 2 <Cv<(8, T<Qw<{8,4<¢t <11
u-t+v 14wt
16. Construct a nomogram for the equation
10YR
|l a—
10Yr+1

in which the a-scale from Fig. 120 will be replaced by a line at infinity.

§ 25. Systems of equations. Nomograms consisting of two parts
to be superimposed on each other

In § 24.2 we have shown a nomogram (Fig. 123) read by
means of superimposing on it a transparent sheet, on which
a family of parallel lines has been drawn. That nomogram is thus
composed of two parts: an ‘‘immovable” part, containing four


file:///-/-wt
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functional scales, and a ‘‘movable” part, also called a transparent,
containing a family of parallel lines. The device of joining two
drawings by superimposing them on each other can be extended
to functions with more variables and to systems of equations.

25.1. Let us take a system of equations with six variables,
Jia, V) —f5(2) = fag(w, 8)—F(8),
J1a(t, V) —G5(z) = Gaa(w, 8)—gs(f).
We shall make two drawings:

I. On the plane [x, y] we shall consider the following two
pairs of families of curves (Fig. 136a):

(25.1)

YA n S0 5
; T .
| o
9 | “1
'
| ]
S A ~¢ R
x
L |
Yy
2 t
D)
to
zo o
x
F1c. 136
z = fio(u, v), and z = fy(w, ), 25.2)
Yy = ng(u’ U), Yy = 934(’10, 8)'

II. On the plane [&, %] we shall consider two functional scales
(Fig. 136b):
E :fﬁ(z)’ and E :fe(t);

(25.3)
7 = g5(2), 7 = g(t)-
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Let us now imagine that drawing b) has been superimposed
on drawing a) so that the axes £ and « are parallel and identically
directed and the origin O of the system coincides with O’. If the
point z, of the z-scale coincides with the point (u,, ve) of the
lattice [u, v] and if the point £, of the t-scale coincides with the
point (w,, 8,) of the lattice [w, s], then of course the vector with
initial point z, and end-point #, will be equal to the vector with
initial point (u,, v,) and end-point (wy, s). The projections of
those vectors on the axes of abscissas are equal, i.e.,

Jelto) —J5(z0) = Faalwo, $o)—f12(0s ¥o),
and, similarly, the projections on the axes of ordinates are equal:
I6(to) —95(z0) = Jaa(wo, S0) —F12(%0s Vo)

the system of equations (25.1) is therefore satisfied.

A nomogram composed of parts a) and b) thus makesit possible
to solve the system of equations (25.1) for given values of %, v,,
zo and &, or uy, vy, 7, and, say, &,; it is more troublesome to find
z and ¢t when the values of %, v, w, and s, are given. It is
essential here to keep the axes of the systems parallel. To make
this easier, we draw both on the immovable part a) and on the
movable part b) a series of lines parallel to the axes of abscissas,
or we use well-known systems of joint-connected rods admitting
only translations.

As follows from the method of using nomogram 136, the scales
on the axes z and £ must be regular and have equal units; the scales
on the axes y and 9 must also be regular and have equal units,
but the units on the axes of abscissas may be different from
the units on the axes of ordinates. However, we can move the
lattice of curves [u, v] away from the lattices of curves [w, s] as
far as we like, of course moving the ¢-scale away from the z-scale
by the same vector, since .

Jre—fs = futa—(fe+a),
Tra—95 = Fag+b—(gs+0)

for arbitrary @ and b.
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ExampLE. Draw a nomogram for the system of equations

% COS V—2 = ]/s—w -1,
u sin v—z = w—{?
for the intervals
0<<u<25 0K
0t O0<w<s, —1<g<s<I.

In order to isolate in the drawing the lattice of w, s from the
lattice of u, v we add and substract on the right sides number 4-5.
We obtain

U COS V—2 = (}/m +4-5)—(t+4-5),
u sin v—z = w—#t2
The equations of the [, v] lattice will have the form
r=wucosv, ¥Y=usinv,
and the equations of the [w, s] lattice will have the form
x:}/m+4-5, y=w.

Consequently, the curves u = ¢ are circles with centres at the
origin of the system, the lines » = ¢ will be lines of a pencil with
vertex at the origin of the system, the lines w = ¢ will be lines
parallel to the z-axis and the curves x will be parabolas with
equations y = —a2+s (Fig. 137a).

The functional scales have equations

§=2 n=z
and
& =1t44-5, n = 8.

25.2. The movable part of a nomogram of the type under
consideration will have a particularly simple structure if gg(z) = 0
and gg(t) = 0.

In that case certain transformations of the nomogram are
permissible. Namely, if

flz*fs = f34—f6»

12 = Jaa»

then, choosing two arbitrary continuous and monotonic functions
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@(z) and p(x), we shall obtain an equivalent system of the form

f12+‘P(912)_f5 :fa4+99(934)—f6r
Y(912) = ¥(G30)-

14| 1

2 609 2\\
. N\,
Q v N\,
AN
o oYY 1111

vi 2.5

8y

16

. t
b) 15z 1

05 05
/] /]

Fia. 137

8y

Our nomogram will consist of two parts, the first being the
same as in the general case and the second being a combination
of two scales

§=fz) and &= f)
on one straight line 5 = 0 (Fig. 138).

25.3. Nomograms composed of two parts can also be applied
to a single equation with five variables. Let us take the equation

flz_f:; :fm_fs» (25.4)

where the first variable appears in both function f12 and function
J1z- Let us take two arbitrary monotonic continuous functions plu)
and y(u) and write two equations,

Jiz+ow)—f, = fat+ow)—f;
P(u)—0 = p(u)—0.
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This system leads to a nomogram which consists of two fami-

lies of lines,

x = fio(u, v)+@(u), y = yp(u), (25.5)
z = figlu, w)+o), y=-ylu),
YA u v N
a) v
b) ACARRE s
Fic. 138
Vi v w
NA LT JITN
\ [ / [T
a) NN LT/ w JTTIAN
A\ [/ VAERRNA
\ V[ [/ /AARRN)
\\// [T TV
b) T 1T 1111 L
Fic. 139

and two scales,
§=fz) and &=fi0)
on one straight line n = 0.
This nomogram is shown in Fig. 139. It can be seen from
equations (25.5) that the first variable, u, is represented by
means of a family of straight lines parallel to the z-axis.
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Exercises
1. Draw a nomogram of the equation
w = xy? \/z—e‘ (s—2x)
where the following relation holds between the variables:
x* = z(s+2)
in the intervals
022, 0<Cy <3, 1<z<4,
0<Ct <08, 48 O0<Cw=l10.
2. Construct a nomogram composed of two parts for the equation
(o) = (ut-2)’
for 10 Cu<C20, 0<Co<C10, 0C2h, I <Cw<C2, 1t L2



CHAPTER V

PROBLEMS OF THEORETICAL NOMOGRAPHY

§ 26. The Massau method of transforming nomograms

Formulas occurring in practice usually have the forms listed
in §§ 10-23. However, there exist equations, particularly in tech-
nological problems, whose structure is complicated and difficult
to identify with any of the known types. In such cases we should,
if possible, make suitable transformations, leading to the known
types of equations.

In this section we shall deal with the problem of transforming
equations.

26.1. Suppose we are given an equation containing three
variables

flu, v, w) = 0. (26.1)
If the left side of the equation has the form of a third order
determinant in which each row contains only one variable and
one of the columns consists of unities only, i.e., if (26.1) is an
equation of the form
Pi(u)  py(u) 1)
(V) a(v) 1] =0, (S)
@s(w)  yy(w) 1 }

we shall call it the Soreau form, or briefly the (S) form.

In view of the considerations of § 15 it is obvious that relation
(26.1) can be represented by a collineation nomogram if, and
only if, the equation is of the (S) form. Consequently, the question
whether there exists a collineation nomogram for a given equation
is equivalent to the question whether an (S) form exists for that
equation.

In § 28 we shall prove that it is not possible to bring every
equation to an equation of the (S) form. In cases where the (S)
form does exist for an equation (26.1), it can be obtained by the

242



PROBLEMS OF THEORETICAL NOMOGRAPHY 243

following method, introduced by Massau and called the Massau

method.
We introduce new variables « and ¥ by means of the equalities
= Gu,v,w) and y= H(u,v, w) (26.2)

and then eliminate the variables v and w from the given equation
(26.1) and the substitutions (26.2); suppose that the result of
that elimination is an equation linear with respect to x and y:
@i(w) x4y (u) y+x.(w) = 0. (u)
Similarly, assume that by eliminating the variables » and
w from equations (26.1) and (26.2) we also obtain a relation linear
with respect to z and y:
@a(v) +5(v) Y+ 25(v) == 0; (v)
and finally, assume that by eliminating « and v from (26.1) and
(26.2), we obtain an equation linear with respect to x and y:

@3(w) T+ 1y (w) Y-+ xa(w) = 0. (w)

As we know, a system of three linear equations, (u), (v) and
(w), with two variables # and y has a solution if and only if its
determinant is equal to zero:

'(Pl(u) wi(u) )
l%(”) Ya(v)  22(v)

= 0. (8"
P3(w) pa(w)  xa(w)

This equation is satisfied by any three numbers u, v, w satis-
fying equation (26.1). We shall show by examples that equation
(S’) may be solved by other threes of numbers, such as do not
satisfy equation (26.1).

It can easily be seen that (S’) can always be reduced by divi-
sion to the (S) form. If the product y,(u) zs(v) x3(w) is not iden-
tically equal to zero for threes of numbers u, v, w satisfying
equation (26.1), we divide both sides of equation (S’) by that
product, obtaining the (S) form:

ol vl 1 |
Pol2z Walga 1
‘Ps/%a Yalxs 1

= 0.
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If %1773 =0, we can obtain—by interchanging or adding
the columns—mnon-zero functions in the third column; and
then, by division, we get an equation of the (S) form.

The application of this method of transforming equations
into the (S) form may, in practical cases, involve certain diffi-
culties, since it is necessary to guess the requisite substitutions
(26.2). In particular it is difficult to verify whether such a substi-
tution exists in a given case, since the Massau method gives no
answer to this question. We shall show that there exist equations
(26.1) which cannot be reduced to an (S) form and we shall
give the criteria of the existence of that form for a given equation.

26.2. Proceeding to applications, let us reduce to the (S) form
the equation

fiw) fo(0) falw)—1 = 0.

(Here the function F(u, v, w) has a special form

F = fi(u) fy(0)f5(w)—1.)
It turns out that we can do so by three different methods.

First method. We substitute z = f;, ¥y = 1/f,. Elimi-
nating the variables % and » from the given equation f, fo f-—1 =0
we obtain

x 1 f:—1=0,
y
or, multiplying by v,
xfy—y = 0.
We thus have, together with the substitution formulas, three
equations

z —fi=0,
yf—1=0,
zfy—y = 0.

The fulfilment of these equations by 2 and y is equivalent to
the equation
l 1 0 —f;
o0 f 1= 0.
f : 1 0‘
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Adding the terms of the second column to the terms of the
third column, and then dividing by f,(fo—1) we obtain successively
10— 0
0 fr -1,=0 0 fl(fi—1) 1|=0 (Sy)
fo 1 1] o1

The last equation is of the (S) form.

Second method. We substitute x=fi+f,, y=Ff,
in equation f;f,fs—1 = 0; we obtain fyy—1 = 0. From the
expressions for x and y we have

y=fl—f) or flz—y—fi=0,
and similarly
y=flx—f) or fix—y—fi=0.

We thus obtain a system of three equations,

x.ff‘?/‘ﬁ =0,
zfy—y—f3 =0,
yfs—1 =0,
which implies that
ho-1 -
fo =1 —f31=0.
0 f. —1

Dividing by function f, (which is not constantly equal to zero
because f; fof; = 1) and interchanging columns two and three
we obtain the (S) form:

2
A I 0
0 - 1]

This equation is not equivalent to the equation f, f,f;—1 =0
because on expanding the determinant we obtain

INFIE LR

—%2:-0,
fs [ hif

or

flfgfs_fz‘f‘ﬁ_fi?fzfs = O,



246 NOMOGRAPHY

or

(o= fUifafs—1) = 0.

Equation (8) is therefore satisfied not only by the threes of
numbers u, v, w which verify the given equation but also by
threes u,, vy, w where f,(u,) = fy(v,) and w is an arbitrary number.
It will thus be seen that from a nomogram defined by an (8)
equation we shall have to reject solutions u,, vy, w for which
fi{ug) = folvy) and w is arbitrary.

Third method. We substitute x = fi-+fo+fs ¥ = fo fot+
+f1 fs+fe f5- The given equation is transformed into the equation

Hhy—=fifi=Af)—1=0,

and then into
Lly—=hHfs+f)—1=0 or fily—filz—f)]-1 =0,
ie.
—fiz+fiy+fi—1=0. (u)

We find that the reduction of % and w gives us the equations

fly—flfi+f)l—1 =0,
Laly—fole—fo)]—1 = 0, (v)
—f3x+hy+fi+l=0.

Similarly, by reducing » and », we obtain

—fix+fey+fi—1=0. (w)
Equations (u), (v) and (w) give us the equation
lfl '—f% fg*ll\
fo —f3 f3—1{=0
f3 _fg fg_l
and ultimately the (S) form
1-f} 1-fi
—f N3
_J2 1| —
= g | )
~h B
1—f3 1—f3
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Expanding this determinant we obtain, as can easily be
verified, the equation

(=1 (fo=13) (Fs—=1) (1 fofs—1) = 0.

In addition to the threes u, v, w which satisfy the given
equation f, f, f;—1 = 0, equation (S;;,) has the following solutions:

such threes w,, v,, w that fi(x%;) = fo(v,) and w is arbitrary,
such threes wu,, v, w, that f,(u,) = fa(w,) and v is arbitrary,

such threes u, v,, w, that fi(v)) = fy(w,) and « is arbitrary.

As before, having drawn a nomogram defined by equation
(Sir1), we must reject those threes of numbers wu,, v,, w for
which f,(u,) = fy(v,) and w is arbitrary, those threes u,, v, w, for
which f(u,) = f,(w,) and v is arbitrary and those threes u, vy, w,
for which f,(v,) = fy(w,) and = is arbitrary.

We have obtained for the equation f; f,f,—1 = 0 three Soreau
forms, (S;), (Sy) and (S;,). and consequently three nomo-
grams,

The nomogram defined by equation (S;) consists of three
rectilinear scales with equations

- 1
A0

x

x, =0, Ly =f3(w)>

— fov)
fo(v)—1
The nomogram defined by equation (S;) consists of three

scales, one of them rectilinear and the other two lying on a com-
mon curve of the second order:

Y.=0, Yo =1

w

z, =f1’ Ly =f§’ xw:()r
yu:flz’ yu:fg’ yw:'—l/fS'

Indeed, the base of both the u-scale and the v-lattice is the
parabola y = 2? and the base of the w-scale is the straight line
x =0, i.e., the axis of the parabola.
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The nomogram defined by equation (S;,) has three scales
with a common base

=h r — = r = —fs

v w

2., =

1—f} 1—f3 113
N Y S
1-fi 1—-f3 1-f3

It can easily be verified that the common base of these scales
is a curve of the third order, for on dividing ¥ by « we have
(omitting the indices u, v and w)

ylr = —f;

b e
)

\
W

F1c. 140

substituting this in the first equation we obtain

I 22
Yi whence 1z = y

r=—, =
1+ (y[x)® 2+ yd

and finally
B—zxy+y® = 0.

This equation presents the so called folium of Descartes
(Fig. 140). It is a curve with a double point at the origin of the
system and an asymptote z-+y = — 1/3. It will be observed
that we have transformed the equation f;f,f;—1 = 0 into the
forms (8)), (S;;) and (S;;) exclusively by so called rational
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operations, i.e., by addition, subtraction, multiplication and
division. It could be proved that the forms we have obtained
are the only (S) forms of the given equation obtained by ratio-
nal operations. This means that every collineation nomogram
of the equation f,f,f;=1 in which the scales u, v and w are
scales of rational functions f,, f, or f, is either a drawing defined
by equation (S;), (S;,) or (S;), or a projective transformation of
one of them.

26.3. Consider in an analogous way the equation

Lilw)+fov) +fi(w) = 0.
Here again there are three different methods of reducing
the equation to an (S) form.
First method. We substitute x = f,(v), y = fs(w) in
the given equation; we obtain f,4+z+y =0, ie., a system of
equations,

z+y+fi =0,
x —fo=0,
y—fs =0,
whose determinant must be equal to zero:
11 f;
10 —f,|=0.
01 —f;

Adding the terms of the first column to the terms of the second
column, we obtain

12 fl’
11 _f2§:0;
01 —fs]

dividing the terms of the first row by two and interchanging
columns two and three, we finally obtain

1/2 fij2 1
‘ 1 —f, 1/=0. (S)
0 —fy 1

The nomogram consists of three scales on three parallel lines.
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Second method. We substitute x =f,f,, yv=Ff+f..
We easily obtain a system of equations

x—fly‘l_f% =0,
e—foy+f3 =0,
y+fs =0,
which implies that
1 —fi fi
1 —f, fij=0.
0 1 J

Adding the terms of the third column to the terms of the first
column, we obtain

1+f1 —hH A
1+f; —fs f3
fs 1 f

dividing the first row by 14-f2, the second row by 1-4f7 and the
third row by f, and interchanging columns one and three, we

obtain an (S) form:

f% fl 1
1+ 1+f1
1 I S B (S)
1+f3  1+f3
1 SR
fa

The scales » and v lie on the same curve with parametric equa-
tions

ot
14-f2 1+f2
Eliminating parameter f, we obtain
i:f and y:—% or -
Y 1+ (2/y) 2?4y
This curve is thus of the second degree with the equation

P—rt+y?=0 or (z—1/2)2+y2 = (1/2)%

x
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The third scale, w, is rectilinear with equations

T = 1’ Y = —I/f 3
It is a tangent to the circle a?2—x+4y2 = 0.
The nomogram consists of two scales on a common curve

of the second degree and of a third scale on a tangent to that
curve.

Third method. We substitute z = f,f3fs, v =fifot+

fifs+fofi in the given equation f,+f,+f; = 0. Eliminating f,
and f; from those equations, we obtain

z = fily—Sfifo—fifs) or  z=fily—fi(—f))

ie.
x—fly“f:f = 0. (u)

On account of symmetry, the remaining two equations will
be of the same form:

x—foy—f3 =0, (v)

x—fy—fi =0, (w)

The result of the elimination of variables z, y and z from
equations (u), (v) and (w) is the equation

]1 —h —f
1 —f, —f3|=0.
R
We thus have a third form for the equation f,+f,+f; = 0:
L i1
f?. fg 1'=0. (Syrr)
fo 31

In this case the nomogram consists of three scales lying on
a curve of the third degree,

11:=f, y:fs'

It is a parabola of the third degree, y = 23, with the inflec-
tion point at the origin of the system (Fig. 141).
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Equation (S;,;), with the determinant expanded, has the form

(fl—fz) (fl—fs) (fz_fa) (f1+f2+f3) = 0.
Since our problem concerns only the last factor being equal
to zero, we must reject the following threes of numbers:
Uy, ¥y, w, where f;(ug) = fo(ve) and w is arbitrary,
Uy, v, wy, where fi(u;) = fy(w;) and v is arbitrary,
U, vy, Wy, where fy(v,) = fy(w,) and u is arbitrary.
Geometrically this means that at the intersection of a certain
straight line with the base of the scales we must read the value

yi

Fia. 141

of one variable only, e.g. u; if we wished to read the value
of w corresponding to the pair %,  for which the point » coincides
with the point  on a common scale, we should have to draw
a tangent to the curve at point w = v; the intersection point
of the tangent with the curve determines the required value of w.

Exercises
1. Reduce the equation of the second degreo
22tuzte =0
to an (S) form by the Massau method (substitute v = z, v = y).
2. Reduce to an (8) form the equation
auv+buw-+tcvw = 0.
(Substitute bu+cv = z, auv = y.)
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3. Reduce to an (8) form the equations

3u+sv—1 i
a. w=—— (e.g, substitute 3ut5v = z and du—v = y),
4du—v
uv
b. tan w = ,
u+v

e. sinw = sinwsin v,

sin w cos w

= k (substitute 1/v =z and l/u = y),

e. W=~

e w (substitute x = w, y = wvi{v).

§ 27. Curvilinear nomograms for the equations f;(u) fo(v) f3(w)
=1, fiw)+f(v)+fa(w) = 0, fi(u) fo(v) fo(w) = fi(u)+folv) +f3(w)
27.1. The equation f, f,f, = 1 can be reduced to three different
(8) forms: (S)), (S;;) and (S,;;). Each of them is the equation
of a certain nomogram. The (S;) form leads to the well-known
nomogram with three rectilinear scales defined by equations

1
T = ’ zy =0, xy = fy(w),
Ji(w)
f2(v)
=20, Yo=—"""—"—, Yp=1
Jao(v)—1
7}
-l 1 1 l’go 1 1 —J 1 L lll’ L 1 ]
\‘“\o
T 1 13 l\ T L T L)
- u uo &
Fic. 142

The u-scale is rectilinear with base on the z-axis, the v-scale is
rectilinear with base on the y-axis, the w-scale lies on a line
parallel to the z-axis (Fig. 142).
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It can easily be seen that we have here an N-shaped colli-
neation nomogram, discussed in detail in § 12. As can easily
be guessed, we use this nomogram in cases where only one
function assumes very large values; we then draw it on the
oblique straight line, i.e., here on the y-axis.

The (S;) form

Lo A 1’
Lo f5 1/=0
0 -1 1

defines the following scale equations:

z = fi, zy = [y Ty =0,
o 2 v) g (W) _
w=f% Yo =f3% Ys =—1/fs

The scales (u) and (v) lie on a common curve (parabola),
y = 2%, and the w-scale lies on the straight line x = 0 inter-
secting the parabola at two points: at the origin of the system
{0, 0, 1) and at the point at infinity (0, I, 1).

Every projective transformation of the plane (z, y) turns the
parabola into a curve of the second degree (an ellipse, a parabola
or a hyperbola), and changes the straight line that intersects
it at two points into a straight line having two points in common
with the curve, i.e., into a chord.

(u)

A nomogram containing a curve is of course more difficult
to execute than a nomogram with only rectilinear scales, and
it would not be advisable to draw it in cases where a nomogram
with three rectilinear scales satisfies the required accuracy
conditions in the given intervals. To verify whether, for a given
equation (S,;), the nomogram gives sufficient variability of
the unit of the scale, it is useful to construct a nomogram
for the equation uvw = 1.

On the basis of elementary transformations of a determinant
we have

u  ul l‘ u  14+u? 1‘ 1 w 14wt
v P ll=lv 14 1 =(1 v 1+
o —1jw 1| lo 1=1w 1] |1 ¢ 1-1/w
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and consequently the form

1 u 1
14-u? 1-+u?

1 " 1j=o0.
1492 1402

! 1
1—1jw

This equation shows that the base of the first two scales is
a circle, since we have in succession
1 U
== ’ y = 4
14-u2 1-+u?
1 x
= ) -
1+(y/z)*  2*+y?
(x—0-5)*+y2 = }.
Proceeding to the construction of the nomogram we observe
that the w-scale will be a projective scale because

1 w

z

Yy = ux,

:1,

xr —
1—1jw  w—1

The limit for w—ooo is x=1. As regards the variables
# and v, the limit for u—oo and v—oo is the origin of the
system (0, 0). Fig. 143 shows that a nomogram of this shape
would be more convenient than a nomogram with three parallel
scales if, for the given interval, funtion f; assumed values from O
to oo, funtion fy—values from —oo to 0, and function f,—very
small negative values. As we know, a nomogram with three
rectilinear scales would then have infinite dimensions.

Form (Syy)

—h
1—f%  1—f}
|k _fE

g 1 |70
A
1—f2 1-f3
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leads to a drawing composed of three scales on one curve, called
the folium of Descartes, 2®*+y>*—xy = 0.

It is a so-called wunicursal curve, i.e., a curve whose points
can be assigned in a one-to-one and analytic manner to the
points of a straight (projective) line or to the elements of a pencil
of straight lines. It is sufficient to take a pencil of lines with
the vertex at the origin of the system, which is a double point
for the curve, and to assign to each straight line of the pencil
the point at which it intersects the curve for the third time
(point (0, 0) is then reckoned twice and consequently it has two
corresponding straight lines: the z-axis and the y-axis).

Vi

Fig. 143

In order to discuss the cases where the equations f f,f, =1
are more conveniently represented by this nomogram than by
nomograms of the preceding two types let us draw the scale of
the function wvw = 1.

All the scales have the same parametric equations

z=uf(ul—1), y=u?/(u®-1).
Obviously, as u—oco, the corresponding points tend to the
double point along an arc tangent to the y-axis (Fig. 144); it is to

the same point that the points assigned to numbers close to zero
tend along an arc tangent to the x-axis. For u close to unity the
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corresponding points tend to infinity along ares approaching the
line z—y-+1/3 = 0 asymptotically.

This drawing will be a suitable nomogram in the case where,
in the given interval, one function assumes very large positive
values, the second—very large negative values and the third—
very small negative values; in this case the preceding type also
gives good results.

Fic. 144

27.2. Equation
fitfatfa=0

can be represented in the forms (S;), (Sy;) and (Siy).

As we know from § 10, a nomogram based on equation (S;)
consists of three functional scales ' = fi(u), v’ = fo(v) and
w' = fa(w) on three parallel lines. It can thus be used only for
functions f,, f, and f, which are bounded in given intervals.

A nomogram based on equation (Sy), i.e. with scales

2
U | B
1-+f} 1+f3
1

le, Yy=——

fi’

for 1=1,2,
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consists of two scales on a common curve of the second degree
3P+t = B
and a rectilinear scale on a tangent to the curve.

In order to find out which equations are conveniently repre-
sented by such a nomogram, let us make a drawing for the equation

utv+w = 0.

The nomogram obtained is shown in Fig. 145. It can be seen that
this form is convenient if, in the given intervals, two functions
fi have very large absolute values and the third has very small

| AL

T T
]
(%]

~
By

L |

T PTIAN0

—
N

Fia. 145

absolute values. Then of course the circle must be replaced by
an ellipse with the major axis (or only a diameter) parallel to the
rectilinear scale on the tangent.

In the case of form (S;;) we have three scales on the curve
y = 8.
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Let us take again the equation u+v+w = 0. Each of the three
scales has the parametric equations

r=u, y=ud (%)

This nomogram (Fig. 146a) can be used in cases where great

accuracy is required for those values of two variables to which

vi

15

1 |1
05,/
e Tz
4T 5
[ -2
-15 ®

a)

Fic. 146

large values of two functions correspond; the third function
should then have small values. In those cases we transform
the plane in an affine manner so as to have a large angle between
the positive parts of the axes x and y; then the parts of the
scales corresponding to the absolutely large values of two func-
tions will get nearer to each other (Fig. 146b).
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Remark. Nomogram 146b can be drawn more accurately
by finding the equation of the curve in orthogonal coordinates.
Accordingly, let us take the direction of, say, the tangent intersect-
ing the curve at point w = 2 as the direction of the &-axis,
and the direction of the tangent at point w = 2 as the direction
of the n-axis.

The slope of the first tangent will be obtained by writing its
equation in the form

Y—Yo = 3a5(x—1,)
and substituting in it z = 2, y = 8. We obtain
83 = 3aB(2—my),
and thus
2832314 = (2,—2) (5y+1) = 0,
ie., &y =—1. The required slope is thus equal to 3. Since the
other slope is 3 .22 = 12, according to the notation introduced
in § 4.3, point P, (in our case a point at infinity) has coordinates
(1, 12, 0), point @ (also at infinity) has coordinates (1, 3, 0)
and point A has coordinates (0, 0, 1); the straight line AP
has an equation y = 12z, or, in homogeneous coordinates,
—12z, 42, = 0,
the line A@ has an equation y = 3z or
—3z,+1, =0,
and the line P@ has of course an equation x; = 0.

The transformation will thus be defined by equations

—122:1—{—@%

&= = —12x+}y,
Ty
Ty

The scale equations are of the form
E=ud—12u,
7 = ud—3u.

27.3. Equation f, f,f; = 1 can easily be reduced to the form
@1+t =0, for it is sufficient to substitute ¢; = logfi.
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Similarly, equation f,--f;+f, =0 can be reduced to the form
Y19, = 1 by substituting f; = log w;, i.e. y; = 10/i. Consequently,
in each of the two types of equations we have six different
nomograms, not equivalent to one another by projection. It
will be observed, however, that the substitution ¢; =logf;,
for instance, can be applied only to those intervals of the inde-
pendent variable for which function f; is positive; the second
substitution, y; = 10, assigns to all real values of f; only a part
of the set of the values of y;, namely the positive part. Therefore,
if we constructed, after the second substitution, a curvilinear
nomogram for example, then all the values of f, from —oo to
+oco would be placed on part of the curve only; the unlimited
real axis would be contracted to a part of a curve of the second
or third degree. Such contraction is of course useful in certain
cases.
By a suitable substitution, also the equation

f1+f2+f3 :f1f2f3 (27.1)

can be reduced to the preceding types. Take function w;, such
that

cot w; = f;. (27.2)
From the well-known formula

tan o, |-tan w,+tan m, —tan o, tanw, tan w,

tan (o, 4w, +w;) =
1—tanw, tan wy;—tan w, tan w;—tan w; tanw,

by substitution (27.2) we obtain in view of (27.1) the equation
tan (w;+w,+w;) = 0,
and consequently
(1) Fws(v) +wy(w) = 0. (27.3)
Similarly, equation (27.1) can be changed into the equation

Piyeys = 1.

Obviously, any such transformation from one form into
another involves a deformation of the functional scales of the
given functions. Equation (27.1) can also be represented by
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a nomogram directly, i.e., by writing a form (S) which would

contain only the functions f; and expressions made up from them

by addition, subtraction, multiplication and division.
Accordingly, let us substitute

z=fitfo y=hf—1; (274)

by eliminating f, and f, from equation (27.1) we obtain
z+fy=f3ly+1) or =z—fy =0,

and by eliminating f, and f, from the substitutions (27.4) we
obtain the equations

oy —y—(fi+1)=0, afp—y—(fi+1)=0.

The last three equations give us form (8) for equation (27.1):

fi =1 —1-f%
S —1 —1-f31=0
1 —f 0
or
2 fl 1

4 fi+d
GRS Y

e fid
2 1

3 3f,

The first two scales lie, as can easily be found, on the cir-
cumference (x—1/4)2+4? = 1/16 and third on the straight
line x = 2/3, which does not intersect the circle at real points
(Fig. 147).

For example, for the equation wwvw = u-+tv-+w we have, in
the circle, a scale of fast decreasing units as 4 (or v) tends to
infinity, and a projective scale on the straight line.

For equation (27.1) we can also construct a nomogram with
three scales on one curve. To give it the necessary Soreau form
let us substitute

z=ffofs y=FofstfifstSsSo (27.5)
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Substituting the value f, = z/f,f, in equation (27.1) and in
the second equation of (27.5), we obtain

o=ttt o D)=
f1f2 x x
f1f2+i(f1+f2) =y or ‘—fl- g‘*‘(i—l)fz-{—l - 0.
f1f2 4 fl x

By subtraction we obtain

1 1
I A B R
i

Fig. 147

On account of the symmetry of formulas (27.1) and (27.5)
we also have

[ Hh)eyfi=0. (L isfe-ysi=0
i.e. an (S) equation

At —1 —fi]

sz+1/fz —1 —f§J=0-

1l —1 —f2
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The scale equations will be of the form
z=fi+1/f;, y=f for i=1,2,3. (27.6)
They lie on a curve of the third degree whose equation is
z=Vy+1/Vy or ay=(y+1> (27.7)
Figure 148 represents a nomogram for the equation
ww = u-+-v-+w.

It will be seen that representing equation (27.1) by means of
a nomogram of this kind is useful only if one function, say f,,
assumes very small values and the other two assume very large
values.

'yl}

Fia. 148

We have found only curvilinear nomograms for equation
(27.1). In § 28 we shall prove the non-existence, for that equation,
of a nomogram with three rectilinear scales involving scales
of functions f; or functions constructed from f; by means of the
four arithmetical operations.

Remark. Curve (27.7) has an isolated point, (0, —1),
which does not belong to any of the scales of (27.6), since the
ordinates of points belonging to the scales are positive.
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§ 28. The nomographic order of an equation. Kind of nomogram.
Critical points
28.1. Equation
Flx,y,2) =0

can be represented by a collineation nomogram only if it can be
written in a Soreau form (§ 20, equation (26.1)).

A direct reduction of a given equation to form (S) involves
as a rule very complicated calculations—we shall deal with this
in § 32. It is often possible to simplify our investigations consi-
derably by performing certain preliminary operations, aimed
at reducing the left side of the equation F(z,y,z) = 0 to the
forin of a so called nomographic polynomial.

We shall define first a nomographic monomial. It is a product

af(x).9(y). h(z). k(x)
of factors depending on one variable only.

For example, the function 3 sin z.log(l+y)tanz is a nomo-
graphic monomial of three variables, while the function (z--y)z
is not a nomographic monomial.

A nomographic polynomial is a finite sum of nomographic
monomials.

The following functions are examples of nomographic polyno-
mials:

xe*. log y+y tan 24241,
(x+y+2) = a®+y*+22+ 2wy - 2y2+ 2wz,
log (z+1)*? = zlog(z4+1)—y log(z+1).

It can be proved that, say, ]/x?m? is not a nomographic
polynomial, but sin(x?+4-y2-}22) is a nomographic polynomial
because

sin (2?4 y2-2?) = sin a2 cos %2 cos z2—sin 22 sin 2 sin 224
+-cos 22 sin y? cos 22~ cos 2 cos y® sin 22,
In the nomographic polynomial

21f1(%) 91(y) h(2) + @ fo(®) goy) ha) + ... -, fu®) gu(y) ho(z) (28.1)
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there occur n functions f; of the variable x, » functions g; of the
variable y and n functions h; of the variable z. In certain cases
the polynomial can be written in a simpler form. For instance,
in the nomographic polynomial:

w(z, ¥) = 2*y?+dxy?+y? %+ 3xy -+ 8x+ 6y+-8,
which is of the form

1

N a, fi (@) g: (@),
=1

we have the following functions of the variable w:

h=hi=2 fi=fi=fi=2 and fi=fi=fi=1,

and the following functions of the variable y:

hi=02=9s=9" gs=¢s=y and g, =gs=gs=L
We thus have three different functions of the variable 2 and
three different functions of the variable y. It will be seen, however,

that w(x, y) can be written in a simpler way by introducing the
following functions:

fi = fi+5f+2f; = 2+ 52+ 2,

and

f2 =fet2fy = =142,
as well as

g1 = g1+9s = y*+1
and

g1 = 959 = y+1,
because

w(z, y) = i1 +3f9, = (#*+52+2) (y°+1) +3(z+2) (y+1).

To express the above in general terms let us adopt the following
definition.

Functions f;(x), 2 =1, 2, ..., n, defined in a common interval
{a, by are linearly independent in a wider sense if the identity

cote fitcafot oo T fy =0

implies that all ¢; are equal to zero.
Function f,(z) is linearly dependent on functions fi, fa, ---, fa
in a wider sense if there exist constants ¢; fcr 1 =0,1,...,n
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which are not all equal to zero (i.e.Zc% # 0) and are such that
fi@) = cotefil@)+ ... e fula).

A system of functions f, ..., f, is termed a base.

Obviously, if f; is linearly dependent in a wider sense on
functions f; for ¢ =1,2, ...,k then functions f, f, ..., fi, /i
are linearly dependent. As regards the base, we shall assume
it to be linearly independent.

Assume that among the functions f; occurring in the nomograph-
ic polynomial (28.1) there are k functions f,, ..., f, on which
the remaining ones are linearly dependent, that among the
functions g; there are m functions ¢, ..., ¢,, on which the remain-
ing ones are linearly dependent in a wider sense and that among
the functions %; there are p functions %,, ..., h, on which the
remaining ones are linearly dependent in a wider sense.

Then the nomographic polynomial (28.1) can be written
in the form

D b1 £ (@) 9 ) u(2) (28.2)

where ¢ varies from 1 to k, j varies from 1 to m and [ varies from
1 to p.

It may occur of course that in the new form some coefficients
b;;; will be equal to zero, and consequently we shall have k' < k
instead of k functions f;, m’ < m instead of m functions g;, or
p’ < p instead of p functions ;.

In that case we shall repeat the process and obtain a form in
which a smaller number of functions f;, g, & occur.

Obviously, after a finite number of such steps, we shall obtain
a form in which no further simplifications of this kind will be
possible. The ultimate form will contain k, linearly independent
functions of the variable x, m, linearly independent functions
of the variable y and p, linearly independent functions of the
variable z.

It can be shown that numbers k,, m, and p, do not depend
on the choice of the base in the individual steps of the procedure.

The sum ky+my4p, is termed the nomographic order of the
polynomial.
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Function f,(®)-+fs(y)+f4(2) which depends in an essential
way on three variables, is a nomographic polynomial of the third
nomographic order. The left side of the Cauchy equation
Ji(u) ga(w) +fo(v) Ag(w)+1 (§ 16) is, in the case of linear independence
of functions g, and %;, a nomographic polynomial of the fourth
nomographic order. Function

@i(r) () 1
P2(%) pole) 1
P3(@) () 1,
is a nomographic polynomial of order < 6.
The nomographic order of the equation

F(z,y,2) =0

is the least order of the nomographic polynomial w(z, ¥, z) occurring
in the equivalent equation

w(x, y,z) = 0.

In a three-dimensional domain in which there are no zeros of
functions ,(x), wa(y), %a(z) equation (14.3) is of nomographic
order < 6.

The definitions of the nomographic polynomial and of its
order can be extended to functions of more variables. Thus for
instance

xy*2 log u+2%u?+y? sin y-+log (u+1) sin ¢
Yz log 2 Y

is a nomographic polynomial of four variables, z, y, 2z, u, of
order 8, since we have here two functions of the variable x, namely
2% and z, three functions of the variable y, namely 42, y? sin y and
sin y, one function of the variable z, namely z, and three functions
of the variable u, namely logu, w?> and log(u--1).

28.2. Collineation nomograms are divided into classes accord-
ing to the number of curvilinear scales: if the number of eurvi-
linear scales appearing in the nomogram is equal to k, we call
it a nomogram of kind k.

The nomograms with three rectilinear scales which were dealt
with in § 10-14 are of kind 0 because they do not contain any
curvilinear scale; nomograms which can be used to represent
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equations of the Cauchy type are of kind one because they contain
one curvilinear and two rectilinear scales. Nomograms for the
Clark equation are of kind two or three according to whether the
third scale is rectilinear or curvilinear (two lie on a curve of
the second degree).

Obviously, a collineation nomogram can be at most of kind
three since we have only three scales.

28.3. Suppose that for a given equation
Fx,y,2z) =0
there exists a pair of numbers z,, y, such that the equation

f(xo’?/o,z) =0
with one variable, z, is satisfied for every value of z from a certain
interval. The pair of numbers x;, y, will then be termed a neutral
pair for the given equation. For example, the equation
2y+z=0
has a neutral pair x = 0 and z = 0 since the expression

Oy+0

is equal to zero for any value of y. If this equation is written
in the form

1/z41[xy = 0,

then, if we want to consider also very large values of the variables,
we must regard the pair z = co and z = oo and the pair z = oo
and y = co as neutral pairs, since for any number y 7 0 there
exist such numbers z, and z, tending to infinity that the equation

1)z, 4+1fx,y = 0

is satisfied; for any number z 7= 0 there exist such numbers
z, and z, tending to infinity that the equation

1/zp4-1[zy, =0
is satisfied.
What corresponds in a nomogram to a neutral pair of numbers?

If €y, C, and C; are lines on which the scales lie, then (Fig. 149)
the following two cases may occur:
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1. C, is a curve; then point z, of scale C; must be identical
with point y, of scale C, if the threes of points x,, y,, z with the
variable point z running over the curve C; are to be always col-
linear. In this case the point x, = y, of intersection of curves
C, and C, is called a critical point of the nomogram.

Fia. 149

2. C, is a straight line; then the pair of points of intersection
of C, with C, and of C, with (; may be a neutral pair, g, g,
for then every point representing number z forms a collinear
three with the pair z,, y,.

It can easily be seen that, conversely, every point of intersection
of scales C; and C) has a neutral pair of numbers corresponding
to it; similarly, in the case where C; is a straight line intersecting
the remaining two scales C; and O}, at points P; and P, the
numbers corresponding to those points form a neutral pair of
the equation. This follows from our assumption of the one-to-one
correspondence between the values of the variable and the points
of the corresponding scale.

Equation

(1—1/u) 1—1/p) 1—1]w) = 1
has six neutral pairs:
l.u=0,v=1, 3. v=0, u=1, 5 w=0, u=1,
2.u=0,w=1 4 v=0w=1 6. w=0 v=1.
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For example, in order to verify if the first pair is neutral it is
sufficient to write the equation in the form

T e e

The nomogram for this equation is made up of three rectilin-

ear scales, w, v and w, which, when ordered in a cyclic manner,
have their zero points each at point I of the preceding one
(Fig. 150). Obviously, each vertex is a critical point of the
nomogram and it is easy to verify that each pair of vertices
represents one neutral pair of numbers (e.g., the pair 0,, 1,).

Op— 1v

1w 0Oy

| A AL L

(19 u 1y
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Similarly, it is easy to verify that the equation
1jut1le = 1jw

has three neutral pairs
l.L.u=0,v=0, 2. 4u=0, w=0, 3.v=0, w=0.

These pairs correspond to only one critical point of the nomogram
(Fig. 151).

In addition, let us observe that if the plane of a nomogram
undergoes a projective transformation, a critical point is made
to coincide with a critical point. On this ground we easily verify
that an N-shaped nomogram has three critical points although
the equation has six neutral pairs, and a nomogram with three
parallel scales has three neutral pairs but one critical point.
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It is easy to verify that the equation f, f, f, = fi-+fo-+f; does
not possess a single real neutral pair, which makes it clear why
in the nomogram of this equation (shown in Fig. 147) the straight
line on which the w-scale lies does not intersect the curve. If
there existed an intersection point, it would have to correspond
to a neutral pair. Similarly, in the second nomogram for the
equation (Fig. 148) the curve of the third degree does not possess

0y Op
Oy

Fia. 151

a double point. Finally, it is obvious why we cannot have a no-
mogram of three straight lines for this equation—since every
two straight lines on a plane intersect at a critical point of the
nomogram.

Exercises
1. Find the nomographic order of the Cauchy, Clark and Soreau (type
I and III) equations.

2. Indicate the critical points of the Clark nomogram.

§ 29. Equations of the third nomographic order

Assume that function F(z,y, z) depends in an essential way
on each of the three variables, z, y and z. This means that there
exist numbers z,, y, such that F(z,, ¥,, z) is not constant, there
exist numbers y,, z, such that F(z, y,, 2,) is not constant and
there exist numbers z,, z, such that F(z,, ¥, z,) is not constant.
If function F(z, ¥, z) can be reduced to the form of a nomographic
polynomial, then, by hypothesis, at least three functions, fi(x),
Joly) and f;(z) must oceur in that polynomial. Assume that we have
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only these three functions. Equation F(x, y, z) = 0 is then of the
third nomographic order.

The most general form of an equation of the third nomographic
order is the equation

a frfe fstaon fofat o fi fatano fi fot-age frt-agme fot
F gy f3 a0 = 0. (29.1)

Substituting v = fi(x), v = fy(y), w = f3(z) we obtain the form
Q11 UDW Qg1 VW g g UW -y 10 UV -G oo U Ay v+

+agnw+age = 0. (29.1')

The coefficients have been denoted herc by letter a with

three indices which run over the values 0 and 1; the first index

is 1 or 0 according to whether u occurs in the component or not;

the meaning of the second and the third index is analogous.
We shall prove the following theorem:

Every relation of form (29.1') can be reduced by suitable
homographic substitutions,

e T . i o S & ot}

ayu’ -Fay Bav' -+ V3w 174
fo one of the three canonical forms:
wv'w =1, (I)
w'4v' 4w =0, (II)
u/vrwr — u’+v’+u)’. (III)

We shall carry out the proof in two parts.
1. We shall first reduce (29.1’) to an equation in which the

second degree terms have zero coefficients.
If a), £ 0, we can write the equation in the form

wow—-byvw by uw+byuv+c u+cyvt-cgwtd =0 (29.2)
or
(u+by) (v+b,) (w-+by)+
(c3—byby) u-(ca—b, by) v+ (cg—b by) w-d = 0,
which, by translating ' = u4-b;, v’ = v4by, w' = w-+b;, becomes

w'v'w +-bu’ v’ +hyw' 4-¢ = 0. (29.3)
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If @;;;, =0 but one of the coefficients a;; is different from
zero, we first perform the homographic substitution u’ = u(‘”lﬂ,
v = vD¥ and w’ = w1 reducing the equation in this
way to form (29.2), e.g., if a5 5= 0, then, by the homographic
substitution ' = u, v" = 1/v, w’ = 1}w, we obtain the equation

) 1 1 1 1
Qoo FAopy— + —7 Tl — et s+ — +
w w v v

’

1
+ o1 — + 00 =0,
w

i.e., multiplying by v'w'/a,e, an equation of form (29.2).

Thus, in every case, equation (29.1’) can be reduced by homo-
graphic substitutions to a form containing no terms of the second
degree.

2. In the second part of our proof we shall reduce equation
(29.3) to one of the canonical forms.

a. If at least one of the numbers b,, b,, b, is equal to zero,
this can be done in a very elementary manner. For example,
let b, = 0 and ¢bb, = 0; we have the identity
w'v'w +bu’ b’ ¢ = u'v’ (w'—klﬁz—)—{—ﬂ)E (u’-{—i) (v’ + i),

c c b, b,
which immediately gives

b by (w,‘ blbz)+ bb

Cc C

bu'+c byv'+c
This equation becomes an equation of form (I) if we substitute

’ ’
u v
u’’ v’ w'' = —cw'--b b,

B blu’+c’ - bgv’-{—c’

If, besides b; = 0, we also have ¢ = 0, equation
w'v'w +bu’ b’ =0
can be written in form (II) since dividing by «'v’ we obtain

1 1
w'—}-bl—’ +b3—‘,— = 0,
v u

and consequently w’'+4u’'+v'" =0, where ' = byJu’ and
v’ =bv'.
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b. In order to investigate the case of ¢ # 0 and b,0,b; % 0
we shall introduce the notion of singular homography. This is
what we call a correspondence between x and y defined by the
equation

axy+bx--cy+d =0 {hy)
if the coefficients a, b, ¢, and d satisfy the equality
ad = bc. (%)
(If ad + be, equation (hy) can be written in the form
bx-+d
v=- ax+c’

and this defines homography in the usunal meaning of the term,
since the determinant

-

a C

= ad—bc

is different from zero.)
If a 540, the singular homography equation is of the form

(ax+-c) (y+bfa) = 0;
if @ = 0, then either b = 0, or ¢ = 0, i.e., the equation becomes
cy+d =0 or ba4d=0.

In all cases, a certain value «, (or y,) of one variable can have
any value of the other variable correspond to it; for we can
see that, in the case of @ 7% 0, for x; =-—c¢/a we can have an ar-
bitrary y and for y, = —b/a we can have an arbitrary «; in
the case of @ = 0, for y, = —d/c we can have an arbitrary 2 and
for ¢y = —d/b we can have an arbitrary y.

Now let us find for equation (29.3) a value w,—we shall call
it the singular value of the equation—for which the equation

wyw'v' +-byu’ - byv +byugtc = 0

will define singular homography between the variables »’ and v’
(generally, for a fixed value of w’, equation (29.3) defines ordi-
nary homography).
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The value w, will be obtained, in view of condition (x), from
the equation
wy (bgg+-¢)—b, b, = 0,
i.e., from the equation
bywg?+-cwg—by by = 0. (w)
Similarly, the singular value of variable »’ is a number wug
for which equation (29.3), i.e., the equation
gV w' +byv +byw’ by ug+¢ = 0,
defines singular homography; the condition for that is the equality
Ug(byug+c)—byby = 0
or
byug+cug—byby = 0. (u)
We shall similarly obtain the singular value of the variable
v’ from the equation
byvgd+cvg—b by, = 0. (v)
Relations (u), (v) and (w) are equations of the second degree
with a common discriminant
A = c2+4b byb,.
Let us first consider the case of A4 = 0, i.e., ¢ = —4b,;byb,.
Let us effect a translation by substituting
u/l:ul+L’ ’U”“——:?)'—'}-‘-C—, wlI:wl‘_{_—”‘c_;
2b, 2b, 2b,
we then obtain

w'v'w +byu +byv’ +byw’
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C?' C‘Z CZ
+ (b, + w'' by 0" byt w' —
(1 4b2b3) (2 4b,b, T
3
B ~3-C-+c.
8b,byb, 2

By hypothesis we have the free term ¢ = —4b,b,b;, and
consequently the coefficients of '/, v’' and w’’ are equal to zero;
we can thus write

c c C

v ——v"u — — ' — ——u"v" = 0.
14 9

1 _b2 ...b3

IEPNE]

Dividing by «"v"'w'’[c we obtain

1 1
PR S S N

2bu’ 26" 2bw” ¢

and substituting

v _ 1 ’ o 1
2b,u"’ 200"
b1 1 c—2buw"”
_2b3w” c 2bycw’’
we finally obtain
w'' v fw =0,

ie. form (II).

If the discriminant A is different from 0, we shall base the
method of reducing equation (29.3) to a canonical form on an
identity which contains the pairs of singular values of the equation,
i.e., by equations (u), (v) and (w), the numbers

. —e—y A R )
T Ty, T Ty,
’ —c—1'4 , —c+ /A
o) = OJ__, v — *:;-L'-’

2b, 2b,
w o= 14 oo ToE V4
T e
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It is the identity
(1A —0) (u—1g) (v—0) (w—1e)+ () A +e) (w—uy) X
X (v—vy) (w—wy) = 2]//Z(uvw+b1u+bzv+b3w+c). (29.4)

This identity can be verified either by direct algebraic calcula-
tion or, on the basis of the unicity of the Taylor expansion, by
finding the partial derivatives of both sides of the equation.

Thus, if 4 540 and bbb, = 0, we can write equation (29.3)
in the form

(' —ug) (v —vy) (W' —wp)Feyln’ —uy) (v —v7) (W' —wy) = 0.

If A >0, then the singular pairs ug, 43, vy, vy, Wy, W, are
different numbers; consequently, substituting

’ ! W ’ ’ ’
o U —1Uy e o__ v —U ’r G w —Wy
U == Vo= W=
w' —uy v —v; ¢ w—wy
we finally obtain
ullq/llwfl ]’

i.e., canonical form (I).

If 4 <0, we have complex numbers u), u), ... and }/4 in
identity (29.4). Let us write this clearly:

o .« z] — i/ =4’
(z]//wgl-—c)(u 5t g )( V't g+ 2b2—)><

, . C iV/— N , ¢ _1]/—_4]
(“’*z—bﬁ“ﬁ)*“' *““)(“sz—b‘ o, )X
. ) —
R A Y zV Ay
S e o B

In order to simplify the calculations let us write again this
equation assuming

xy/jz 2b,u'+-c, y]/——A = 2byv' ¢, 2z —A = 2bw'+c;
reducing by (]/——A)3Sblb2b3 we obtain
(1) =4 —¢) (-+4) (y+1) (z+D)+ (1) =4 +0) (z—i) (y—4) (z—i) = 0.



PROBLEMS OF THEORETICAL NOMOGRAPHY 279
Performing the operations partly, we obtain
[(—ez—y/=A)+ily =dw—c]] ly=—1)+ily+2)]+
Hleaty/ =4)+ily =Az—c] L= 1)+ i(—y—2)] = 0.

We can now omit the real part, which, as follows from identity
(29.4) by comparison with the right side, is equal to zero. The
imaginary part will have the coefficient

2 (]/:Zx—c) (yz—1)—2(y+=) (cx—{—]/jﬂ) =0.

We thus have ultimately the equation

S Ax—c
Vo282 e~y 42) = 0,
cx-+) —A4
or, substituting
u/l’ — Lié{?(i rr’ — g, w'// — Z’
cx+) —A4

a canonical equation of form (III):

PR ree

w'e " w w' v —w'" = 0.

The theorem on reducing the general equation of the third
nomographic order to a canonical form by means of homographic
substitutions is thus finally proved, since a superposition of
a finite number of homographic substitutions is a homographic
substitution (§ 9).

Remark 1. In practical problems it is convenient to
have the calculations needed to reduce a given equation to a ca-
nonical form divided into two parts in the same way as in
the proof:

1. We reduce the equation to the simplified form (29.3);

2. We calculate the discriminant A and then find the singular
values uy, u;, vy, vy, Wy, w, writing the index ““0” if we have
V4 with the sign + and the index ‘17 if we take }/4 with
the sign —.

a. If 4 > 0, we use identity (29.4) obtaining at once canonical
form (I).
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b. If A << 0, we also use identity (29.4), but, knowing that
the real part of the left side is equal to zero, we calculate only
the imaginary part; in performing the operations we multiply
pairs of factors, (]/Zl——c) (u—uy) and (v—v,) (w—1wy,), because
this brings us quicker to canonical form (I1I).

Remark 2. Singular elements can also be found directly
for the form (29.1"), i.e., without reducing the equation to a simpli-
fied form; in our proof, however, to make the calculations simpler,
we have introduced form (29.3), because here the discriminant
has a very simple structure and is obviously scen to be the same
for all three equations, (u), (v) and (w). If the equation were
left in the general form, the proof that the diseriminants are
equal would be lengthy. The reduction to a simpler form facilitates
the calculations in one more respect: it shows clearly when we
can pass to the canonical form directly without finding the singular
values and when it is necessary to use identity (29.4).

ExampLE 1. Reduce to a canonical form the equation

—zsiny—x-+siny—3

logz = .
xsin y—ax+2sin y—3

Solution. 1. Substituting v = z, v = sin y and w = log z,
we obtain the equation
wrw=-20w—uw-+uwv-+ut+v—3w-+3 = 0.
Joining the first four terms we obtain & simplified form,

(v+2) (v—1) (w+1)+u—20-4+2w-tu—v—3w+5 =0,
(u+2) (v—1) (w+1)+2u—3v—w+5 =0,
w'v'w F2u' =3 '—w'—1 = 0,
where ¥ = #'—2, v = v’-+1 and w = w'—1.
2. In the second part of the solution we find the singular
values:
a. uw'v'w -3 —w+2u—1)=0, v'(2u'—1)—-3 =0,
2u'?—u’'—3 = 0, whence uq= —1, u; = 3/2.
b. vu'w +2u'—w' —(3v'+1) =0, —v' Qv +1)4+2 =0,
30240 —2 = 0, whence vy = —1, v; = 2/3.
c. wu'v'+2u —3v'—(w'+1) =0, —w(w+1)+6 =0,

w?4+w' —6 = 0, whence wy= —3, w; = 2.
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Since the discriminant A4 is equal to (—1)2+44.2(—3)(—1)
= 25, identity (29.4) gives in this case

G (' +1) (' +1) (' +3)+(5—1) (u'~3/2) (v'—2/3) (w'—2) =0

or
3 w' +1 41 w43 o

. - = 1.
2 w32 v»-2/3 w2

Coming back to the original variables, i.e., writing
u =u+2 =242, v =v—1=siny—1,
w = 1+w=1+4logz
we finally obtain canonical form (I):
43 sin y . 4+logz 1
2z+1 3siny—5 —l-+log 2

ExamrLE 2. Write in a canonical form the equation

. ]/;—5112—6
Yzt
Solution. 1. Substituting u = ]/a?, v=1y% and w=2,
we can see that the equation
uvw—u-+5v4+2w+6 = 0

2

already has a simplified form.
2. We seek the singular values:

a., wvw—+5v+2w+(—u+6) =0, u(—ut6)—10 = 10,

whence uy = 3—1, u; = 3--1.
b. vuw—u+2w+(5v+6) = 0, v(5v--6)+2 = 0,

whence vy = —3/5—1i/5, v, = —3/5-+1i/5.
¢. wuv—u+4dv+(2w46) =0, w(2w-+6)4-5 =0,

whence w, =—3/2—i/2, w, = —3[2-+i/2.
By identity (29.4) we can write our equation in the form
(2i—6) (u—3-1-4) (v+3/54-i[5) (w--3/24+i2) +

+(26+6) (u—3—¢) (v+3/5—1/5) (w-+3/2—i[2) = 0.

To simplify the calculations, substitute

w =u—3, v =5bv+3, w =2wt+3;
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we then obtain
(1—3) (w'4-19) (v 1) (w' +4)+-(0+3) (' —19) (v —1) (w'—i) = 0
or

[(—3u'—1)+i(u'—3)] [(v'w —1)+i(v' +w')]+
+[(Bu'+1)+i(u'—3)] [(v'w'—1)+i(—v'—w")] = 0.

Calculating the imaginary part we finally obtain

2(u'—3) (v'w'—1)+2(—3u'—1) (@' +w') =0

or
w3 ww'—1)—v' —w = 0.
3u'—1
We have reduced the equation to form (ILI}):
/2 —6 /x —6
IE2 (3 a3 = L eyttt
3z —8 3Yx—8

ExampLE 3. Write in a canonical form the equation

log 7 — 3 cos y—2sin x—12 .

sin x cos y-+6
Solution. 1. Writing % =sin2, v=cosy, w=Iloggz,
we have
wow-+6w—3v4-2u+12 = 0.
This is a simplified form.
2. We find the singular values:
a. wwvw—3v+6w+(2u-+12) = 0, v (2u+12)4+18 =0,
w?+6u+9 = 0, whence uy = u; = —3.
b. vuw+2u4-6w--(—3v-+12) = 0, v(—3v+12)—12 =0,
v:*—4p+4 = 0, whence v, = v, = 2.
c. wuv+2u—3v+(6w-+12) = 0, w(bw+12)46 =0,
wi4-2w-+1 = 0, whence wy = w; = —1.
2. We substitute
uw =u+3, v =v-2 w=wtl

and obtain
(u'—3) (v'4-2) (w' —1)+2(u'—3) —3(v'+2)+6(w' —1)+12

=uv'w —u'v' 4+ 2u'w —3v'w = 0.
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Dividing by »'v'w’ we obtain the canonical form

3 2 —logz
3+sinx 2—cos y 1+4logz

ExampLE 4. Reduce to a canonical form the equation
22+ 32223 4-2y28 1523 = 0.

Solution. Here the transformations are elementary; we
assume

and obtain in succession

uv+3uw+2vw+5w = 0,

Y L 3u2045 — 0,
w

Lol ) (L),
w u 5/\v 5

1 1 2 1
5 ~+3) — ) ——f1=0,
w B5f\v  5)1/w—6/5
O s (Pe) 21—,
U v 5—6w
substituting the original variables, we finally obtain

3
(£+3)(—5—+2) L _11=0.
22 Y 5—628

Exercises

Reduce the following equations to a canonical form:
1. wwvw—+3uv+ dvw—Suwtu—v+4+8w—1 = 0.

2. —2wwwtuv—uw4ovw+1 = 0.

3. ww = utv—w.
4

cuwvwtut v+ 2w+2 = 0.
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§ 30. Equations of the fourth nomographic order

An equation of the fourth order (in the sense of nomography)
contains four linearly independent functions: one function of the
variable x, namely fi(x), one function of the variable y, namely
foly), and two functions of the variable z, namely ¢5(z) and y,(z).
It is an equation of the form

2@ +Pratpstyie = 0.

where ay,, $;, and y,, are nomographic polynomials with variables
fi and f,. Let us write this in a homogeneous form,

WPyt Prays T s = 0, (30.1)
which, divided by y., can give us of course the preceding form
(thus equation (30.1) is not of the fifth order although five func-
tions occur in it, since it can be reduced to the fourth order).

The coefficients in equation (30.1) are nomographic polyno-
mials:
iy = @y fyfotam fit+as fitag,
Pre = Qi fi fotQon f1 g fot-go,
Y1z = O3 [ fotGos f11ass fot- s

It will be observed that the general Clark equation,
filepsH i+ vt =0,

is, under the assumption of linear independence of ¢; and y;, an
equation of the fourth nomographic order. Similarly, the Cauchy
equation

fipstfevstas =0,
is a special equation of the fourth nomographic order.

It will thus be seen that every equation of the fourth nomo-
graphic order can be represented, by a homographic transformation
of one of the variables f; and f,, in the Clark form or in the Cauchy
form.

TuEOREM. Kvery equation of the fourth momographic order can
be reduced to one of the canonical forms,

FiF, Q4 (F+F,) V,+ X, =0  (the Clark equation),
F O F,V,+X,=0 (the Cauchy equation),
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where F| is a homographic function of the variable f, F, is a linear
Sfunction of the variable f,. and ®,, ¥y and X, are linear functions
of the variables @,, p, and x,.

Proof. Write equation (30.1) in the form

(11932105 3 Za) 1 fo - (B P+ oy + g 1) f1 -

+ (23105 +AarWsHas x3) faH (241 P +2geWs +ga 15) = 0

and denote the coefficients of f,f,, f; and f, and the free term by
L,, Ly, Lyand L, respectively; we thus have

O Pat Pty = Ly,
(U o - Cag¥Py+ g3 Y2 = Lo, 1)
31 P3+ a3t lsy Y2 = L,
Wy P3Pty s = Ly
In our further considerations we shall use the fact that the

determinant of this system is equal to zero, i.e., that

oy Ay g Ly

1“21 Uy gz Ly —0: @

1;‘131 Uy Q33 Ls '

Jatu Uy g5 Ly

this follows from the fact that (1), as a system of four linear equa-

tions with coefficients a;, and free terms L, is solved by @,
and y;, none of which is equal to zero by hypothesis.

Expanding the determinant according to the last column

we obtain equation (Cl) in the form
AL —A4, L+ A Ly— A, Ly = 0, (8]
where 4,, 4,, 4, and A4, are subdeterminants of the terms L,
L,, Lg and L,.
Equation (Cl) is termed the Clark identity.

Proceeding to the proof proper let us ask whether there exists
a homographic transformation

aft+
fi= Hith L p (p)
vfi+0
(i.e., such that | ¢ f; s =+ 0) which turns equation (30.1) into a Clark
Y

equation.
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Let us write equation (30.1) in the form

L1f1f2+L2f1+L3f2‘|‘L4 =0

and perform substitution (p); multiplying by the denominator
we obtain the equation

Ll(af; +/3) f2+L2(aff +ﬁ)+L3f2 (Vf;ﬁL 5)+L4(?/f; +0) =0,
(aLy+BLy) [y fot (aLy+yLy)ff +(BLy+ 0Ly) fo+(PLy - 0L,) = 0.

This equation will have a Clark form if the coefficient of f" is
equal to the coefficient of f,:

aly+yLy = fL+0L,.

As can be seen from the Clark identity, the last equation will
be satisfied for all values of @;, p, and y, if we take

a=4,, p=4, y=4, and J§=A4;.

Let us discuss the following cases:

a p
y 0
b. 4,4, = A, 4;, but A; are not all equal to zero.

c. A =4,=4;=4,=0.

In case a., as has been verified, the homography

_ Aufit A

Ay fi+4,
transforms equation (30.1) into a Clark equation.

In case b., without asking ourselves whether there exists another
homographic transformation (i.e., such that a:f:y: 96
# Ay:A,:A,:4,), let us verify whetherit is possible by translating

H=fi+m,  fo=fi+tn
to reduce the given equation to a Cauchy form. We should then

have the equation

Ly (ff +m) (f3 +n)+ Ly(ff +m)+ Ly(f3 +n)+Ly = 0,

= Ay A, A, A, £ 0.

fi

or

Llfl*f;“}‘(”Ll ‘*‘Lz)f;’F(mL1+L3)f;+7'l'L2+"L3+
+L,4+mnL, = 0. (Ca)
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For example, if 4, % 0, it will be seen that assuming
m = A,]4,, n=-—4,/4,

we shall have by the Clark identity and the assumption 4,4,
= A;4, and 4,£0

A
mLy+nLy+-Ly+mnL, = %Lz—fL2+L4— Az,

4 4 4

1
= —I(A1L1—A2L2+A3L3‘—A4L4) =0

4

L,

for every value of functions ¢,, y; and y,.
Now assuming in equation (Ca)

—A, L L A, L+ A, L
Lyt L= —latdale g g g Al Al g
4 4
and
=1 =1
we obtain

(Ds ;*‘{‘llja 2"+L1 =0,

i.e., an equation of the Cauchy form.

If A, =0, then by the assumption of 4,4, = A4, 4, we should
have A, =0 or A; = 0. Assume that, say, 4, = 0. The Clark
identity becomes

A L,—A4,L, = 0.

At least one of the coefficients 4, and A, is different from zero;
e.g., if 4, = 0, then

L, = éL1
Aq
and equation (30.1) becomes
A
L1f1f2+L2f1+A—lL1f2+L4 =0
3
or
A A A
L[ i+ 2ot Lol fi+ =2 ) + L — L=+ = 0.
l(fl A3)f2 2(f1 Aa 4 2A3
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Assuming that
f1+A1/A3 = I/f;
we have

A1\ o
(L4—L2A—1) f1 +L1f2+L2 =0,

3
ie., also an equation of the Cauchy form.

We follow a similar procedure if 4, 5= 0 and 4, 4 0.

If4, = A; = A, = 0 5~ 4,, then equation (30.1) is an equation
of the third nomographic order, since the Clark identity implies
L, = 0 for all values of the third variable.

In case c., for 4, = 4, = A3 = A, = 0, we shall prove that
equation (30.1) is an equation of the third nomographic order,

Accordingly, let us assume that at least one of the subdeter-
minants of the matrix

Q33 Qg Q3
o1 QAgp Qo3 (t)

31 Qgg Qgg
Qg1 Ay Oy

is different from zero; e.g., let

a1 Qe

= Qg 7= 0. (c)

Ay Ggp
Let us write the system of equations
Ay Pyt WyaYPs i3 X3 = Ly,
Aoy Ps+AoaW3+aog X = Lo,
31 P3+AsYs T 33 0 = Lg.
Since the determinant of this system is equal to zero,
Ay Qg O3
Ay Ggp gy | = 0,
A1 Q3 Qg3
multiplying these equations by the subdeterminants agy, dg,

ayg of the terms of the last column we obtain zero:

0 = ag Ly—apy Lytays Ly,
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whence by the assumption (c) that ay,; 4 0
Ly = (tagy Ly—0ty5 Ly) [1135.
Similarly, a system of equations
A @+apptany = Ly,
Ay @ F+AgpF gy = Ly,
Ay @+ Y+ any = Ly,
in view of its determinant being equal to zcro, gives us

Ly = (agy Ly—rtyq L) [etyg,
where

Moy Qo

7
and a3 =

Ay Ay

Equation (30.1) assumes the form

o Ly 1 fot-tag Lo f1 4 (ttoy Lo — 113 Ly) fo =+ (019 Ly—ajs Ly) = 0
or, on dividing by L,,

dys f1 fat-0ss ”L—Zf1+(‘23 ﬁ.)('2—0‘13fz‘f‘O‘éa L ags = 0.
Ly L L,

It is an equation of the third nomographic order because the
third variable z occurs only in the function L,/L,.

If all the subdeterminants of the second row of table (t) were
equal to zero, then—as we know—its rows would be proportional
and the expressions L,, L,, L; and L, would of course also be pro-
portional:

Li:Ly: Ly Ly=cy ¢y :¢5:04;

equation (30.1) would then assume the form
L
?1“ (o frfoteafitesfoteg = 0.
1

It would be a singular relation between the variables z, y and
z: arbitrary values of z and y would always have the same number
z corresponding to them, namely the root of the equation L, = 0;
and to numbers z for which L,(z) £ 0 there would correspond
pairs of numbers  and y satisfying the equation

& frfeteafites foeg = 0.
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Clearly, it is only the last equation that could profitably be
represented by a nomogram (a double scale).

The theorem on reducing an equation of the fourth nomographic
order to the Clark form or to the Cauchy form has thus been
proved for all cases.

ExampLE 1. Reduce to a canonical form the equation:
(xy+z+y+l)]/;—|——l +—(xy—x+3y—}—2)|/:¢§ +(22y+3) = 0.
We have ¢, = ]/ZFT Yy = ]/i:é and y, = 1.
We write the equation in the form
Y (Py+pa+-29a) +-2 (a5 0xa) +
Ty (pa+3ps+0xa) + (g3t 2y5-+3x5) = 0
with coefficients depending on z:
Ly = ¢5+y5+ 213
Ly = py—ys,
Ly = @3+3ys,
Ly = @54-29;-+ 3%
The Clark identity for this example will have the form

1 121
1 —10 L|_,
1 301
1 23 L,

or
120, —4L,+0L,—8L, = 0.
On the strength of the theorem which has been proved the
homographic substitution
_ 4x* 412  2*43
o Sx*-}—O- 2t
reduces the equation to the Clark form
Ly (z* -+ 3)y - Ly(2* 4-8) + Loy . 26* -+ L, . 22* = 0,
(Ly~+2L5)2*y + (2Lt Lo) 2* +-8Ly y+ 3L, = 0,
B+ T3 +2725) 2 y+ By + 3y 4-625) 2* -+
+ (Bgs+-3y;+613)y+3p;—3y; = 0.
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Reverting to the variables  and z we finally obtain

— L — 3 /
BV 2t T+7) 242 +2) —2— y+BYz+1 +

2r—1

: %"H) ) el =322 =0.

342 40) (
As we see, this is a Clark form.
ExampLE 2. Reduce to a canonical form the equation
(sin z cos y+2 sin x+3 cos y—1) sin 24

—+(2 sin x cos y—sin x+cos y+3) sin 2z

(3 sin x cos y+4 sin -+7 cos y—1) sin 3z = 0,
Solution. Let us substitute

sinx =wu, cosy=w, sinz=1w,

sin 2z = w,, sin 3z = uy

and let us represent the left side as a polynomial with variables
u and v. We obtain

Liwv+ Lyu+ Lyv+ L, = 0,
where
Ly = w+42w,+3w,,
Ly, = 2w,— wy+4w,,
Ly = 3w+ wy+Tw,,

Ly = —w,+3w,— w,.

1)

The Clark identity assumes the form

1 2 3 I

2 -1 4 I,

s 1 7L = 0L;—0Ly,+0L;—0L, = 0.
-1 3 -1 I,

Since all the coefficients in the Clark identity are equal to
zero, the equation is of the third nomographic order. Equations
(1) give us

Ly=IL,+L, and Ly=L,—Ly;
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we thus have the form
Lyuwv-+Lou-+(Ly+ Ly) v+ (Ly—Ly) = 0
or
Ll(zw+v+1)—|—Lq(u+v—-l) =0,
+”« —ﬂ = 0:
Ll Ll Ll

which is indeed an equation of the third nomographic order
because only three linecarly independent functions occur in it:

. L, 2sin z—sin 2z+4 sinz
w=sing, v=cosy and —=

L, sin z+2 sin 2243 sin 3

1ixampLE 3. Reduce to a canonical form the equation
(wy—x) 2 (ey+a+y+1) 2+ (wy—a+y—1) 22 = 0.
Solution. We write the equation in the form
2y (4222 Ho (=2 =)y (2+20) (2 ) = 0.
We have here
22 = I
—z422—23 = Lz,
22__|_~3 —
22— = L4,

whence the Clark identity is given by the equality

11 1 L
-1 1 -1 I,

— 9L, 4-2L,—2L,—2L, = 0.
01 1 IL phememme e
01 —1 I,

Condition A,A,—A4, 4, =0 being satisfied, the equation
can be represented in the Cauchy form by means of a translation

x=a*+td,[4, == 2*—1 and y=y*—4;/4, =y"+1,
(@ — 1) (1" +1) Lyt (@ — 1) Lyt g+ 1) Lyt Lg = 0,
a*y* Ly +a™(Ly+ Ly) +y* (— Ly + Ly)+ Ly— Ly — Ly+ Ly = 0,
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but L,+L,—L;—L, =0, and so
ety Ly +3*(Ly+Ly) +-y*(Ly—Ly) = 0,

1 1
(Lo—Ly) ALt Ly) — Ly =0,
x+41 y—1
z L 4222 - e +{z-Fz"428) = 0.
z+1 1—y

The last equation has the Cauchy canonical form.

Exercises

Reduce to canonical forms the following equations:
1. Surw+ 3w —uw+ 2uw? — 2w+ 6uv—w—6v—2u+2 = 0.
2. cos z sin?y—sin z cos x cos?y-+-cos x cos z—sin z cos?y+4cosz41 = 0.

3. wow+uvw?+ Suw?~+ 3uw + 3vw —rw? — Sw? — buv 4 3w — 26w+ 2v-- 14
=0.

4. sin’z cos y—sin®z-+sin®y sin  — sin & —sin?y+-sin z cos y sin®z =

§ 31. Criteria of nomogrammability of a function
Function F(x, y, z) is said to be nomogrammiable if there exist
functions
Xi(x), Yiy) and Ziz), i=1,2,3
for which we have the identity
"Xl(x) Xy(x) Xa(x)‘
Fa,y,2) = | 1) Taly) Yoly) - (31.0)
Z() 7)) 22|
In § 26 we proved the nomogrammability of functions
F(z,y, 2) = fi(x) fo(y) f5() -1

and of functions

(fo—f1) (L fafs—1)

and

(i =fo) (h=fa) (fs=11) (fifofs— 1),

but the Massan method, which was used, gave no answer in the
casc where the corresponding functions G and H (26.2) could not
be found.
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In this section we shall give the necessary and sufficient
conditions of nomogrammability of a function.

31.1. Let us first deal with the particular case of function
F depending on two variables.

The necessary and sufficient condition for a function of two
variables F(x,y) to be of the form

z) Xy()
y) Yaly),

in a rectangular domain D is the identity

X (
Fla,y)=|"" (31.1
! Yyi( )

F(x,b). Fla,y) Flx, b'). F(a’: y)

Flx, y) =
(. ) F(a, b) F(a',b)

for two pairs, a, b’ and a’, b, such that
Fla,b')y=Fa',b)=0 and F(a,b)7# 0% Fa’ b’). (3L.2)
Necessity: Assume that there exists a representation of

form (31.1) and consider a curve C, with parametric equations
(Fig. 152)

Fig. 152

E:XI(CU), 7’]=X2(13), (Cx)
and a curve C, with parametric equations

= Y,(y), n= Yyy) (Cy)



PROBLEMS OF THEORETICAL NOMOGRAPHY 295

Let & and %' be different straight lines starting from the
origin O of the system, let the line &’ intersect the curves C, and
C, at points corresponding to the values x = @ and y = b’ and
let the line y” intersect the curves C, and C, at points corresponding
to the values *x =a’ and y = b.

It will be observed that the values of function F(x, y) are
proportional to the area of a triangle with one vertex at the
origin of the system, the second lying on the curve C, and the
third on the curve C,. Let us change the system £, n into
the system of axes &', . The abscissas of the points corre-
sponding to the values o’ and & will be equal to zero, and the
ordinates of the points corresponding to the values a and b’
will also be equal to zero. We shall thus obtain

]y ] s
Fla,y) :[’;‘(‘;’) Y:Zy) — XY,
Fle, b):lxg"’) );EZ; — Y,() Xi(a),
F(z,b') = ii?) Xz(gx) = —Y,(b') Xy(2).

These equations imply that
F(z, y) = X,(2) Y,(y)—Xo(2) Y, (y)
=k, F(x,b)F(a, y)+ k. F(x,b') F(a’, y).

The constants k; and k, will be found by substituting r = a,

y=2"> and then z=a’, y=1>5":
F(a',b') = 0-+kyFla’,b')F(a’, b'),
F(a,b) =k, F(a, b) F(a, b)+0;

we obtain

k, = 1 and Ly = — 1 )
F(a, b) F(a',b')
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and thus finally

Fla, gy = T@D Flay) | F@b) F@'y)
F(a, b) F(a’, )
!‘ F(x, by -~ E(T;bQA
| F(a', b')
P Fla,y) |
g .9 F(a, b) i

The sufficiency of the condition is obvious.

Remark 1. The proof can be conducted in a purely alge-
braic way; however, the way which has been chosen here shows
the naturalness of assumption (31.2). Moreover, it is obvious that
if there exists one representation of form (31.1), then there exist
infinitely many such representations.

Using this theorem we can decide whether an equation of
the form

z=F(z,y) (3L.3)

is a Cauchy equation. Obviously if a function F(z, ) has a re-
presentation (31.1) and one of the “partial” functions

F(x,b"), F(z,b), Fla',y), Flay
is constant, then equation (31.3) is a Cauchy equation.

31.2. Let us now consider a function of three variables F(z, y, 2)
which can be represented in the determinant form (31.0). This
form defines in a three-dimensional space &, #, { three curves O,
0, and C, with parametric equations

E = Xl(x)’ n= Xz(x), C - XS(x), (Cx)
&= Yl(y)’ n = Yz(?/)» = Ya(?/)’ (Cy)
§= Zl(z)! N = Zz(z)» §= Za(z) (Cz)

As in the case of two variables, equality (31.0) signifies that
the values of function F(z, y, z) are proportior al to the volumes
of tetrahedrons having one of their vertices at the origin O of
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the system and the remaining ones, successively, on curves C,,
0, and C,.

Let us choose numbers a, b and ¢ in such a way that the straight
lines joining the origin O of the system with points A4eC,, BeC,
and CeC,, corresponding to the values z =a, y = b and z = ¢
respectively, will not lie in one plane (Fig. 153). We thus have
an inequality

F(a, b, c) # 0. (31.4)

Fia. 153

Denote by a’, b’, ¢’ such numbers that
F(a',b,¢) =0, F(a,b,c)=0, Flab,c')=0. (3L5)

Take the straight line 04 as the &’-axis, the straight line OB
as the #’-axis and the straight line OC as the {’-axis (Fig. 153).
Let us also assume that in our system of coordinates none of the
points 4’, B’, €', corresponding to the values x =a’, y = b’
and z = ¢’, lies on any of the axes of the system. This means that

F(a,b',c')#0, F(a' bec)#0, Fa, b,c)#0. (31.6)

Assume that function F(z, y, z) has a representation of form
(31.0), numbers a, b, ¢, a’, b’, ¢’ being such that conditions (31.4),
{31.5) and (31.6) are satisfied.
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The values of functions X;(x), Y(y) and Z;(z) are found by
substituting values in equation (31.0) as follows:

F(x,b,c)=10 Xy(d) O

F(x,b',¢c) =

F(x,b,c') =

Fa',y,c)=

Fla,y,c)=

F(a,y,¢')=

Fa', b,2)=

Fa, b, 2)=

F(a,b,z2)=

Xi(x) Xy(x) Xj()

0 0 Z4(c)

Xi(x) Xy(x) Xi(w)
Yie) 0 Y,(0")
0 0 Zy(c)

X (x) Xylw) Xy(w)

0 Y,b) 0O
Zi(c") Zy(c') 0
0 Xola') Xy(a')

Yi(y) Yoly) Yaly)
0 0 Z4(c)
Xia@) O 0

Yi(y) Yi(y) Yay)
0 0 Zy(c) |

Xi(@) O 0

Yily) Yoly) Yi(y) | -

Zy(c') Zy(c') O

0 Xy(a') Xy(@')
0 Yo6) 0
Zi(z) Zylz) Zy(2)

X @) 0 0
Y,(0)) 0 Y,
Zy(z) Zy(z) Za(2)
X@ 0 0
0 Y,(b) 0
Z\(z)  Zslz) Zsl2)

= chl(x)’

= ¢y X5(%),

= 62X3(x)7

=0 Yl(y),

= C5Y2(y):

= C7Z1(Z),

= CSZ2(Z))

(31.7)

(31.8)

(31.9)

(31.10)

(31.11)

(31.12)

(31.13)

(31.14)

(31.15)
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Expanding determinant (31.0) and taking into consideration
equations (31.7)-(31.15) we obtain
F(z,y,z) =k F(zx,b,¢c) Fla,y,c) Fla, b, 2)+
+ky, F(x,b',¢c) F(a,y,c') F(a, b, 2)-+
+kyF(zx, b,¢') Fla',y,c) Fla, b, 2)+
+kyF(x,b,c') Fa, y, c) F(a', b, 2)+
+ ks F(x, b, ¢c) Fla', y,¢) Fla, b, z)+
+ksF(x,b,¢c) Fla,y,¢') F(a,b’,2). (31.16)
In order to find the coefficients k,, ..., k;, let us substitute
successively the threes of numbers abe, ab’c’, a’be’, a'b’c, a’b’c’
Fa,b,c) =k F(a,b,c) Fla, b, c) F(a,b,c),
Fla,b',¢'y = —keF(a,b,c) Fa,b’,c") Fla, b', ¢y,
Fla' b, c')= —k,Fla', b, c')Fla,b,c)Fa',b,c"),
Fla',b',c) = —kF(a',b',c) Fla', b, ¢c) F(a, b, c),
Fla',b',¢") = (ky+ky) Fla', b, ¢) Fla,b',¢') F(a', b, ¢");

we obtain

PR —
F(a, b, c)?

k= ! ’
F(a,b,c)F(a',b,c) (31.17)

1

ky = ’
Fla,b,c)F(a’, b, c)

ky = !

Fla, b, c)F(a,b,c)

The right side of equation (31.16) can be written in the form
of determinant (31.0) if and only if the coefficients k; satisfy the
equation

kykokyt+-kyke kg = 0. (31.18)

Hence, taking into account equations (31.17), we obtain
a second equation containing k, and k,:

1

ko kg = .
F(a,b,c) Fla,b',¢') F(a’, b, ¢’) F(a', b, c)
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The coefficients k, and k, are thus the roots of the equation
F(a,b,c) Fla,b',¢") Fla’,b,c’,) Fla', b, c)k2—

—F(a,b,c) F(a’,b', ¢ Ye+1 =0. (31.19)
We have proved the following theorem:

A necessary and sufficient condition for a function of three
variables F(x, y,z) to be nomogrammable is the identity

F(z, b, c) F(z, b, ¢) F(z,b,c") !
kg ky i
—Fla',y,¢) Fla,y,c) — F(a, y, c')
Fr,y,2) = & ky |

kF(a', b, 2) %F(a, b',z) kFla,b,z2)

2

in which
Fla,b,¢') =0, Fla,b',¢) =0, Fla',b,¢c) =0,
F(a,b',c¢'Y%0, F(a',b,c')5%0, F(a',b',c)#0,

and the numbers ky, ...,k are defined by equations (31.17)
and (31.19).

ExampLE. Write in form (31.0) the function
F(x, y, 2) = 3atyz> —xy®®—xy’e+ oty +ay* —x? —y*z—
—2xyz—yx®—3yz —xz+y?+x—z4-1.

Take
a=0b=0 ¢=0
We obtain
F(x, b, ¢) = z+1, e, a = —1,
Fla,y,¢) = y*+1, e, b =1,
F(a,b,z) = 1—z2, ie., ¢ =1,
and

Fla,b,¢)=1, F(@a',hb',c') =4,
Fla,b',¢) =—38i, F(a',bc)=1, Fla', b,c)= —i.
Hence we find
ky=1 ky=—1, ky=—1i, ky=—:
kytky=—%i, ky.by=—% and k,=—1
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Substituting the above in equation (33.20) we find that

z+1 —ix?  —x |

Fla,y,2) =! iy 4241 —31'_1/}
| —2 —iz 11—z

142 a2 x t

=]y ¥+l 3y

22 z lf:|

§ 32. Criterion of Saint Robert

Considerations regarding the representation of a given relation
containing three variables by means of collineation (or linear
lattice) nomograms are of algebraic nature. There are a great
many cases in which other methods, based on the differential
calculus, give quicker results. Those methods use a few elementary
theorems, known from the study of differential and integral
calculus, One of them is the theorem on transforming a function
of many variables into a sum of components each of which is
dependent on one variable only.

THEOREM 1. A function F(x,y,z) can be represented in the
form

Flx, y, z) = fi(2) +fo(y) +15() (32.1)

if and only if all mixed partial derivatives of second order of function
F are equal to zero, i.e., if and only if the equations

o*F  *F  F
Jydz Oxdz  Ozdy

0 (32.2)

are satisfied for all x and y of a certain space domain.

Proof of necessity. If equation (32.1) is satisfied, then
of course equations (32.2) hold.

The sufficiency of the condition will be proved
first for a function of two variables.

If
0*G(x, y)

=0 for g <ex<zy, y;<y<ys (32.3)
Ox0y
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then, as we know, we shall obtain by integration with respect to y
0G0z = ¢,

where ¢ is a function independent of y, i.e. ¢ = ¢(x); integrating
with respect to z we have

G = f(p(x) dx+-cq,

where ¢, is independent of z: ¢, = fy(y). We finally obtain

¢ = [ g@) drte, = i@ +Hh)

If Pz, y,z2) is a function of three variables satisfying condi-
tions (32.2), then, just as for two variables, from equation
0%F [0xdy = 0 we have

OF [0z = ¢(x, 2);
however, since
O(0F [0x)
oz

:O,

funetion ¢ does not depend on 2z, whence

F = [ g@)de-+y(y, 2) = fi() (9, -
Since from the last equation we obtain by differentiation
*F & n y Oy
oyox  oyon  Oyde  Oyoz

we have, by assumption (32.2) and the validity of the theorem
for two variables,

Yy, 2) = foly)+fa(z)

whence
F(x, y, 2)=f,(x) +foly) +75()

For example, the equation
uvw—u—v—w = 0
cannot be written in the form

w = fi(w)+£3(v),
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because, finding w, we have

u-+-v

uvr—1

p(u, v)

and
opu,v)  ww—l—(utv)o —i—1

ou (uv—1)% (uv—1)2 ’
O*p(u,v)  —(uwv—1)2v+(0%41) 2(wv—1) u
oudv (uv—1)*
_—2u02—|—2v+20‘~’u—{—& s u—++v
(uv—1)3 (wr—1)

As we know, this implies that canonical equation (III) cannot
be represented by a nomogram with three parallel scales, the
w-scale being regular.

TrEOREM 2. A function F(z,y,z) is a product

7:1(%) 92(y) 95 (2)

if and only if the mized partial derivatives of second order of function
In F(z, y, 2) are equal to zero.

This is an obvious conclusion from the first theorem because

In F =1ng,+In g,+In g,.

On the basis of this theorem we can prove that the third
canonical equation (§ 27) cannot be written in the form

w = gy(u) gafv). (32.4)
Indeed, let us write
w= utv and Inw = In (u+2v)—In (vv—1)
uv—1

and find the partial derivatives

dmw 1 v
ou utv w—1
¢*In w —1 (wv—1)1—vu 1 1

= — = — # 0.
Oudv (u+v)* (ur—1)2 (wv—1)2  (u+tv)?
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2 log w
Judv
equation (IIT) does not exist. This implies that we cannot draw

Since = 0, representation (32.4) for canonical

an N-shaped nomogram with a regular w-scale.

THEOREM 3. The equation F(x,y,z) = 0 can be written in the
Cauchy form if and only if for a certain pair of variables, say z
and y, the equality

('?F oF

NE 325
o oy = ¢1() a(y) 95(2) (32.5)

holds for any values x, y, z satisfying the given equation.
This is the so-called criterion of Saint Robert.

The neces sity of the condition is obvious, since if

F(x, y, z) = f1(2) g2(2) +1oly) ho(z)+1
then
oF , or ,
T:fﬂsy j—:fzha
x ¢
and

oF oF ,x_l__g(l
v oy foy) Rz

ie., Fi/F, is a product of three functions, each of them depending
on one variable only.
To show the sufficiency of the condition let us assume
that equation (32.4) is satisfied and let us write it in the form
1 or L OF
@) oz dy

It is a partial differential equation of the first order. In order
to integrate it we write the ordinary differential equation

dx dy dz

/g, (x) — oY) Pal2) 0
Since function @, is not constantly equal to zero, dz = 0, ie.

z = ¢ is a first integral. Now let us take

i) de = — Jy—-, where O = ¢,(2).

ra(y)C
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" d
f u(x)dex — f(a). J (p(% — A
2

we have, in view of ¢,(z) = C, a new first integral
Ji(®)+@s(2) foly) = Ch.
The general integral will be obtained by taking an arbitrary

Writing

function y and writing

ie.,
@)+ 0a(2) foly) = p(2).
Dividing by —u(z), we can see that equation F(x,y, z) must
have a Cauchy form,

(P'z {2)
- >——— 1=
hix (z) o) ()
Relation
oF oOF
T @) ) (32.6)
ox Oy

is a particular case of assumption (32.5). As follows from the
proof, function F(x, y, z) is then of the form

fil@)+Hfoly) = vz
and consequently the collineation nomogram is composed of three
parallel scales and the lattice nomogram of three pencils of parallel

lines (the Lalanne nomogram).
By theorem 2 condition (32.6) can be replaced by the equation

oF OF

o2lInf—-: 2=

[ (5x 6y)]
Jxdy

This is the so-called equation of Saint Robert.
ExampLE 1. Find whether there exists a substitution

= 0.

v =fi(u), y=Lv) (32.7)
which reduces the Clark equation
xYgs(2)+-(x+y) hy(z)+1 = 0, (32.8)

to the Cauchy form.
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We shall assume that the quotient hy(z)/gs(z) = f4(z) is not
a constant, since otherwise equation (32.8) would not be of the
fourth nomographic order.

Let us substitute in the Clark equation the unknown functions
fi and f, and let us write

F(u, v, 2) = fi(w) fo0) §a(&)+ (o) H1a0) Bol2) + 1.
If functions (32.7) existed, the expression

E_:_‘a_ﬁiz fifzfls‘*‘f_iﬁ:fzgs—l‘hs __ﬁ: izif_q ) Ji{
du  Ov flfég3+f2,h3 figs+hs  fs fitfs e

in which f, = hy:9,, would have to be a product of factors
dependent on one variable each. Since fi/f, has a form like
that, it is sufficient to find when

f 2+f 3

f1+f3

is also a product of this type. By theorem 2 the necessary and
sufficient condition is that the mixed partial derivatives of second
order of the expression

G = In (f+-f3)—In (fi+f,)

be equal to zero; since

o h G fa
ou fi+f ov fotfs
#6 _ fifs #¢ _ —fifs

dudz  (fiHf? dwez (SR

we should thus have

fifs=0 and f3fy=0,

whence, in view of f; =~ 0, we should obtain equations f; = 0 and
f» = 0, which is impossible because neither of the functions f; and
fs can be constant.

Consequently a Clark equation cannot be transformed into
a Cauchy equation by means of substitution (32.7).

The application of the criterion of Saint Robert often involves
very tedious calculations. To simplify our considerations let
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us observe that the equation
F(x,y,2)=0

represents in general a surface in a three dimensional space;
it will be of the Cauchy type if every plane z = 2, intersects that
surface along a straight line. This interpretation shows that the
expression

oF oF

Jx dy

as the slope of that straight line, is a number dependent only
on variable z. Calculating this coefficient we must of course take
into consideration the fact that the variables z and y of the
straight line satisfy the equation F = 0.

If the equation F' = 0 is not of the Cauchy form, we seek a fune-
tion (32.7) which, substituted in the equation, gives that form
to it:

Flfiw) ), 2) = F*(w, v, 2).

The substitution z = f,(w) is of course of no importance since

it has no part in bringing the equation to the required form.

ExampLE 2. Reduce to a canonical form the equation
xyP? - atyz tayz—ayzt-zy = 0. (32.9)
We have here
OF  O0F  y%2{2xyz-tyz—224y
E. E n 2xy24-atzt a2tz ’
which, when we take equation (32.9) into account, assumes the
value

OF OF  wyz—yzlx  (@Pyr—yrly -1 y? 1

dx oOx xy? 22y (xy?z2+x2?)x . 2+l =z ’
equation (32.9) thus satisfies the Saint Robert condition. Inte-
grating it by the ordinary method we obtain

x? oF y? 1 o0F

A 0,
»—1 o0z ¢+l =z 0Oy
3__1 2]
:C " dz:—y _iz— zdy:d_z,
x Y 0

z+1x = (—y+1/9)z+y(), (32.10)
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where y(z) is a function independent either of z or of y. We shall
obtain its value from equation (32.9) if we take a concrete number
for y. For example, let y = 1; equation (32.10) gives

z41/x = y(2),
and equation (32.9) gives

r2ztaztzt+x =0
or

(412 = —2(@+1), a+lje=—(z41)z.

We have finally obtained y(z) = —1—1/z; substituting this
into (32.10) we have

(@+1[2x)+(—1/y)z+(1+1/2) = 0.

This equation is easily seen to be identical with equation
(32.9).

The search for differential criteria for the Clark equation
and the Soreau equations leads to very complex relations.
Research in this field, initiated by Gronvall (1) and continued by
Bitner (2) and Smirnov (3), has not resulted in a form which could
be used in practical problems.

The problems here given concern only equations with three
variables. Analogous problems for relations containing more
than three variables are of less practical importance, because
equations occurring in technology and natural sciences are in
general easily replacable—through suitable substitutions—by
a system of equations each of which is a relation of three
variables.

(!) T. A. Gronvall, Sur les équations entre trois variables représen-
tables par des nomogrammes & points alignes, Journal de Mathématiques
Pures et Appliquées 8 (1912), p. 59.

() H. A. Bitner, Necessary and sufficitent conditions for anamorphos-
ability of functions of three variables (in Russian), Nomograficheskii Sbornik
(1935), pp. 77-104, and On the problem of general anamorphosis, Uchenyye
Zapiski 28 (1939), pp. 7-14.

() 8. V. Smirnov, On the problem of the general anamorphosis
(in Russian), Doklady Akademii Nauk SSSR, vol. LXV, 1949.
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Exercises

1. Reduce to the Cauchy form the equations
a. 2%2-+y%?+3r2%—4y2? 4+ 3wz +-422+2z+1 = 0.

b. xyd+2xyz2+y2? +2ryz— a2t —y2t— 2wzt yz—xy ~x—y—z+41 = 0.

2. On the basis of the Saint Robert criterion state the condition which
must be satisfied by the coefficients of the general equation of the fourth
nomographic order (301) if the equation is to be reducible to the Cauchy
canonical form.
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