i

Nutrient Requirements of Poultry

Ninth Revised Edition, 1994

Subcommittee on Poultry Nutrition Committee on Animal Nutrition Board on Agriculture National Research Council

NATIONAL ACADEMY PRESS 2101 Constitution Avenue Washington, D.C. 20418

NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance.

This report has been reviewed by a group other than the authors according to procedures approved by a Report Review Committee consisting of members of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine.

The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare. Upon the authority of the charter granted to it by the Congress in 1863, the Academy has a mandate that requires it to advise the federal government on scientific and technical matters. Dr. Bruce M. Alberts is president of the National Academy of Sciences.

The National Academy of Engineering was established in 1964, under the charter of the National Academy of Sciences, as a parallel organization of outstanding engineers. It is autonomous in its administration and in the selection of its members, sharing with the National Academy of Sciences the responsibility for advising the federal government. The National Academy of Engineering also sponsors engineering programs aimed at meeting national needs, encourages education and research, and recognizes the superior achievements of engineers. Dr. Robert M. White is president of the National Academy of Engineering.

The Institute of Medicine was established in 1970 by the National Academy of Sciences to secure the services of eminent members of appropriate professions in the examination of policy matters pertaining to the health of the public. The Institute acts under the responsibility given to the National Academy of Sciences by its congressional charter to be an adviser to the federal government and, upon its own initiative, to identify issues of medical care, research, and education. Dr. Kenneth I. Shine is president of the Institute of Medicine.

The National Research Council was organized by the National Academy of Sciences in 1916 to associate the broad community of science and technology with the Academy's purposes of furthering knowledge and advising the federal government. Functioning in accordance with general policies determined by the Academy, the Council has become the principal operating agency of both the National Academy of Sciences and the National Academy of Engineering in providing services to the government, the public, and the scientific and engineering communities. The Council is administered jointly by both Academies and the Institute of Medicine. Dr. Bruce M. Alberts and Dr. Robert M. White are chairman and vice-chairman, respectively, of the National Research Council.

This study was supported by the Agricultural Research Service of the U.S. Department of Agriculture, under Agreement No. 59-32U4-5-6, and by the Center for Veterinary Medicine, Food and Drug Administration of the U.S. Department of Health and Human Services, under Cooperative Agreement No. FD-U-00006-10. Additional support was provided by the American Feed Industry Association.

Library of Congress Cataloging-in-Publication Data

National Research Council (U.S.). Subcommittee on Poultry Nutrition.

Nutrient requirements of poultry / Subcommittee on Poultry

Nutrition, Committee on Animal Nutrition, Board on Agriculture,

National Research Council. — 9th rev. ed.

p. cm. — (Nutrient requirements of domestic animals)

Includes bibliographical references and index.

ISBN 0-309-04892-3

1. Poultry—Feeding and feeds. I. Title. II. Series: Nutrient requirements of domestic animals (Unnumbered) SF494.N37 1994 636.5' 0852—dc20 94-3084

Copyright 1994 by the National Academy of Sciences. All rights reserved.

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the organizations or agencies that provided support for this project.

Printed in the United States of America

First Printing, March 1994

Second Printing, April 1996

CIP

SUBCOMMITTEE ON POULTRY NUTRITION

JERRY L. SELL, *Chair*, Iowa State University F. HOWARD KRATZER, University of California, Davis J. DAVID LATSHAW, The Ohio State University STEVEN L. LEESON, University of Guelph EDWIN T. MORAN, Auburn University CARL M. PARSONS, University of Illinois PARK W. WALDROUP, University of Arkansas

COMMITTEE ON ANIMAL NUTRITION

HAROLD F. HINTZ, *Chair*, Cornell University DONALD C. BEITZ, Iowa State University GARY L. CROMWELL, University of Kentucky DANNY G. FOX, Cornell University ROGER W. HEMKEN, University of Kentucky LAURIE M. LAWRENCE, University of Kentucky LARRY P. MILLIGAN, University of Guelph, Canada OLAV T. OFTEDAL, National Zoological Park, Washington, D.C. JERRY L. SELL, Iowa State University ROBERT P. WILSON, Mississippi State University

Staff

MARY I. POOS, *Project Director* DENNIS BLACKWELL, *Senior Project Assistant*

BOARD ON AGRICULTURE

THEODORE L. HULLAR, Chair, University of California, Davis PHILIP H. ABELSON, American Association for the Advancement of Science, Washington, D.C. JOHN M. ANTLE, Montana State University DALE E. BAUMAN, Cornell University WILLIAM B. DELAUDER, Delaware State University SUSAN K. HARLANDER, Land O'Lakes, Inc., Minneapolis, Minnesota PAUL W. JOHNSON, Natural Resources Consultant, Decorah, Iowa T. KENT KIRK, U.S. Department of Agriculture, Forest Service, Madison, Wisconsin JAMES R. MOSELEY, Jim Moseley Farms, Inc., Clark Hills, Indiana, and Purdue University DONALD R. NIELSEN, University of California, Davis NORMAN R. SCOTT, Cornell University GEORGE E. SEIDEL, JR., Colorado State University

PATRICIA B. SWAN, Iowa State University

JOHN R. WELSER, The Upjohn Company, Kalamazoo, Michigan FREDERIC WINTHROP, JR., The Trustees of Reservations, Beverly, Massachusetts

Staff

SUSAN OFFUTT, Executive Director JAMES E. TAVARES, Associate Executive Director CARLA CARLSON, Director of Communications

PREFACE vii

Preface

Formulation of balanced diets is fundamental to economical poultry production, and this process depends on a knowledge of nutrient requirements of poultry and the nutritional attributes of nutrient sources. Thus, a compilation of information on nutrient requirements and sources that can be used by feed formulators as a guideline is an important resource. This ninth revised edition of the *Nutrient Requirements of Poultry* contains a reassessment of data used in the previous edition and incorporates new information. The committee conducted an extensive review of the literature, and documentation of most of this literature is included in this ninth edition. Note, however, that the review of literature was completed and the nutrient requirements data compiled by the committee in September 1991.

The committee found that scientifically based knowledge about many nutrient requirements was incomplete. Consequently, calculations and interpolations were necessary to derive estimated requirements for some nutrients. These estimated requirements are identified in the requirements tables. In some instances, the committee decided that estimation of the requirements was inappropriate and a question mark was used in the tables to indicate the absence of data.

Nutrient requirements given herein were derived, in most instances, from empirical observations of responses of poultry to changes in dietary concentrations or intakes of specific nutrients. In some instances, nutritional models were used to estimate amino acid requirements. Criteria used in establishing nutrient requirements included growth, reproduction, and feed efficiency and, where possible, poultry health and quality of poultry products.

This report, as compared with previous editions, contains additional information on feedstuffs, including a description of procedures used to determine metabolizable energy values and methods to estimate amino acid contents of feed ingredients. A detailed discussion of dietary fat sources has been added, and the data presented on the nutrient composition of feedstuffs have been expanded to include true metabolizable energy values and coefficients of true amino acid digestibility.

This ninth edition was prepared by the Subcommittee on Poultry Nutrition, which was appointed in 1989 under the guidance of the Board on Agriculture's Committee on Animal Nutrition. The Committee on Animal Nutrition, the Board on Agriculture, and several other experts reviewed the report. The subcommittee is grateful to these individuals for their efforts. The subcommittee also thanks Roseanne Price for her editorial assistance and Mary Cochran and Ann Shuey of Iowa State University for their secretarial assistance in preparing many drafts of the report.

JERRY L. SELL, *Chair*Subcommittee on Poultry Nutrition

PREFACE

CONTENTS ix

Contents

	OVERVIEW	1
1.	COMPONENTS OF POULTRY DIETS	3
	Energy	3
	Carbohydrates	8
	Protein and Amino Acids	9
	Fats	11
	Minerals	13
	Vitamins	15
	Water	15
	Xanthophylls	17
	Unidentified Growth Factors	18
	Antimicrobials	18
2.	NUTRIENT REQUIREMENTS OF CHICKENS	19
	Leghorn-Type Chickens	19
	Meat-Type Chickens	26
3.	NUTRIENT REQUIREMENTS OF TURKEYS	35
	Starting and Growing Turkeys	35
	Turkey Breeders	39
4.	NUTRIENT REQUIREMENTS OF GEESE	40
5.	NUTRIENT REQUIREMENTS OF DUCKS	42
6.	NUTRIENT REQUIREMENTS OF RING-NECKED PHEASANTS, JAPANESE QUAIL, AND BOBWHITE QUAIL	44
	Ring-Necked Pheasants	44
	Japanese Quail	44
	Bobwhite Quail	45

CONTENTS

7.	SIGNS OF NUTRITIONAL DEFICIENCIES IN CHICKENS AND TURKEYS	46
	Protein and Amino Acid Deficiencies	46
	Vitamin Deficiencies	50
	Mineral Deficiencies	56
8.	TOXICITY OF CERTAIN INORGANIC ELEMENTS	58
9.	COMPOSITION OF FEEDSTUFFS USED IN POULTRY DIETS	61
	Cereal Grains	61
	Protein Supplements	69
	Estimating the Amino Acid Composition of Feedstuffs	71
	Characteristics of Dietary Fats	75
	Macromineral Supplements	75
	Mycotoxins	78
10.	STANDARD REFERENCE DIETS FOR CHICKS	80
	APPENDIXES	83
A	Documentation of Nutrient Requirements	85
В	Estimating the Energy Value of Feed Ingredients	113
C	Conversion Factors	114
	REFERENCES	115
	AUTHORS	143
	INDEX	145

TABLES AND FIGURE xi

Tables and Figure

		_	
п	Γ_{\sim}	L	_
	ιи		

1-1	Water Consumption by Chickens and Turkeys of Different Ages	16
1-2	Guidelines for Poultry for the Suitability of Water with Different Concentrations of Total Dissolved Solids	17
1-3	Xanthophyll and Lutein Content of Selected Ingredients	17
2-1	Nutrient Requirements of Immature Leghorn-Type Chickens as Percentages or Units per Kilogram of Diet	20
2-2	Body Weight and Feed and Water Consumption of Immature Leghorn-Type Chickens	21
2-3	Nutrient Requirements of Leghorn-Type Laying Hens as Percentages or Units per Kilogram of Diet	23
2-4	Estimates of Metabolizable Energy Required per Hen per Day by Chickens in Relation to Body Weight and Egg Production	24
2-5	Typical Body Weights, Feed Requirements, and Energy Consumption of Broilers	26
2-6	Nutrient Requirements of Broilers as Percentages or Units per Kilogram of Diet	27
2-7	Nutrient Requirements of Meat-Type Hens for Breeding Purposes as Units per Hen per Day	32
2-8	Nutrient Requirements of Meat-Type Males for Breeding Purposes as Percentages or Units per Rooster per Day	34
3-1	Nutrient Requirements of Turkeys as Percentages or Units per Kilogram of Diet	36
3-2	Growth Rate and Feed and Energy Consumption of Large-Type Turkeys	37
3-3	Body Weights and Feed Consumption of Large-Type Turkeys during the Holding and Breeding Periods	39
4-1	Nutrient Requirements of Geese as Percentages or Units per Kilogram of Diet	40
4-2	Approximate Body Weights and Feed Consumption of Commercially Reared Male and Female Geese to 10 Weeks of Age	41

TABLES AND FIGURE xii

5-1	Nutrient Requirements of White Pekin Ducks as Percentages or Units per Kilogram of Diet	42
5-2	Approximate Body Weights and Feed Consumption of White Pekin Ducks to 8 Weeks of Age	43
6-1	Nutrient Requirements of Ring-Necked Pheasants as Percentages or Units per Kilogram of Diet	44
6-2	Nutrient Requirements of Japanese Quail (Coturnix) as Percentages or Units per Kilogram of Diet	45
6-3	Nutrient Requirements of Bobwhite Quail as Percentages or Units per Kilogram of Diet	45
7-1	Biochemical and Physiological Measurements for Diagnosis of Nutrient Deficiencies in Chickens and Turkeys	47
7-2	Signs of Deficiency in the Embryo	48
7-3	Nutrients Associated with Various Signs of Deficiency in Growing Birds	49
8-1	Toxic Dietary Concentrations of Inorganic Elements and Compounds for Poultry	59
9-1	Composition (Excluding Amino Acids) of Some Feeds Commonly Used for Poultry (data on as-fed basis)	62
9-2	Amino Acid Composition of Some Feeds Commonly Used for Poultry (data on as-fed basis)	66
9-3	Ranges in Weights per Unit of Volume for Selected Feedstuffs at Standard Moisture	68
9-4	Estimation of Amino Acids from Protein Content of Feed Ingredients	71
9-5	Estimation of Amino Acid Composition of Feed Ingredients from Proximate Components	72
9-6	True Digestibility Coefficients (percent) for Selected Amino Acids in Poultry Feedstuffs	74
9-7	Nitrogen Concentration, Crude Protein Equivalents, and Nitrogen-Corrected Metabolizable Energy Values for Amino Acids	75
9-8	Average Fatty Acid Composition of Some Feeds Commonly Used for Poultry (data on as-fed basis)	75
9-9	Characteristics and Metabolizable Energy of Various Sources of Fats and Selected Carbohydrates Occurring in Feed	76
9-10	Element Concentrations in Common Mineral Sources (data on as-fed basis)	78
10-1	Formulas for Reference Diets for Chicks	81

TABLES AND FIGURE xiii

7.2	_			_
н	σ	и	r	e

	1-1 I	Disposition of dietary energy ingested by a laying hen	2
Apper	ndix Tables		
	A-1	Documentation of Nutrient Requirements of Starting and Growing Leghorn-Type Chickens	85
	A-2	Documentation of Nutrient Requirements of Leghorn-Type Chickens in Egg Production	88
	A-3	Documentation of Nutrient Requirements of Starting and Growing Market Broilers	90
	A-4	Documentation of Nutrient Requirements of Broiler Breeder Pullets and Hens	97
	A-5	Documentation of Nutrient Requirements of Broiler Breeder Males	98
	A-6	Documentation of Nutrient Requirements of Turkeys	99
	A-7	Documentation of Nutrient Requirements of Turkey Breeders	105
	A-8	Documentation of Nutrient Requirements of Geese	106
	A-9	Documentation of Nutrient Requirements of Ducks	107
	A-10	Documentation of Nutrient Requirements of Pheasants	109
	A-11	Documentation of Nutrient Requirements of Japanese Quail	110
	A-12	Documentation of Nutrient Requirements of Bobwhite Quail	112
	B-1	Estimating the Energy Value of Feed Ingredients from Proximate Composition	113
	C-1	Conversion Factors—Weights and Measures	114

114

Nutrient Requirements of Poultry

Ninth Revised Edition, 1994

OVERVIEW 1

Overview

The ninth revised edition of *Nutrient Requirements of Poultry* contains substantially more information than previous editions. In addition to presenting updated nutrient requirements data, this edition includes more discussion on key facets of nutrients, nutrient requirements, and nutrient sources. Detailed documentation of the scientific literature used to establish or estimate the requirements is also included in Appendix A.

Scientifically based knowledge about many nutrient requirements is incomplete. Consequently, calculations and interpolations were necessary to derive estimated requirements. These nutrient requirements were derived mostly from empirical observations of responses of poultry to changes in dietary concentrations or intakes of specific nutrients. In some instances, nutritional models were used to estimate amino acid requirements.

Few nutritional models are available for poultry, primarily because data to support the development of these models are scarce. There are, however, modeling equations for estimating the energy and amino acid requirements of poultry. Hurwitz et al. (1978) integrated the energy and amino acid needs of broiler chicks to develop a mathematical model for predicting amino acid requirements. Models for estimating the amino acid requirements of growing turkeys were proposed by Fisher (1982a) and Hurwitz et al. (1983a). Modeling equations also have been developed for predicting the energy requirements (National Research Council, 1987a) and amino acid requirements (Hurwitz and Bornstein, 1973) of laying hens. Additional research is needed to determine maintenance requirements and partial efficiency of nutrient use for growth versus egg production.

Energy, specific nutrients, and certain nonnutritive feed ingredients are discussed in general terms in Chapter 1. Definitions of terms used to describe the energy value of poultry feeds are given, and an expanded section on procedures for determining and estimating dietary metabolizable energy is provided. General aspects of protein and amino acid nutrition and metabolism have been updated. The section on fats includes information on sources, factors affecting metabolizable energy (ME_n) values, effects on composition of poultry products, and metabolic functions. Overviews are given for minerals, vitamins, and water. Data on water consumption for chickens and turkeys have been revised according to recent field observations of contemporary breeds and strains. General characteristics and uses of xanthophylls, unidentified growth factors, and antimicrobials in poultry diets also are discussed.

Nutrient requirements for specific types of poultry are presented and discussed in Chapters 2 through 6, with each chapter devoted to a different type. Each of these chapters contains a table or tables detailing the nutrient requirements of the respective groups. Requirements data are presented on the basis of 90 percent dietary dry matter, which approximates most feeding conditions. These data are also presented on the basis of total concentrations in the diet or total consumed per day, not on an available or digestible basis.

In the tables, requirements that are well delineated in the literature, the "established requirement," are set in regular type. "Estimated requirements," made on the basis of meager data or by interpolation, are set in bold italicized type. In some instances, the committee decided to insert a question mark rather than make estimates with no bases.

The committee emphasizes that the requirements values reported herein have not been increased by a "margin of safety." The values represent the judgment of the subcommittee after its review of the published data. Criteria of adequacy included growth, reproduction, feed efficiency, health, and quality of poultry products.

OVERVIEW 2

Ambient temperature and other environmental factors usually were not specified in papers presenting requirements data. Most experiments, however, have been conducted under moderate conditions, with temperatures of 16° to 21°C and relative humidities of 40 to 60 percent. When temperature or humidity conditions deviate from these ranges, adjustments in nutrient concentrations may be needed to compensate for changes in feed intake.

Chapter 2, on the nutrient requirements of chickens, has been divided according to Leghorn-type and meat-type fowl. For the former, sections are included for starting and growing pullets and for hens in egg production. Similarly, for the latter, separate sections are presented for starting and growing market broilers, broiler breeder pullets and hens, and broiler breeder males. Requirements of starting and growing turkeys and turkey breeders are given in Chapter 3. Nutrient requirements of geese, ducks, and pheasants and quail are provided in Chapters 4, 5, and 6, respectively. These data, however, were based on a relatively meager amount of literature.

Chapter 7, on signs of nutritional deficiencies in chickens and turkeys, has been enlarged considerably to include more descriptive information and documentation. Tables present biochemical and physiological indicators of nutrient deficiencies, signs of nutrient deficiencies in embryos, and nutrient deficiencies that may be associated with specific deficiency signs. Chapter 8 includes an update presentation on toxic levels of elements as related to diets or drinking water.

Feedstuff composition data and related information are presented in Chapter 9. The tabular data of Tables 9-2 and 9-3 have been revised according to recent analytical results obtained with contemporary feedstuffs. This revision primarily involved changes in proximate and amino acid compositions of numerous feedstuffs. True metabolizable energy (TME_n) values of many feedstuffs also have been included in Table 9-2. Two new sections have been added to Chapter 9. One section briefly discusses and presents equations estimating amino acid composition on the basis of protein content or proximate analysis. The second covers amino acid availability and includes a listing of true digestibility coefficients for selected amino acids in many poultry feedstuffs. The tabular presentation in Chapter 9 on fatty acid composition and ME_n values of dietary fats for poultry is extensive and well documented. Information on the crude protein equivalents and nitrogen-corrected ME_n values of amino acids and on the element concentrations in common mineral sources also is provided.

The nutrient composition of feedstuffs is, of course, variable. In addition, the effective concentrations of nutrients in diets may be reduced by inadequate feed mixing, improper processing, and unfavorable storage conditions. Nutritionists may accordingly add a "margin of safety" to the stated requirements in arriving at nutrient allowances to be used in formulation to compensate for these aforementioned conditions.

Examples of practical, semipurified, and chemically defined reference diets for chicks are given in Chapter 10.

1

Components of Poultry Diets

Poultry diets are composed primarily of a mixture of several feedstuffs such as cereal grains, soybean meal, animal by-product meals, fats, and vitamin and mineral premixes. These feedstuffs, together with water, provide the energy and nutrients that are essential for the bird's growth, reproduction, and health, namely proteins and amino acids, carbohydrates, fats, minerals, and vitamins. The energy necessary for maintaining the bird's general metabolism and for producing meat and eggs is provided by the energy-yielding dietary components, primarily carbohydrates and fats, but also protein.

Poultry diets also can include certain constituents not classified as nutrients, such as xanthophylls (that pigment and impart desired color to poultry products), the "unidentified growth factors" claimed to be in some natural ingredients, and antimicrobial agents (benefits of which may include improvement of growth and efficiency of feed utilization). Each of these components of poultry diets is considered in the following sections.

ENERGY

Energy is not a nutrient but a property of energy-yielding nutrients when they are oxidized during metabolism. The energy value of a feed ingredient or of a diet can be expressed in several ways. Thus, a description is presented below of terminology associated with dietary energy values, including units of measure (digestible energy, metabolizable energy, etc.). Because metabolizable energy values are most commonly used to define the dietary energy available to poultry, several procedures for determining metabolizable energy values, by using bioassays or estimates based on proximate analysis, are described. An example of the disposition of dietary energy ingested by a laying hen and some general considerations regarding setting dietary energy concentrations of diets follow. Finally, some caveats are given concerning the energy values listed in the nutrient requirement tables in this report.

Energy Terminology

Energy terms for feedstuffs are defined and discussed in detail in *Nutritional Energetics of Domestic Animals and Glossary of Energy Terms* (National Research Council, 1981b). For a more in-depth discussion of energy terms related specifically to poultry, the reader is referred to Pesti and Edwards (1983). A brief description of the terms most frequently used in connection with poultry feeds appears below.

A calorie (cal) is the heat required to raise the temperature of 1 g of water from 16.5° to 17.5° C. Because the specific heat of water changes with temperature, however, 1 cal is defined more precisely as 4.184 joules.

A kilocalorie (kcal) equals 1,000 cal and is a common unit of energy used by the poultry feed industry.

A megacalorie (Mcal) equals, 1,000,000 cal and is commonly used as a basis for expressing requirements of other nutrients in relation to dietary energy.

A joule (J) equals 10⁷ ergs (1 erg is the amount of energy expended to accelerate a mass of 1 g by 1 cm/s). The joule has been selected by Le Systéme International d'Unites (SI; International System of Units) and the U.S. National Bureau of Standards (1986) as the preferred unit for expressing all forms of energy. Although the joule is defined in mechanical terms (that is, as the force needed to accelerate a mass), it can be converted to calories. The joule has replaced the calorie as the unit for energy in nutritional work in many countries and in most scientific journals. In this publication, however, calorie is used because it is the standard energy

terminology used in the U.S. poultry industry and there is no difference in accuracy between the two terms.

A kilojoule (kJ) equals 1,000 J.

A megajoule (MJ) equals 1,000,000 J.

Gross energy (E) is the energy released as heat when a substance is completely oxidized to carbon dioxide and water. Gross energy is also referred to as the heat of combustion. It is generally measured using 25 to 30 atmospheres of oxygen in a bomb calorimeter.

Apparent digestible energy (DE) is the gross energy of the feed consumed minus the gross energy of the feces. (DE = $[E \text{ of food per unit dry weight} \times \text{dry weight of food}]$ - $[E \text{ of feces per unit dry weight} \times \text{dry weight of feces}]$). Birds excrete feces and urine together via a cloaca, and it is difficult to separate the feces and measure digestibility. As a consequence, DE values are not generally employed in poultry feed formulation.

Apparent metabolizable energy (ME) is the gross energy of the feed consumed minus the gross energy contained in the feces, urine, and gaseous products of digestion. For poultry the gaseous products are usually negligible, so ME represents the gross energy of the feed minus the gross energy of the excreta. A correction for nitrogen retained in the body is usually applied to yield a nitrogen-corrected ME (ME_n) value. ME_n , as determined using the method described by Anderson et al. (1958), or slight modifications thereof, is the most common measure of available energy used in formulation of poultry feeds.

True metabolizable energy (TME) for poultry is the gross energy of the feed consumed minus the gross energy of the excreta of feed origin. A correction for nitrogen retention may be applied to give a TME_n value. Most ME_n values in the literature have been determined by assays in which the test material is substituted for part of the test diet or for some ingredient of known ME value. When birds in these assays are allowed to consume feed on an ad libitum basis, the ME_n values obtained approximate TME_n values for most feedstuffs.

Net energy (NE) is metabolizable energy minus the energy lost as the heat increment. NE may include the energy used for maintenance only $(NE_{\rm m})$ or for maintenance and production $(NE_{\rm m+p})$. Because NE is used at different levels of efficiency for maintenance or the various productive functions, there is no absolute NE value for each feedstuff. For this reason, productive energy, once a popular measure of the energy available to poultry from feedstuffs and an estimate of NE, is seldom used.

Disposition of Dietary Energy

Figure 1-1 illustrates the proportional relationships in the disposition of dietary energy ingested by a laying hen. Energy is voided or used at various stages following consumption of 1 kg feed by the hen.

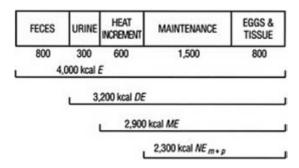


Figure 1-1 Disposition of dietary energy ingested by a laying hen.

Of 4,000 kcal provided in 1 kg of this particular diet, 2,900 kcal are capable of being metabolized by the hen and about 2,300 kcal are available for maintenance and transfer into body tissue and egg (net energy) (Fraps, 1946; Hill and Anderson, 1958; Titus, 1961). The relative amounts of both metabolizable and net energy will, of course, vary with the composition of the feedstuffs in the diet. Other factors, such as the species, genetic makeup, and age of poultry, as well as the environmental conditions, also influence the precise distribution of dietary energy into the various compartments (Scott et al., 1982).

Procedures for Determining Metabolizable Energy

Metabolizable energy is determined by various bioassay procedures whereby feed intake and excreta output are related over a 2- to 5-day test period. Apparent metabolizable energy is most commonly determined through actual measurement of feed intake and excreta output, or by determining the ratio of dry matter intake to output through use of an inert dietary marker, such as chromic oxide (Cr₂O₃). A number of potential problems arise with use of markers (Kane et al., 1950; Vohra and Kratzer, 1967; Duke et al., 1968; Vohra, 1972a), and thus the latter method often leads to more variation in final determined *ME* values (Potter, 1972).

When the *ME* value of an ingredient is to be determined, two or more diets must be used, since feeding an ingredient by itself can cause palatability problems and fails to accommodate potential synergism between nutrients. The two methods most frequently used in substituting the test ingredient into a control basal diet are those described by Anderson et al. (1958) and Sibbald and Slinger (1963). In the former method the test ingredient is substituted for glucose, but in the latter method the test ingredient is substituted for all the energy-yielding ingredients of the basal diet. Anderson et al. (1958) proposed that the value of 3.65 kcal/g be

used as the standard for glucose. The basal diet used by Anderson et al. (1958), containing about 50 percent glucose and designated as E9, has been used extensively in determinations of nitrogen-corrected ME (ME_n).

In the method of Sibbald and Slinger (1963) the test ingredient is substituted essentially for part of the complete basal diet. However, to avoid mineral and vitamin deficiencies, components of the diet containing these nutrients are left intact, The use of two basal diets of differing protein contents was proposed to maintain the protein contents of substituted diets within an acceptable range. An advantage of the substitution method of Sibbald and Slinger (1963) is that the ME_n value of the reference basal diet is necessarily determined in each ME_n assay. Although samples of glucose are likely to be less variable than samples of regular feed ingredients, the ME_n of glucose may vary under different dietary conditions, and its ME_n value should be determined under the experimental conditions used (Mateos and Sell, 1980).

The test ingredient may be substituted at one or more levels. Regardless of the basal diet used, the accuracy of the ME_n value obtained depends to some extent on the proportions of the test ingredient substituted into test diets. In extrapolating to calculate the ME_n value of the test ingredient, the error of determination of the test ingredient is therefore multiplied by a factor of 100 divided by percentage of substitution. Therefore the highest proportion of the test ingredient possible in the test diet should be used. Usually, this amount is determined by nutrient balance and palatability.

Potter et al. (1960) proposed a linear regression procedure for the calculation of ME_n values for ingredients substituted at several levels. The ingredient ME_n value is derived by extrapolation to 100 percent inclusion from a regression equation relating test diet ME_n values and proportion of test ingredient in such diets. As for most other methods of ME_n determination, a criticism of the regression methods is that the extrapolation is beyond the range of experimental data. Sibbald and Slinger (1962) pointed out that this general criticism is of little significance as long as the range of inclusion levels used is within that normally encountered under practical conditions because it is the application of ingredient ME_n values in commercial dietary formulation that is of interest.

TME was described as an estimate of ME in which correction is made for metabolic fecal and endogenous urinary energy (National Research Council, 1981b). These energy components of excreta are not directly of dietary origin, and, as suggested by Sibbald (1980), correction for their excretion in bioassays leads to TME. It should be noted that ME as determined using the procedure of Anderson et al. (1958) inherently corrects for metabolic fecal and endogenous urinary energy excretion, whereas the method of Sibbald (1976) for determining ME does not. The TME method is quite rapid in that it takes only a 48-hour collection period and, because ingredients are force-fed, there is no need to use a series of basal and test diets.

The *TME* procedure, however, has been subjected to criticism. *TME* determinations assume that fecal metabolic and urinary endogenous energy excretions are constant, irrespective of feed intake. Data have been presented showing that, to the contrary, metabolic and endogenous energy excretions are influenced by amount and nature of materials passing through the gastrointestinal tract (Farrell, 1981; Farrell et al., 1991; Tenesaca and Sell, 1981; Hartel, 1986). Another criticism is that ingredients are often force-fed alone, thereby preventing synergistic or antagonistic effects between or among ingredients on energy utilization. Synergism is known to occur between fatty acids (Young, 1961; Artman, 1964; Leeson and Summers, 1976a) and there is evidence for synergism between protein concentrates (Woodham and Deans, 1977). A third criticism of the *TME* method relates to the imposition of 48 periods of feed deprivation, which would result in an abnormal physiological status of the bird.

Both ME and TME should be corrected for nitrogen retention that occurs during the assay period. If, during an ME determination, nitrogen is retained by the animal, the excreta will contain less urinary nitrogen and hence less energy would be excreted as compared with an animal that is not retaining N. Because the extent of nitrogen retention differs with age and species, a correction factor is essential if comparisons of ME values for the same ingredient with different animals are to be made.

Hill and Anderson (1958), assuming that if nitrogen is not retained it will appear as uric acid, proposed a correction value of 8.22 kcal/g nitrogen retained because this is the energy obtained when uric acid is completely oxidized. This assumption has been criticized because only 60 to 80 percent of the nitrogen of chicken urine is in the form of uric acid (Coulson and Hughes, 1930). However, the assumption that oxidation of varying amounts of protein would yield a consistent pattern of nitrogenous excretory products seems no more correct than the assumption that all nitrogen would be excreted as uric acid (Hill and Anderson, 1958). Thus, from a practical viewpoint, the uric acid value has been used most frequently and is generally quoted (Scott et al., 1982).

Sibbald and Slinger (1963) questioned the validity of correcting for nitrogen retention, suggesting that correction does little to improve the usefulness of classical ME values and that the extra work involved is not justified. Potter (1972), however, suggested that correction to zero nitrogen retention is essential for reproducible results when the ME_n of a single diet is to be measured

with birds of various ages because of differences in rates of protein accretion or protein catabolism. Correction to a species-specific or age-specific nitrogen retention, although having the advantage of applicability for specific circumstances, cannot be used in comparative work because "typical" nitrogen retention varies with species and age. Leeson et al. (1977a) indicated the need for nitrogen correction in interpretation of bioassay data.

An alternative to classical bioassay is based on changes in rate of growth in response to dietary energy. Squibb (1971) suggested a method for the "standardization and simplification" of ME_n determination procedures. The method is a modification of that described by Yoshida and Morimoto (1970). It is based on the premise that rapidly growing immature animals restricted in terms of energy intake but given adequate protein will show an increase in growth in direct proportion to energy added to the diet. Considering the restricted feeding of the energy-deficient diet used by Squibb (1971), the adequacy of the protein in terms of quantity and quality can be questioned. However, the concept warrants further study as a means of evaluating the energy value of ingredients, such as fats, that are difficult to assay using conventional procedures.

Most ME_n values reported for feedstuffs have been determined with young chicks. Although adult male chickens have been used to determine TME_n content of many feedstuffs, few studies have been done to determine either ME_n or TME_n for poultry of different ages. More ME_n and TME_n data are needed for many feed ingredients for chickens, turkeys, and other poultry of different ages.

Estimation from Proximate Composition

Several researchers have developed prediction equations to estimate the energy content of feed ingredients from their proximate components. Prediction of the "usable" energy value of a feed from its chemical composition has been attempted for many years. The Weende, or proximate analysis, system was developed as an attempt to predict the nutritional value (including the energy value) of an ingredient or of mixed feed from its component parts. Fraps et al. (1940) predicted the *ME* content of feeds from the values for digestible crude protein, ether extract, and nitrogen-free extract (NFE). Titus (1955) used this concept to derive a series of "percentage multipliers" for the calculation of *ME* values for different types of feed ingredients. Later, these "percentage multipliers" were updated and extended to a wider range of ingredients (Titus and Fritz, 1971).

Janssen et al. (1979) conducted a series of studies to correlate the chemical composition of different types of feed ingredients to the ME value. By using multiple regression analysis, equations were derived to estimate ME_n (kcal/kg dry matter) from chemical composition. More recently, a subcommittee of the European Federation of the World's Poultry Science Association (1989) developed a set of equations to estimate the energy value of ingredients. Data sets from a number of European laboratories were combined to develop the equations. A list of prediction equations that have been published recently is provided in Appendix Table B-1. Dale et al. (1990) developed an equation to estimate the TME_n value of dried bakery products, a blend of various by-products produced by the baking industry.

The ME value of grain sorghums is known to be influenced by their tannin content. Sibbald (1977) reported TME values of 3,300 and 3,970 kcal/kg for high- and low-tannin grain sorghums, respectively, and Queiroz et al. (1978) found ME_n values of 2,886 and 3,091 kcal/kg for high- and low-tannin grain sorghums. Gous et al. (1982) found a highly significant negative correlation between the ME_n of grain sorghums and their tannic acid content, the relationship due to a decreased digestibility with increasing tannic acid concentration. These researchers developed a regression equation to estimate ME from tannic acid concentration. A similar equation was developed by the European Federation of the World's Poultry Science Association in 1989. Although these equations may result in slightly different estimates, they both point out the adverse effects of the tannin content on digestibility of grain sorghums.

Moir and Connor (1977) developed equations to predict ME_n of grain sorghums using three different types of crude fiber assays. The ME_n content of sorghum was predicted from the three fiber assay methods with precision of, respectively, ± 117 , ± 148 , and ± 126 kcal/kg dry matter. These values correspond to coefficients of variation of 3.0, 3.8, and 3.3 percent, respectively. Thus, any of the three fiber methods could be used to predict the ME_n of grain sorghums for poultry.

Considerable variation exists in the nutrient composition of poultry by-product meal from various production lots and among producers, depending on raw material used (e.g., proportions of feet, legs, blood, and offal may vary considerably). Pesti et al. (1986) determined the TME_n of a number of samples of poultry by-product and derived several equations to estimate TME_n from various measurements. The equations vary in complexity, some using only one parameter to estimate TME_n and others using two measurements. The coefficients of determination (R^2) for the two-measurement equations were similar; thus, persons using these equations may select measurements that are in concert with the capability of their own laboratory.

Perhaps the most difficult feed ingredients to analyze for ME_n are supplemental fats. Many factors influence the digestibility and subsequent ME_n of fats; these have

been extensively reviewed by Renner and Hill (1961), Young and Garrett (1963), Lewis and Payne (1966), Hakansson (1974), Leeson and Summers (1976a), Fuller and Dale (1982), Ketels et al. (1987), Ketels and DeGroote (1988), and many others. Prominent among these factors are age of poultry, level of fat inclusion in the diet, and overall fatty acid composition of the diet. Several studies have been conducted to estimate the energy value of a fat from its composition. Janssen et al. (1979) estimated the energy value of fats produced by Dutch renderers (Appendix Table B-1). Huyghebaert et al. (1988) evaluated a wide variety of fats and developed prediction equations for ME_n using multiple linear regression analysis involving different characteristics of fats. Several equations were developed for (1) all fats and oils examined and (2) different categories of fats (e.g., animal or vegetable fats). The accuracy of the equations was improved by separating the fats into different categories.

It is well known that utilization of saturated fatty acids is improved by the presence of unsaturated fatty acids in the fat blend (Young and Garrett, 1963; Young, 1965; Lewis and Payne, 1966; Garrett and Young, 1975; Leeson and Summers, 1976a). The nature of the fat in the basal diet has a significant effect on the utilization of supplemental fats (Sell et al., 1976; Sibbald and Kramer, 1978; Fuller and Dale, 1982). These interactions between the supplemental fat and the basal dietary fat are especially noticeable at low inclusion levels of supplemental fat (Wiseman et al., 1986; Ketels et al., 1987).

Ketels and DeGroote (1989) evaluated the relationship between the ratio of unsaturated to saturated fatty acids (U:S) in the diet and ME_n of a number of fats and developed equations relating fat ME_n , fat utilization, and the utilization of specific fatty acids to the U:S for young broiler chickens. Best fit regression equations for supplemental fat utilization and fat ME_n were exponential. Fat utilization increased rapidly in the U:S range of 0 to 2.5, reaching a near-asymptotical maximum at a U:S of 4. Synergism between added fats, due either to blending vegetable oils with animal fats or to using basal diets with unsaturated lipid fractions, led to increased utilization of animal fats. Utilization of vegetable oils was not influenced by changing U:S ratios. The effect of factors influencing fat utilization, such as level of supplemental fat and basal diet composition, seemed to be primarily through variation in degree of saturation of the total dietary lipid fraction. For young broilers, about 75 percent of the variation in fat utilization and ME_n was due to differences in the chemical composition of the fat fraction.

Excellent summaries of the use of indirect methods for estimating the *ME* in feed ingredients have been presented by Harris et al. (1972), Sibbald (1975, 1982), Eackhout and Moermans (1981), Fisher (1982b), Fonnesbeck et al. (1984), and Just et al. (1984). These reports discuss many of the problems associated with the use of indirect procedures to replace conventional bioassays for *ME*.

At this time, the committee cannot recommend the best equation(s) to use to estimate ME from chemical composition. To date, no studies have compared the various equations with a determined value. In addition, some of the chemical determinations are subject to much variability or are relatively complex and may not be easy to adapt to some laboratory situations. Users may wish to calculate ME by using as many of the equations as seem feasible and then evaluating the results before selecting the procedure that is most appropriate for their situation.

Setting Dietary Levels

In formulating poultry diets, energy level is usually selected as the starting point. An appropriate energy level is one that most likely results in the lowest feed cost per unit of product (weight gain or eggs). The feed cost per unit of product, in turn, is determined by the cost per unit weight of diet and the amount of diet required to produce a unit of product. In areas of the world where high-energy grains and feed-grade fats are relatively inexpensive, high-energy diets are often most economical (i.e., the lowest feed cost per unit of product); however, if a leaner carcass is desired, it may be necessary to consider other levels of dietary energy. In areas where lower-energy grains and by-products are less expensive, low-energy diets are often most economical.

The dietary energy level selected is often used as a basis for setting most nutrient concentrations in a diet. This approach to formulation of poultry diets is based on the concept that poultry tend to eat to meet their energy needs, assuming that the diet is adequate in essential nutrients (Hill and Dansky, 1950; 1954; Hill et al., 1956; Scott et al., 1982). Such an assumption, however, must be used with caution and with an understanding of its potential limitations. For example, if a diet is deficient in any nutrient, daily feed consumption may decrease in relation to the severity of the deficiency. One exception may occur with an amino acid deficiency, whereby a marginal deficiency may result in a small increase in feed consumption. If a diet has a gross excess of any nutrient, daily feed consumption usually decreases in relation to the severity of the potential toxicity.

The physiological mechanisms by which poultry respond to different dietary energy concentrations are not known, although several possible mechanisms have been proposed (National Research Council, 1987a). Equations that can be used to predict feed and energy

intakes of laying hens and coefficients to predict the energy requirements of broiler chickens have been given by the National Research Council (1987a).

Although poultry generally adjust feed consumption to achieve a minimum energy intake from diets containing different energy levels, these adjustments are not always precise. Morris (1968) summarized data from 34 experiments and found that laying hens overconsumed energy when fed high-energy diets, and the degree of overconsumption was greatest for strains with characteristically high-energy intakes. Data from a large number of broiler chicken experiments also showed that changes in feed intake were not inversely proportional to changes in dietary energy level, especially when broilers were fed moderateto high-energy diets (Fisher and Wilson, 1974). More recent studies also illustrated that growing broilers and turkeys consume more energy when fed high-energy diets than those fed low- to moderate-energy diets (Sell et al., 1981; Owings and Sell, 1982; Sell and Owings, 1984; Brue and Latshaw, 1985; Potter and McCarthy, 1985). For laying hens, some combinations of carbohydrates, fat, and protein resulted in more energy intake than others (Rising et al., 1989). Diets with 3 percent fat increased daily feed intake in comparison with diets containing no added fat, and hens fed diets that provided more protein also consumed greater amounts of energy. Generally, regulation of energy intake by laying hens and broilers in more precise when relatively low-energy diets are fed (Morris, 1968; Fisher and Wilson, 1974; Latshaw et al., 1990). In some instances, however, laying hens are fairly accurate in regulating energy consumption when fed high-energy diets (Horani and Sell, 1977).

Because the preponderance of data shows that changes in feed intake usually are not proportional to changes in dietary energy concentration, the use of specific protein/amino acid-to-dietary energy ratios (originally termed energy-to-protein ratios) in formulating poultry diets (Baldini and Rosenberg, 1955; Combs, 1961; Scott et al., 1982; Thomas et al., 1986) must be carefully evaluated. Relating nutrient concentrations to dietary energy level seems to have greatest practical application for Leghorn chickens that generally are fed diets of low to moderate energy content. In the instance of growing broiler chickens and turkeys, however, maintaining specific nutrient-to-energy ratios seems questionable. This is particularly true for protein-to-energy ratios intended to support economical growth and feed efficiency (Pesti and Fletcher, 1983; Sell et al., 1985; 1989). If the production of lean broiler or turkey carcasses is of economic importance, appropriate dietary protein-to-energy ratios may be of greater significance. It would be desirable to have mathematical models available that would facilitate the selection of most economical combinations of dietary concentrations of protein/amino acids (and other nutrients) and energy to achieve poultry production goals. Development of such models will be contingent on research designed to obtain more relevant information than is currently available.

Factors other than dietary energy and nutrient balance that affect feed intake include bulk density of the diet (Cherry et al., 1983) and ambient temperature (National Research Council, 1981a). The latter can have considerable impact on feed consumption of poultry, especially adult birds, because feed intake decreases as ambient temperature increases. Leghorn-type hens consume approximately 1.5 g less feed per hen daily for each 1°C increase in ambient temperature over the range of 10° to 35°C (Davis et al., 1973; Sykes, 1979). At temperatures above 30°C, the decrease in feed consumption may be 2.5 to 4 g for each 1°C increase (Sykes, 1979; Sell et al., 1983). Similar responses of decreasing feed intake with increasing temperatures have been reported for turkeys (Parker et al., 1972; Hurwitz et al., 1980).

Energy Values in the Nutrient Requirement Tables

The ME_n values heading the lists of nutrient requirements given in Chapters 3 through 6 should not be regarded as energy requirements. The committee chose these as bases of reference. They represent the dietary energy concentrations frequently used under practical conditions of feed formulation and poultry management. For those persons preferring to use TME_n values, the TME_n values of numerous feed ingredients are included in Table 9-1. Generally, ME_n values as determined by the method of Anderson et al. (1958) and TME_n values as determined by Sibbald (1983) are similar for many ingredients. However, ME_n and TME_n values differ substantially for some ingredients, such as feather meal, rice bran, wheat middlings, and corn distillers' grains with solubles, and so in these instances ME_n values should not be indiscriminately interchanged with TME_n values for purposes of diet formulation.

CARBOHYDRATES

Dietary carbohydrates are important sources of energy for poultry. Cereal grains such as corn, grain sorghum, wheat, and barley contribute most of the carbohydrates to poultry diets. The majority of the carbohydrates of cereal grains occurs as starch, which is readily digested by poultry (Moran, 1985a). Other carbohydrates occur in varying concentrations in cereal grains and protein supplements. These carbohydrates include polysaccharides, such as cellulose, hemicellulose, pentosans, and oligosaccharides, such as stachyose and raffinose, all of which are poorly digested by poultry. Thus, these dietary carbohydrates often

contribute little to meeting the energy requirement of poultry, and some adversely affect the digestive processes of poultry when present in sufficient dietary concentrations. For example, the pentosans of rye and beta glucans of barley increase the viscosity of digesta and thereby interfere with nutrient utilization by poultry (Wagner and Thomas, 1978; Antoniou and Marquardt, 1981; Classen et al., 1985; Bedford et al., 1991). Supplementation of rye or barley-containing diets with appropriate supplemental enzyme preparations improves nutrient utilization and growth of young poultry (Leong et al., 1962; Edney et al., 1989; Friesen et al., 1992).

PROTEINS AND AMINO ACIDS

Dietary requirements for protein are actually requirements for the amino acids contained in the dietary protein. Amino acids obtained from dietary protein are used by poultry to fulfill a diversity of functions. For example, amino acids, as proteins, are primary constituents of structural and protective tissues, such as skin, feathers, bone matrix, and ligaments, as well as of the soft tissues, including organs and muscles. Also, amino acids and small peptides resulting from digestion-absorption may serve a variety of metabolic functions and as precursors of many important nonprotein body constituents. Because body proteins are in a dynamic state, with synthesis and degradation occurring continuously, an adequate intake of dietary amino acids is required. If dietary protein (amino acids) is inadequate, there is a reduction or cessation of growth or productivity and a withdrawal of protein from less vital body tissues to maintain the functions of more vital tissues.

There are 22 amino acids in body proteins, and all are physiologically essential. Nutritionally, these amino acids can be divided into two categories: those that poultry cannot synthesize at all or rapidly enough to meet metabolic requirements (essential) and those than can be synthesized from other amino acids (nonessential). The essential amino acids must be supplied by the diet. If the nonessential amino acids are not supplied by the diet, they must be synthesized by poultry. The presence of adequate amounts of nonessential amino acids in the diet reduces the necessity of synthesizing them from essential amino acids. Thus, stating dietary requirements for both protein and essential amino acids is an appropriate way to ensure that all amino acids needed physiologically are provided.

Variations in Requirements

Protein and amino acid requirements vary considerably according to the productive state of the bird, that is, the rate of growth or egg production. For example, turkey poults and broiler chickens have high amino acid requirements to meet the needs for rapid growth. The mature rooster has lower amino acid requirements than does the laying hen, even though its body size is greater and its feed consumption is similar.

Body size, growth rate, and egg production of poultry are determined by their genetics. Amino acid requirements, therefore, also differ among types, breeds, and strains of poultry, as can be seen by comparing the values shown in the requirement tables provided in this report for the different types of poultry. Genetic differences in amino acid requirements may occur because of differences in efficiency of digestion, nutrient absorption, and metabolism of absorbed nutrients (National Research Council, 1975).

Although dietary requirements for amino acids and protein usually are stated as percentages of the diet, the quantitative needs of poultry must be met by a balanced source to obtain maximum productivity. Thus factors that affect feed consumption also will affect quantitative intakes of amino acids and protein, and, consequently, will influence the dietary concentration of these nutrients needed to provide adequate nutrition. Factors affecting feed consumption are discussed in the section on "Setting Dietary Levels" and have been reviewed in the National Research Council (1987a) publication, *Predicting Feed Intake of Food-Producing Animals*.

As discussed in the section "Setting Dietary Levels," adjustments in the protein and amino acids concentration of diets may be necessary to compensate for difference in energy concentration of diets. This is especially true for White Leghorn chickens (Morris, 1968; Byerly et al., 1980) and turkey hens (Kratzer et al., 1976).

Ambient temperature also affects feed intake of poultry (Hurwitz et al., 1980). Protein and amino acid requirements listed herein generally pertain to poultry kept in moderate temperatures (18° to 24°C). Ambient temperatures outside of this range cause an inverse response in feed consumption; that is, the lower the temperature, the greater the feed intake and vice versa (National Research Council, 1981c). Consequently, percentage requirements of protein and amino acids should be increased in warmer environments and decreased in cooler environments, in accordance with expected differences in feed intake. These adjustments may aid in ensuring required daily intakes of amino acids. Some precautions, however, should be used in increasing the dietary protein concentration for poultry subjected to high ambient temperature. Waldroup et al. (1976d) reported that performance of broiler chicks was improved by minimizing excess dietary amino acids.

Information available from research documenting the influence of dietary energy concentration and ambient

temperature on feed intake has been integrated with data describing amino acid needs for maintenance, body growth (such as for muscle and feathers), or egg production to derive mathematical models to predict the dietary amino acid requirements of poultry (Fisher et al., 1973; Hurwitz and Bornstein, 1973; Hurwitz et al., 1978; Emmans, 1981; Slagter and Waldroup, 1984). Prediction models may be useful in feed formulation, and they also provide valuable insight into areas of amino acid and protein nutrition where more definitive information is needed on requirements.

Dietary protein concentrations can affect the requirements for individual essential amino acids. Generally, as dietary protein level increases, essential amino acid requirements (expressed as a percentage of the diet) increase, although when expressed as a percentage of the protein, essential amino acid requirements are little affected (Almquist, 1952; Boomgaardt and Baker, 1971, 1973a; Morris et al., 1987; Robbins, 1987; Mendonca and Jensen, 1989a). These observations demonstrate the importance of maintaining a balance among the concentrations of essential and nonessential amino acids in poultry diets. Optimal balance is important for efficient utilization of dietary protein.

The protein and amino acid concentrations presented as requirements herein are intended to support maximum growth and production. Achieving maximum growth and production, however, may not always ensure maximum economic returns, particularly when prices of protein sources are high. If decreased performance can be tolerated, dietary concentrations of amino acids may, accordingly, be reduced somewhat to maximize economic returns.

Specific Amino Acid Relationships

Although each amino acid can be metabolized independently of others, relationships between certain amino acids exist. In some instances, the relationship may be beneficial. For example, one amino acid may be converted to another to fulfill a metabolic need. In other instances, a metabolic antagonism may exist with undesirable consequences. A brief description of amino acid relationships that may be of importance in poultry nutrition is given in the following section.

Methionine Plus Cystine

Methionine can donate its methyl group to biological processes, and the resulting sulfur-containing compound, homocysteine, together with serine, can be used to synthesize cysteine via cystathionine. The sulfhydryl groups of two molecules of cysteine are oxidized to form cystine. This conversion cannot be reversed, and two methionine molecules are needed to ultimately supply the two sulfur atoms of cystine (du Vigneaud, 1952; Creek, 1968; Baker, 1976). The requirement for methionine can be satisfied only by methionine, whereas that for cystine can also be met with methionine.

The catabolism of methionine and cystine largely leads to conversion of the associated sulfur into sulfate. This sulfate may be used in metabolism, particularly as a part of certain connective tissues. Similarly, methyl groups of methionine may be used in transmethylation and the de novo synthesis of sarcosine, betaine, and choline. Choline is a constituent of phospholipids, and its incorporation into membranes is extensive. During rapid growth, when accrual of connective tissue and expansion of membrane surfaces are great, an increased sensitivity to methionine at levels marginal to the requirement may occur if dietary choline and sulfate are not sufficient (Baker et al., 1983; Miles et al., 1983; Blair et al., 1986).

Phenylalanine Plus Tyrosine

Tyrosine is the initial product formed during the biological degradation of phenylalanine. In turn, phenylalanine can be used to meet the bird's need for tyrosine on a mole-for-mole basis (Creek, 1968; Sasse and Baker, 1972). Although this conversion may be reversed to a small extent and tyrosine used to form phenylalanine, its contribution is too small to be of practical significance (Ishibashi, 1972).

Glycine Plus Serine

Although glycine can be synthesized by fowl, the rate is not adequate to support maximal growth (Featherston, 1976). Serine can be converted to glycine on an equimolar basis. This reaction is reversible, and glycine can be used to form serine (Sugahara and Kandatsu, 1976).

Imbalance, Antagonism, And Toxicity

The essential amino acids are related to one another by virtue of need to support production plus maintenance. The combined need for production and maintenance represents the bird's requirement. Requirement for any one essential amino acid represents the combined need for maintenance plus production. Each essential amino acid is unique in its catabolism, and an inadequacy of any one of them (the first limiting) usually necessitates some catabolism of the others. The bird's response can vary with the essential amino acid, the extent of its inadequacy, and existing relationships among the remainder. As an example, Sugahara et al. (1969) fed chicks a purified amino acid diet corresponding to 100 percent of the requirement for all essential amino acids as the positive control and compared the performance response to when all amino acids were reduced to 60 percent of the requirement as opposed to 60 percent reduction

with each one alone. Weight gain was better with individual decreases of methionine-cystine, leucine, lysine, and arginine than when a total reduction was imposed, whereas additional weight loss occurred with individual decreases of phenylalanine, tyrosine, tryptophan, isoleucine, valine and threonine. A reduction in dietary histidine gave a similar response to that observed when all amino acids were reduced.

Deficiencies of any one of the essential amino acids can be exaggerated by adding purified amino acids and/or combining complete proteins such that the extent of difference between the first and second limiting amino acid increases. The response is generally an additional impairment of body weight gain. Accentuation of the deficiency in this manner usually involves diets of low protein content, and a decrease in feed intake is the fundamental reason for poor weight gain rather than alteration in effectiveness of the first limiting amino acid (Fisher et al., 1960; Fisher and Shapiro, 1961; Netke et al., 1969).

Amino acid antagonisms may also accentuate a deficiency of the first limiting amino acid, but these differ from imbalances because utilization of the limiting amino acid is reduced. Antagonisms can occur between amino acids having side chains exhibiting similar structural and/or chemical characteristics, and increasing the dietary concentration of one that is in excess of productive use adversely affects metabolism of the other. In a situation in which one essential amino acid is first limiting, increasing the other's concentration to enlarge the difference antagonizes the use of the first limiting amino acid and induces or exacerbates a deficiency.

Antagonisms have been shown to exist for leucine-isoleucine-valine, arginine-lysine, and threonine-tryptophan (D'Mello and Lewis, 1970). The most important of these antagonisms occurs with leucine and isoleucine. Certain feedstuff combinations (for example, corn plus corn gluten meal) can lead to practical diets in which leucine is at particularly high levels while isoleucine is marginal in adequacy. Amino acid levels that would be likely to provoke the other antagonisms probably would not occur in practice unless high levels of supplemental amino acids were used in low-protein diets.

An amino acid toxicity requires a particularly high level of one amino acid relative to all others. Such an occurrence is unlikely under practical circumstances because differences of sufficient magnitude do not exist in most protein feedstuffs. Supplemental methionine and lysine are routinely used by the feed industry but usually in quantities low enough to pose no threat of toxicity.

Errors in amino acid use may lead to toxicities, however. Methionine is toxic when excessive. Ueda et al. (1981) observed severe depression in feed consumption and growth of chicks given ad libitum access to a diet containing 10 percent protein and 1.5 percent L-methionine. Force-feeding this high-methionine, low-protein diet in amounts equal to the feed intake of controls resulted in death of the chicks. Edmonds and Baker (1987) added excesses of several amino acids to a 23 percent protein corn-soybean meal diet for chicks. Methionine at 4 percent of the diet led to a 92 percent reduction in weight gain, whereas similar excesses of tryptophan, lysine, and threonine were far less toxic.

Amino Acid Conversion to Vitamins

Niacin is the only vitamin that can be synthesized from an amino acid. Tryptophan can be used to alleviate a dietary niacin deficiency, but the rate of conversion is poor (Baker et al., 1973). When methionine is provided at levels exceeding use for protein synthesis, the additional methyl groups may decrease the dietary choline requirement (Pesti et al., 1980). Using amino acids to spare other nutrients is not currently economical under practical conditions.

Amino Acid Availability

It is well known that the availability of amino acids varies greatly among feedstuffs. The importance of considering amino acid availability in formulation of poultry diets is discussed in Chapter 9.

FATS

Fat is usually added to the feed for meat-type poultry to increase overall energy concentration and, in turn, improve productivity and feed efficiency. Oxidation of fat is an efficient means to obtain energy for the cell in large quantity, whereas anabolic use involves direct incorporation into the body as a part of growth. Lipid accrual is most obvious in adipose tissue; however, cell multiplication also requires an array of lipids to form associated membranes. These two uses can occur simultaneously; however, the extent of each may vary considerably.

Sources

Feed-grade fat may come from many different sources. Grease from restaurants, the rendering of animal carcasses, and the refuse from vegetable oil refining are major sources. These sources represent several types and categories, and each is defined by the Association of American Feed Control Officials (1984). These definitions indicate fat components and limits of nonfat material (Sell, 1988). Moisture (M) and those

compounds that are either insoluble in ether (I) or unsaponifiable (U) are usually of no value, and their composite (MIU) essentially acts as a diluent.

Total fatty acids contributed by all lipid categories, the proportion that are in free form, and the types of fatty acids present provide information related to expected digestibility as well as how the fat may be used subsequently. Fatty acid chain length, extent of unsaturation, and nature of esterification all influence intestinal absorption (Moran, 1989a). The percentage MIU and percentage digestibility combine to influence the ME_n value. All feed fats should be stabilized by an antioxidant to preserve unsaturated fatty acids and routinely monitored for the possible presence of undesirable residues such as insolubles, chlorinated hydrocarbons, and unsaponifiables and for peroxides (Rouse, 1986).

Metabolizable Energy Value

Factors influencing the ME_n value of fat that are not directly associated with fat quality are age of poultry and method of measurement. Improved utilization of dietary fats has been shown to occur after 2 to 6 weeks of life for chickens (Renner and Hill, 1960, 1961; Sibbald, 1978a; Lessire et al., 1982) and turkeys (Whitehead and Fisher, 1975; Sell et al., 1986b). This improvement is particularly evident with long-chain saturated fatty acids and fats containing substantial proportions of these fatty acids (Young and Garrett, 1963; Sell et al., 1986b).

The methodology used in obtaining feedstuff energy values has an effect on the values obtained. (See the sections above on procedures for determination of ME_n and on estimating the ME_n content of ingredients from proximate composition.) Actual digestibility of fat may also be used to estimate energy content, and Sell et al. (1986b) found that values determined by this method agree with concurrent ME_n measurements.

When the effects of method of determination and age of the bird are superimposed on factors associated with the fat, it becomes evident that assigning a specific ME_n value to a fat may be inappropriate. The information in Table 9-9 provides a description of fats that may be used in feeds and their ME_n values observed under a variety of circumstances. Data indicate that considerable variation exists and several factors must be considered in determining feeding value. Some of these factors are included in the equations listed in Appendix Table B-1, which can be used to predict the ME_n value of fats.

Blending Fats

When animal tallow is added to feed at a low level, it may be beneficial to blend it with a small amount of vegetable oil. The resulting ME_n value of blends is greater than can be explained from the arithmetic combination. A synergism in the absorption of the saturated fatty acids related to the added amounts of unsaturated fatty acids is suspected (Ketels et al., 1986; Ketels and DeGroote, 1987).

The properties of animal tallows also may be enhanced by the presence of feed ingredients that contain unsaturated fatty acids. Corn is particularly advantageous in this respect because its fatty acids are mostly unsaturated and it usually constitutes a large portion of a feed. Sibbald and Kramer (1980) noted that the *TME* for beef tallow was greater when a corn-based carrier was used during measurement than when wheat was used.

Extra Caloric Effect

Employing high levels of added fat often leads to more ME_n than can be accounted for from the summation of ingredients. High level fat feeding evidently increases the intestinal retention time of feed and so allows for more complete digestion and absorption of the nonlipid constituents (Mateos and Sell, 1981; Mateos et al., 1982; Sell et al., 1983).

Improved Net Energy of Production

All body tissues have an energy value that corresponds to their heat of combustion. The net energy of production corresponds to this energy gained from either body growth or egg formation. Adding fat to feed as an isoenergetic substitution for carbohydrate usually results in an improved productive energy when the same level of ME_n has been derived. Such improvement is particularly obvious through that period preceding adolescent development. Sell and Owings (1984) noted that added fat increased the body weight gain of large turkeys, with the greatest advantage occurring between 12 and 20 weeks of age. After 20 weeks, the favorable effect of fat on body weight progressively dissipates, but the effect on feed efficiency remains (Moran, 1982).

Fatty acid synthesis within fowl occurs primarily in the liver. Immediately preceding sexual maturity the rate of synthesis increases dramatically, and the rate at which the body's depots accrue fat is great (Moran, 1985b). The provision of fat in feed obviates the cost of synthesis and is more energy-efficient than is synthesis of fat from carbohydrate.

Laying hens also may respond to added dietary fat. Most lipid in egg yolk is formed in the liver by using fatty acids obtained from the diet or from de novo synthesis. Providing dietary fat decreases the need for hepatic fatty acid synthesis and generally increases yolk formation and the weight of the egg (Whitehead, 1981;

March and MacMillan, 1990). Such advantages are particularly valuable during high environmental temperatures. As feed intake is reduced, the added fat permits the hen to maintain egg formation while minimizing heat generated (Valencia et al., 1980).

Fatty Acid Composition

Directly employing dietary fat in the assembly of either body or egg lipids results in a fatty acid composition similar to that of the diet. Fat absorbed from the fowl's intestine is transported to the liver, where some modifications may occur. For the most part, the unsaturated fatty acids are unchanged, but the saturated ones may undergo desaturation, especially stearic acid which can be converted to oleic acid. Also, elongation and further desaturation of 18:2(n-6) and 18:3(n-3) may occur in the liver

Depot fat is the tissue most affected by the source of dietary fat. Depot fat of both broiler chickens (Schuler and Essary, 1971; Edwards et al., 1973) and turkeys (Moran et al., 1973; Salmon and O'Neil, 1973) are more influenced by the vegetable oils having high proportions of polyunsaturated fatty acids than by more saturated animal fats.

Fatty acid composition in depots can be altered by changing from one dietary fat to another (Watkins, 1988). The extent of influence that each fat has on body composition increases with the level of intake, duration of feeding, and stage of maturity (Bartov et al., 1974; Salmon, 1976). The hen's adipose depots respond to dietary fat in the same way as do those of growing birds, and the yolk lipid exhibits a fatty acid pattern resembling that of the dietary fat (Guenter et al., 1971; Sim et al., 1973).

Essential Fatty Acids

Linoleic acid (18:2, n-6) and a-linolenic acid (18:3, n-3) are recognized as metabolically essential fatty acids. The position of the double bonds in these n-6 and n-3 polyunsaturated fatty acids (PUFA) is unique because they are not formed in the fowl. The essential fatty acids are converted to long-chain PUFA in poultry through a series of desaturation (addition of a double bond) and elongation steps (chain-lengthening with 2 carbons) to form 20 and 22 carbon PUFA (Watkins, 1991). Membrane phospholipids contain a greater proportion of PUFA than do triacyglyerols although depot fat can contain a reserve of linoleic acid for the fowl. In poultry, specific PUFA are biosynthesized into compounds called eicosanoids which act as potent biological regulators.

Linoleic acid is the only essential fatty acid for which a dietary requirement has been demonstrated. Inadequacies of linoleic acid are not readily encountered, but symptoms that result are due to a loss of membrane integrity. An increased need for water and decreased resistance to disease are characteristic deficiency symptoms observed in poultry (Balnave, 1970). A deficiency of linoleic acid in the male can impair spermatogenesis and affect fertility. Insufficient deposition of linoleic acid in the egg will adversely affect embryonic development. The essential fatty acid requirements of growing and adult birds can usually be satisfied by feeding a diet with 1 percent of linoleic acid. Higher levels of linoleic acid may be needed by the laying hen to achieve and maintain satisfactory egg weight.

A dietary need for α -linolenic acid (18:3, n-3) has yet to be demonstrated for the fowl. α -Linolenic acid appears to be important, however, in the development of specialized membranes found in the retina and nervous system. These membranes contain relatively high concentrations of n-3 PUFA that can originate from 18:3(n-3) (Neuringer and Connor, 1986).

Certain PUFA derived from linolenic and α -linolenic acids are biosynthesized into a multitude of eicosanoids. The primary substrates for eicosanoid production are 20:4(n-6), 20:3(n-6) which are formed from linoleic acid, and 20:5(n-3) a product of α -linolenic acid. Preceding eicosanoid biosynthesis in poultry, the PUFA is released from membrane phospholipids by action of phospholipases. Liberation of PUFA is induced by a number of stimuli. Following a series of different enzymatic steps, several eicosanoids can be formed depending on the tissue and cell type (Watkins, 1991). The eicosanoids are categorized into prostaglandins, prostacyclins, thromboxanes, and leukotrienes. Formation of eicosanoids is widespread in the body and nearly every physiological system is affected by these hormone-like compounds. The eicosanoids are important in embryonic development, reproduction, immunological responses, and bone development in poultry (Watkins, 1991).

Eicosanoid production can be modulated depending upon the concentration of substrate PUFA found in tissues. Changing the dietary concentrations of n-3 and n-6 PUFA found in tissues will influence the types and amounts of eicosanoids formed (Watkins, 1991). Elevating the n-3 PUFA content of the diet relative to that for n-6 PUFA alters eicosanoid production in immunocompetent cells (Kinsella et al., 1990). These types of responses also seem to affect inflammatory reactions and blood clotting in animals and humans. To maintain the full spectrum of eicosanoid effects in the body a balanced intake of n-3 and n-6 PUFA is recommended.

MINERAL

Minerals are the inorganic part of feeds or tissues. They are often divided into two categories, based on the

amount that is required in the diet. Requirements for major, or macro, minerals usually are stated as a percentage of the diet, whereas requirements for minor, or trace, minerals are stated as milligrams per kilogram of diet or as parts per million.

Minerals are required for the formation of the skeleton, as components of various compounds with particular functions within the body, as cofactors of enzymes, and for the maintenance of osmotic balance within the body of the bird. Calcium and phosphorus are essential for the formation and maintenance of the skeleton. Sodium, potassium, magnesium, and chloride function with phosphates and bicarbonate to maintain homeostasis of osmotic relationships and pH throughout the body. Most of the calcium in the diet of the growing bird is used for bone formation, whereas in the mature laying fowl most dietary calcium is used for eggshell formation. Other functions of calcium include roles in blood clotting and as a second messenger in intracellular communications.

An excess of dietary calcium interferes with the availability of other minerals, such as phosphorus, magnesium, manganese, and zinc. A ratio of approximately 2 calcium to 1 nonphytate phosphorus (weight/weight) is appropriate for most poultry diets, with the exception of diets for birds that are laying eggs. When poultry are laying eggs, a much higher level of calcium is needed for eggshell formation, and a ratio as high as 12 calcium to 1 nonphytate phosphorus (weight/weight) may be correct. But high levels of calcium carbonate (limestone) and calcium phosphates may tend to make the diet unpalatable and dilute the other dietary components. If a calcium source contains a high level of magnesium (as does dolomitic limestone), it probably should not be used in poultry diets (Stillmak and Sunde, 1971).

Phosphorus, in addition to its function in bone formation, is also required in the utilization of energy and in structured components of cells. Examples of phosphorus-containing compounds are adenosine 5'-triphosphate (ATP) and phospholipids. These forms of phosphorus, if present in plants, can be digested by poultry; however, such digestible forms usually account for only 30 to 40 percent of the total phosphorus. The remaining phosphorus is present as phytate phosphorus and is poorly digested. Only about 10 percent of the phytate phosphorus in corn and wheat is digested by poultry (Nelson, 1976). The phosphorus from animal products and phosphorus supplements is generally considered to be well utilized. Phosphorus supplements for poultry diets are listed in Table 9-10.

Sodium and chloride are essential for all animals. Dietary concentrations of salt generally used are those that will just support maximum growth rate or egg production. Higher concentrations lead to excessive consumption of water and attendant problems with ventilation control and wet droppings.

Dietary proportions of sodium, potassium, and chloride are important determinants of acid-base balance (Mongin, 1968; Hurwitz et al., 1973; Cohen and Hurwitz, 1974; Sauveur and Mongin, 1978). Other cations and anions such as calcium, sulfate, and phosphate also may be involved. The appropriate dietary balance of these electrolytes is often assessed by the levels of sodium and potassium versus chloride, where each element is expressed in milliequivalents per kilogram of diet. Experiments show that sodium and potassium are alkalogenic (have an alkaline-producing effect), whereas chloride is acidogenic (has an acid-producing effect). Chloride tends to decrease blood pH and bicarbonate concentration, whereas sodium and potassium tend to increase blood pH and bicarbonate concentration. The proper dietary balance of sodium, potassium, and chloride is necessary for growth, bone development, eggshell quality, and amino acid utilization (Mongin, 1981). However, an ideal balance among these electrolytes appropriate for a wide range of environmental situations has not been defined.

Trace elements, including copper, iodine, iron, manganese, selenium, and zinc are required in small amounts in the diet. Cobalt is also required, but it does not need to be supplied as a trace mineral because it is a part of vitamin B_{12} . In practical diets, copper and iron are often present at sufficient levels without supplementation.

Trace elements function as part of larger organic molecules. Iron is a part of hemoglobin and cytochromes, and iodine is a part of thyroxine. Copper, manganese, selenium, and zinc function as essential accessory factors to enzymes and, in the case of zinc, DNA structural motifs (zinc fingers). If one of these minerals is deficient, the functional activity of the organic moiety requiring the presence of the mineral will be decreased, as has been described in detail for each mineral by Mertz (1986).

The requirements for trace minerals are often fulfilled by concentrations present in conventional feed ingredients. Soils vary, however, in their content of trace minerals, and plants vary in their uptake of minerals. Consequently, feedstuffs grown in certain geographic areas may be marginal or deficient in specific elements. Thus, poultry diets may require supplementation to ensure adequate intake of trace minerals. Because of the interactions that occur between various minerals such as copper and molybdenum, selenium and mercury, calcium and zinc, calcium and manganese (Mertz, 1986), excessive concentrations of one element may result in a deficiency in the amount available to the bird of some other element. Formulators of poultry diets should be aware of these possible mineral interactions and of the

potential effects that the chemical form (cation-anion combination) of mineral sources may have on their utilization by poultry (Allaway, 1986). Mineral salts used as feed supplements are not usually pure compounds but contain variable amounts of other minerals. The concentrations of minerals that may be present in feed-grade mineral supplements are shown in Table 9-10.

Experimental diets may sometimes be formulated from purified or chemically defined ingredients. Under these conditions, silicon and boron may be inadequate and biological responses may occur with the addition of these elements to the diet (Carlisle, 1970, 1980; Nielsen, 1986).

VITAMINS

Vitamins are generally classified under two headings: fat soluble vitamins, A, D, E, and K, and water-soluble vitamins, that include the so-called B-complex and vitamin C (ascorbic acid). Vitamin C is synthesized by poultry and is, accordingly, not considered a required dietary nutrient. There is some evidence, nevertheless, of a favorable response to vitamin C by birds under stress (Pardue et al., 1985).

The requirements for most vitamins are given in terms of milligrams per kilogram of diet. Exceptions are vitamins A, D, and E, for which requirements are commonly stated in units. Units are used to express the requirements for these vitamins because different forms of the vitamins have different biological activities (Anonymous, 1990).

Requirements for vitamin A are expressed in either International Units (IU) or U.S. Pharmacopeia units (USP) per kilogram of diet. The international standards for vitamin A activity are as follows: 1 IU of vitamin A = 1 USP unit = vitamin A activity of 0.3 μ g crystalline vitamin A alcohol (retinol), 0.344 μ g vitamin A acetate, or 0.55 μ g vitamin A palmitate. One IU of vitamin A activity is equivalent to the activity of 0.6 μ g of β -carotene; alternatively, 1 mg β -carotene = 1,667 IU vitamin A (for poultry).

Vitamin D for poultry must be in the form of vitamin D_3 , which is found naturally in fish liver oil or may be synthesized by the irradiation of animal sterol. Vitamin D_2 , which is from plant sources, is active for rats and most mammals but has very low activity for poultry. One unit of vitamin D_3 (USP or IU) is defined as the activity of 0.025 μ g of vitamin D_3 (cholecalciferol). The requirements listed herein for vitamin D are based on diets containing the stated requirements for calcium and available phosphorus.

One IU of vitamin E is the activity of 1 mg of synthetic DL- α -tocopheryl acetate, 0.735 mg D- α -tocopheryl acetate, 0.671 mg D- α -tocopherol, or 0.909 mg DL- α -tocopherol. The dietary requirement for vitamin E is highly variable and depends on the concentration and type of fat in the diet, the concentration of selenium, and the presence of prooxidants and antioxidants.

Vitamin K activity is exhibited by a number of naturally occurring and synthetic compounds with varying solubilities in fat and water. Menadione (2-methyl-1,4-naphthoquinone) is a fat soluble synthetic compound that can be considered the reference standard for vitamin K activity. Two naturally occurring forms are K1 or phylloquinone (2-methyl-3-phytyl-1,4-naphthoquinone) and K2 or menaquinone (K1 substituted with 2 to 7 isoprene units). Water-soluble forms include menadione sodium bisulfite (MSB), menadione sodium bisulfite complex (MSBC), and menadione dimethylpyrimidol (MPB). The theoretical activity of these compounds is 33, 50, and 45 percent, respectively, as calculated on the basis of the proportion of menadione present in the molecule.

Dietary supplements frequently contain, as a factor of safety, levels of vitamins in considerable excess of the minimum requirements. Vitamin tolerances have been reviewed by the National Research Council (1987b). Maximum tolerances for vitamins are of the order of 10 to 30 times the minimum requirement for vitamin A, 4 to 10 times for vitamin D₃, and 2 to 4 times for choline chloride (possibly because of the chloride). Niacin, riboflavin, and pantothenic acid are generally tolerated at levels as great as 10- to 20-fold their nutritional requirement. Vitamin E is generally tolerated at intakes as great as 100-fold the required level. Vitamins K and C, thiamin, and folic acid are generally tolerated at oral intake levels of at least 1,000-fold the requirement. Pyridoxine may be tolerated at 50 times or more of the requirement (Aboaysha and Kratzer, 1979). High levels of biotin and vitamin B₁₂ have not been tested.

WATER

Water must be regarded as an essential nutrient, although it is not possible to state precise requirements. The amount needed depends on environmental temperature and relative humidity, the composition of the diet, rate of growth or egg production, and efficiency of kidney resorption of water in individual birds (Medway and Kare, 1959). It has been generally assumed that birds drink approximately twice as much water as the amount of feed consumed on a weight basis, but water intake actually varies greatly.

Several dietary factors influence water intake and water: feed ratios. Increasing crude protein increases water intake and water: feed ratios (Marks and Pesti, 1984). Crumbling or pelleting of diets increases both water and

feed intake relative to mash diets, but water:feed ratios stay relatively the same (Marks and Pesti, 1984). Increasing dietary salt increases the water intake (Marks, 1987).

The data given for water consumption in Table 1-1 are for environmental temperatures of about 21°C except for brooding chicks and poults. With broilers, water consumption increases about 7 percent for each 1°C above 21° C. Laying hens may consume from 150 to 300 liters (40 to 80 gal) per 1,000 birds daily, depending on temperature and other factors. Survival under extremely hot conditions is influenced by the ability to consume large quantities of water or, more precisely, the ability to use water to remove heat from the respiratory surfaces of the body. This ability varies from strain to strain.

Water intake data for broilers listed herein are based on studies using modern commercial broilers (Marks, 1981; Ross and Hurnik, 1983; Gardiner and Hunt, 1984; Pesti et al., 1985; Miller et al., 1988). Most of the studies were carried out under moderate temperature conditions, with corrections for evaporative losses. In most of the studies, data also were collected on feed intake, allowing for calculation of water:feed ratios.

Documented water intake data for laying hens are limited, especially data related to cage systems. Dun and Emmans (1971) compared the water consumption of caged hens on trough and nipple watering systems in a 3-year study. Feed and water consumption were 126 g and 254 ml with the trough system and 124.9 g and 166 ml with the nipple system (four hens per nipple). Hearn and Hill (1978) compared feed and water consumption of hens on trough and nipple watering systems, with varying numbers of birds per nipple. During the study, that was conducted from 20 to 72 weeks of age, hens on trough waterers consumed an average of 115 g of feed and 213 ml of water. Hens with 2.5, 5, and 10 birds per nipple consumed 109, 109, and 108 g of feed and 182, 169, and 165 ml of water, respectively. Gardiner (1982) examined the water intake of individually caged hens for a 336-day period beginning when they were 32 weeks of age. Over this period of time, mean feed consumption of laying hens was 109 g and daily water intake was 183 ml, for a feed:water ratio of 1.68. There was no indication of type of drinker used. It is evident that the type of watering system used will influence water consumption (or, more correctly, water disappearance) of laying hens. Although many tables of estimated water consumption can be found in the literature, the sources of the data used to compile these tables cannot be documented.

Water consumption data for turkeys obtained from experimental studies are meager (Enos et al., 1967). Thus, the data on water consumption of turkeys shown in Table 1-1 are based mainly on information obtained recently from commercial turkey production companies.

TABLE 1-1 Water Consumption by Chickens and Turkeys of Different Ages

Age (weeks)	Broiler Chickens (ml per bird per week) ^a	White Leghorn Hens (ml per bird per week) ^a	Brown-Egg-Laying Hens (ml per bird per week) ^a	Large White Turkeys (ml per bird per week)		
				Males	Females	
1	225	200	200	385	385	
2	480	300	400	750	690	
3	725	_	_	1,135	930	
Į.	1,000	500	700	1,650	1,274	
5	1,250	_	_	2,240	1,750	
5	1,500	700	800	2,870	2,150	
7	1,750	_	_	3,460	2,640	
3	2,000	800	900	4,020	3,180	
)	_	_	_	4,670	3,900	
10	_	900	1,000	5,345	4,400	
11	_	_	_	5,850	4,620	
12	_	1,000	1,100	6,220	4,660	
13	_	_	_	6,480	4,680	
14	_	1,100	1,100	6,680	4,700	
15	_	_	_	6,800	4,720	
16	_	1,200	1,200	6,920	4,740	
17	_	_	_	6,960	4,760	
18	_	1,300	1,300	7,000	_	
19	_	_	_	7,020	_	
20		1,600	1,500	7,040	_	

NOTE: Dash indicates that information is not available.

Water deprivation for 12 hours or more has adverse effects on the growth of young poultry and egg production of laying hens, and water deprivation of 36 hours or more results in a marked increase in mortality of young and old poultry (Bierer et al., 1965a,b; Haller and Sunde, 1966; Adams, 1973). Water restoration, after extended periods of water deprivation (36 to 40 hours), may cause a "drunken syndrome" or "water intoxication," leading to death (Marsden et al., 1965). Young turkeys are especially susceptible to this condition.

The salt content and pH of water may influence the use of the drinking water to administer vitamins and drugs. Turkeys are known to detect minor differences in the flavor of medicated water and may accept drugs in one water supply but not in another. Intermittent provision of water is sometimes used to reduce the water content of the droppings and to control feed intake in laying hens without reducing egg production (Maxwell and Lyle, 1957). Because birds differ in their ability to conserve body water by increasing kidney resorption, there is a danger of causing dehydration of some birds by practicing water restriction of a flock.

Some water supplies contain considerable concentrations of sulfur or sulfates, nitrates, and various trace minerals. These are usually readily absorbed from the intestine and may be either useful or harmful to the bird, depending

^a Varies considerably depending on ambient temperature, diet composition, rates of growth or egg production, and type of equipment used. The data presented apply under moderate (20° to 25°C) ambient temperatures.

^b Based on data obtained from commercial turkey production units.

on concentration. Table 1-2 gives the guidelines suggested by the National Research Council (1974) for the suitability for poultry of water with different concentrations of total dissolved solids (TDS); that is, the total concentration of all dissolved elements in water.

TABLE 1-2 Guidelines for Poultry for the Suitability of Water with Different Concentrations of Total Dissolved Solids (TDS)

TDS (ppm)	Comments
Less than 1,000	These waters should present no serious burden to any class of poultry.
1,000-2,999	These waters should be satisfactory for all classes of poultry. They may cause watery droppings (especially at the
	higher levels) but should not affect health or performance.
3,000-4,999	These are poor waters for poultry, often causing watery droppings, increased mortality, and decreased growth
	(especially in turkeys).
5,000-6,999	These are not acceptable waters for poultry and almost always cause some type of problem, especially at the upper
	limits, where decreased growth and production or increased mortality probably will occur.
7,000-10,000	These waters are unfit for poultry but may be suitable for other livestock.
More than 10,000	These waters should not be used for any livestock or poultry.

SOURCE: National Research Council. 1974. Nutrients and Toxic Substances in Water for Livestock and Poultry. Washington, D.C.: National Academy of Sciences.

XANTHOPHYLLS

A number of carotenoid pigments are responsible for the yellow-orange coloration of egg yolks and poultry fat and also may contribute to coloration of the skin, shanks, feet, and beak. The xanthophylls, which are characterized by the presence of hydroxyl groups, are the carotenoids of most interest in poultry nutrition. The most commonly considered xanthophylls are lutein in forages such as alfalfa and zeaxanthin in corn. Relative xanthophyll contribution by various xanthophyll-rich ingredients is shown in Table 1-3.

Individual xanthophylls differ in their ability to impart color. Although β -carotene has little pigmenting value, other xanthophylls and synthetic products are effective in influencing yolk and skin color. Less than 1 percent of dietary β -carotene is deposited in the yolk, but for zeaxanthin, as found in corn, the value is closer to 7 percent, and for some synthetic products, such as β -apo-8-carotenoic acid ethyl ester, the incorporation rate may be as high as 34 percent (Roche Vitamins and Fine Chemicals, 1988). Fletcher et al. (1985) and Saylor (1986) reported that natural sources of xanthophyll differed in their ability to pigment egg yolk and the skin of broilers. Alfalfa meal contains several types of xanthophylls, but the one of greatest abundance and importance is lutein, which tends to impart a yellow color, whereas corn and corn gluten meal contain primarily zeaxanthin, which tends to impart an orange-red color.

TABLE 1-3 Xanthophyll and Lutein Content of Selected Ingredients

Ingredient	Xanthophyll (mg/kg)	Lutein (mg/kg)
Alfalfa meal, 17% crude protein	220	143
Alfalfa meal, 22% crude protein	330	_
Alfalfa protein concentrate, 40% crude protein	800	_
Algae meal	2,000	_
Corn	17	0.12
Corn gluten meal, 60% crude protein	290	120
Marigold petal meal	7,000	_

NOTE: Dash indicates that information is not available.

Avian tissue normally accumulates xanthophylls, although the retina may accumulate other carotenoids (Goodwin, 1986). In the laying hen, 50 percent of total body zeaxanthin (as derived from corn) is found in the ovary (Scheidt et al., 1985). Goodwin (1986) indicated that body stores of xanthophylls in the muscle and skin are transferred to the ovary at onset of sexual maturity. Presumably, this transfer occurs throughout the egg production cycle and contributes to the gradual loss of pigment from the shank and beak as egg production continues.

Synthetic carotenoids that have been approved for use by regulatory agencies are used in poultry diets, because levels of desired pigments in natural feedstuffs are not always constant and many of the carotenoid-containing natural feedstuffs are relatively low in energy content. Approval of use of these synthetics varies among countries. Synthetic pigments, such as canthaxanthin and β -apo-8-carotenoic acid (usually as an ethyl ester), can be used to control pigmentation more precisely to yield varying degrees of yellow-orange-red coloration. In natural products, xanthophylls are unstable, and effective levels may decline as a result of oxidation during prolonged storage. This decline can be reduced by the inclusion of antioxidants in the feed

A number of factors can adversely affect absorption of xanthophylls and thus lead to reduced pigmentation. Broilers infected with *Eimeria* sp. exhibit reduced pigmentation and blood xanthophylls (Bletner et al., 1966), and the viral infection that may be responsible for malabsorption syndrome also results in altered xanthophyll status of the bird (Winstead et al., 1985). Exposing feed to light may have variable effects on subsequent pigmentation (Fletcher, 1981). The presence of certain mycotoxins in feeds seems to be detrimental to pigmentation (Tyczkowski and Hamilton, 1987).

UNIDENTIFIED GROWTH FACTORS

So-called unidentified growth factors have been reported throughout the history of poultry nutrition studies. Natural ingredients claimed to contain such factors are most often animal proteins or fermentation by-products (Summers et al., 1959; Al-Ubaidi and Bird, 1964; Dixon and Couch, 1970; Waldroup et al., 1970). Ingredients containing unidentified growth factors are claimed to improve chick growth and reproductive performance (Morrison et al., 1956; Touchburn et al., 1972). Bhargava and Sunde (1969) described a chick assay for quantitation of such unidentified factors.

The mode of action of these unidentified factors is far from clear, however. With the identification of vitamins and consideration of the significance of trace minerals, many nutritionists now disregard the importance of growth factors. That responses may still occur could relate to truly unidentified nutrients or, more likely, to changes in feed palatability and/or quality (Alenier and Combs, 1981; Cantor and Johnson, 1983), mineral chelation, or simple improvement in the balance of available nutrients.

ANTIMICROBIALS

Antimicrobial feed additives, although not nutrients in the sense that they are required by poultry, are included in diets to improve growth, efficiency of feed utilization and livability (Stokstad et al., 1949; Coates et al., 1951; Libby and Schaible, 1955; Milligan et al., 1955; Bird, 1968; Begin, 1971; Morrison et al., 1974). Antimicrobial agents are included in diets at relatively low concentrations (1 to 50 mg/kg), depending on the agent and stage of development of poultry. They are, accordingly, classified as additives and as growth promoters. Egg production is also frequently improved by dietary supplementation with antimicrobial agents (Carlson et al., 1953; Balloun, 1954; Andrews et al., 1966). The mechanisms by which antimicrobials improve performance are not clearly understood. Because antimicrobials do not stimulate growth of chicks kept in a germfree environment (Coates and Harrison, 1969), it is likely that stimulation of growth results from either suppression of microorganisms that may cause adverse effects or encouragement of other microorganisms that may have favorable effects on poultry performance.

There is some concern that feeding of low concentrations of antibiotics may favor the proliferation of antibiotic-resistant microorganisms, which could have serious consequences for disease control in humans or domestic animals. A study by the National Research Council (1980a) examined this concern and concluded that "the postulations concerning the hazards to human health that might result from the addition of subtherapeutic antimicrobials to feeds have been neither proven nor disproven." Continued monitoring of bacterial resistance in humans and animals has not provided clear-cut answers to this concern.

Constraints and regulations on use of particular antimicrobials in poultry feeds vary among countries and are subject to change. Detailed information on specific antimicrobial agents, levels of usage, and legal requirements for use in the United States and Canada may be found in the *Feed Additive Compendium* (published each year by the Miller Publishing Company, 2501 Wayzata Boulevard, Minneapolis, MN 55440) and in the compendium of "Medicating Ingredient Brochures" (Plant Products Division, Canada Department of Agriculture, Ottawa, Ontario, Canada).

For official information concerning Food and Drug Administration approval of antibiotics and other animal drugs, the *Code of Federal Regulations* (CFR), Title 21, should be consulted. Title 21 is revised at least once each year as of April 1. The CFR is kept up to date by the individual issues of the *Federal Register*. These two publications must be used together to determine the latest version of any given rule. Title 21 is published in six parts: Part 500-599 covers animal drugs, feeds, and related products and is available from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. The *Federal Register* is available from the Superintendent of Documents and includes monthly issues of the "List of CFR Sections Affected" and "The Federal Register Index."

2

Nutrient Requirements of Chickens

Chickens vary greatly according to the purpose for which they have been developed. Those intended for the production of eggs for human consumption (Leghorn-type) have a small body size and are prolific layers, whereas those used as broilers or broiler breeders (meat-type) have rapid growth rates and a large body size. They are less efficient egg layers. Methods of feeding differ for these two kinds of chickens.

LEGHORN-TYPE CHICKENS

Methods of feeding Leghorn-type chickens depend on the age and activity (laying or breeding) of the bird. Feed requirements change as birds pass through the starting and growing, pre-egg-laying, egg production, and molt phases.

Starting and Growing Pullets

Relatively little research has been conducted in the last 10 years to obtain definitive nutrient requirements for immature Leghorn-type birds. In large part, this situation is due to the use of meat-strain birds in requirement studies involving avian species. Thus, although growth and maturity characteristics of egg-strain pullets have changed considerably over the last 10 years, particularly for brown-egg-laying birds, the only data available on requirements for many nutrients are dated. Most current research activity deals with nutrients of major economic significance. The available information is reviewed in Appendix Table A-1.

Nutrient requirements of immature Leghorn-type chickens (pullets) are listed in Table 2-1. Although requirements are assessed ultimately in terms of subsequent reproductive performance, the criteria used by the committee were adequate growth rate (in terms of final body weight at different ages) and normal metabolism. It is well documented that mature body weight can greatly influence the subsequent reproductive performance (Leeson and Summers, 1987a), and, as such, this criterion becomes critical in the assessment of nutritional status.

The dearth of research information for immature pullets is even more acute for brown-egg-laying strains. Because brown-egg-laying birds predominate in many parts of the world, the committee has attempted to define their nutrient requirements as well. In large part, however, these requirement values have been extrapolated from studies conducted with Leghorns with consideration for the larger body weight and/or appetite and increased maintenance requirement of brown-egg layers.

The nutrient requirement values shown in Table 2-1 and the performance characteristics shown in Table 2-2 are based on the assumption that the birds will be allowed to consume feed in an ad libitum manner. Ad libitum feed consumption is important for Leghorn birds, especially when reared in hot climates, because of their inherently low appetites. Managers should routinely consider restricted feeding only for brown-egg-laying strains, and even then only in temperate climates and with high-energy diets.

Protein And Energy

In discussing the protein needs of growing pullets, it is assumed that the amino acid profile is balanced according to the requirement values shown in Table 2-1. Pullets allowed to self-select diets based on protein or energy content seem to voluntarily consume much less protein in early life and more protein as they approach maturity (Summers and Leeson, 1978) than do pullets on more conventional programs. However, low-protein or low-lysine starter diets invariably depress the growth

TABLE 2-1 Nutrient Requirements of Immature Leghorn-Type Chickens as Percentages or Units per Kilogram of Diet

	White-Egg-Laying Strains Brown-Egg-Laying Strain								
Nutrient	Unit	0 to 6 Weeks; 450 g ^a 2,850 ^b	6 to 12 Weeks; 980 g ^a 2,850 ^b	12 to 18 Weeks; 1,375 g ^a 2,900 ^b	18 Weeks to First Egg; 1,475 g ^a	0 to 6 Weeks; 500 g ^a 2,800 ^b	6 to 12 Weeks; 1,100 g ^a 2,800 ^b	12 to 18 Weeks; 1,500 g ^a 2,850 ^b	18 Weeks to First Egg; 1,600 g ^a
					$2,900^{b}$				$2,850^{b}$
Protein and					y				,
amino acids									
Crude protein ^c	%	18.00	16.00	15.00	17.00	17.00	15.00	14.00	16.00
Arginine	%	1.00	0.83	0.67	0.75	0.94	0.78	0.62	0.72
Glycine + serine	%	0.70	0.58	0.47	0.53	0.66	0.54	0.44	0.50
Histidine	%	0.26	0.22	0.17	0.20	0.25	0.21	0.16	0.18
Isoleucine	%	0.60	0.50	0.40	0.45	0.57	0.47	0.37	0.42
Leucine	%	1.10	0.85	0.70	0.80	1.00	0.80	0.65	0.75
Lysine	%	0.85	0.60	0.45	0.52	0.80	0.56	0.42	0.49
Methionine	%	0.30	0.25	0.20	0.22	0.28	0.23	0.19	0.21
Methionine +	%	0.62	0.52	0.42	0.47	0.59	0.49	0.39	0.44
cystine									
Phenylalanine	%	0.54	0.45	0.36	0.40	0.51	0.42	0.34	0.38
Phenylalanine +	%	1.00	0.83	0.67	0.75	0.94	0.78	0.63	0.70
tyrosine									
Threonine	%	0.68	0.57	0.37	0.47	0.64	0.53	0.35	0.44
Tryptophan	%	0.17	0.14	0.11	0.12	0.16	0.13	0.10	0.11
Valine	%	0.62	0.52	0.41	0.46	0.59	0.49	0.38	0.43
Fat									
Linoleic acid	%	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Macrominerals									
Calcium ^d	%	0.90	0.80	0.80	2.00	0.90	0.80	0.80	1.80
Nonphytate	%	0.40	0.35	0.30	0.32	0.40	0.35	0.30	0.35
phosphorus									
Potassium	%	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Sodium	%	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
Chlorine	%	0.15	0.12	0.12	0.15	0.12	0.11	0.11	0.11
Magnesium	mg	600.0	500.0	400.0	400.0	570.0	470.0	370.0	370.0
Trace minerals									
Manganese	mg	60.0	30.0	30.0	30.0	56.0	28.0	28.0	28.0
Zinc	mg	40.0	35.0	35.0	35.0	38.0	33.0	33.0	33.0
Iron	mg	80.0	60.0	60.0	60.0	<i>75.0</i>	56.0	56.0	56.0
Copper	mg	5.0	4.0	4.0	4.0	5.0	4.0	4.0	4.0
Iodine	mg	0.35	0.35	0.35	0.35	0.33	0.33	0.33	0.33
Selenium	mg	0.15	0.10	0.10	0.10	0.14	0.10	0.10	0.10
Fat soluble									
vitamins									
A	IU	1,500.0	1,500.0	1,500.0	1,500.0	1,420.0	1,420.0	1,420.0	1,420.0
D_3	ICU	200.0	200.0	200.0	300.0	190.0	190.0	190.0	280.0
E	IU	10.0	5.0	5.0	5.0	9.5	4.7	4.7	4.7
K	mg	0.5	0.5	0.5	0.5	0.47	0.47	0.47	0.47
Water soluble									
vitamins									
Riboflavin	mg	3.6	1.8	1.8	2.2	3.4	1. 7	<i>1.7</i>	1.7
Pantothenic acid	mg	10.0	10.0	10.0	10.0	9.4	9.4	9.4	9.4
Niacin	mg	27.0	11.0	11.0	11.0	26.0	10.3	10.3	10.3
B_{12}	mg	0.009	0.003	0.003	0.004	0.009	0.003	0.003	0.003
Choline	mg	1,300.0	900.0	500.0	500.0	1,225.0	850.0	470.0	470.0
Biotin	mg	0.15	0.10	0.10	0.10	0.14	0.09	0.09	0.09
Folic acid	mg	0.55	0.25	0.25	0.25	0.52	0.23	0.23	0.23
Thiamin	mg	1.0	1.0	0.8	0.8	1.0	1.0	0.8	0.8
Pyridoxine	mg	3.0	3.0	3.0	3.0	2.8	2.8	2.8	2.8

NOTE: Where experimental data are lacking, values typeset in bold italics represent an estimate based on values obtained for other ages or related species.

^a Final body weight.

^b These are typical dietary energy concentrations for diets based mainly on corn and soybean meal, expressed in kcal ME_n /kg diet.

^c Chickens do not have a requirement for crude protein per se. There, however, should be sufficient crude protein to ensure an adequate nitrogen supply for synthesis of nonessential amino acids. Suggested requirements for crude protein are typical of those derived with corn-soybean meal diets, and levels can be reduced somewhat when synthetic amino acids are used.

^d The calcium requirement may be increased when diets contain high levels of phytate phosphorus (Nelson, 1984).

rate of both white-egg- (Douglas and Harms, 1982; Kwakkel et al., 1991) and brown-egg-laying pullets (Maurice et al., 1982), and early growth depression often depresses mature body weight and thereby adversely affects adult performance (Milby and Sherwood, 1953; Leeson and Summers, 1979, 1987a). Low-protein diets have a transitory effect on muscle fiber size rather than any long-term effect on numbers of such fibers (Timson et al., 1983). Although low-protein diets seem to adversely affect growth rate, there is little indication that excessively high levels of protein have any benefit on growth and development. Data of Keshavarz (1984) and Leeson and Summers (1989) suggest that in Leghorn pullets reduction in growth is often seen when total protein intake to 140 days of age is less than 1 kg. An intake of 1 kg of balanced protein during the same period seems to result in maximum growth.

TABLE 2-2 Body Weight and Feed Consumption of Immature Leghorn-Type Chickens

White-Egg-Laying Strains		trains	Brown-Egg-Laying S	Strains
Age (weeks)	Body Weight ^a (g)	Feed Consumption (g/week)	Body Weight ^a (g)	Feed Consumption (g/week)
0	35	50	37	70
2	100	140	120	160
4	260	260	325	280
6	450	340	500	350
8	660	360	750	380
10	750	380	900	400
12	980	400	1,100	420
14	1,100	420	1,240	450
16	1,220	430	1,380	470
18	1,375	450	1,500	500
20	1,475	500	1,600	550

^a Average genetic potential when feed is consumed on an ad libitum basis.

Different commercial strains may show different growth rates and different final mature body weights.

Energy intake may be the limiting factor for growth of egg-strain birds reared under most environmental conditions. Assuming no amino acid deficiency, and an intake of 1 kg of protein from 1 day to 20 weeks, growth and development seem most responsive to energy intake (Leeson and Summers, 1989). A total intake of 21 Mcal *ME* to 20 weeks seems ideal for white-egg-laying pullets. However, manipulation of energy intake is not always easy, since the pullet appears to have a fairly precise innate ability to regulate its energy intake regardless of dietary energy level (Cunningham and Morrison, 1976; McNaughton et al., 1977b; Doran et al., 1983). Manipulation of energy intake is, therefore, best considered in relation to feeding management and, in particular, methods of stimulating feed intake. For example, feed intake may be increased through use of pelleted feed, increased frequency of feeding, feeding at cooler times of the day, and, where possible, use of longer periods of light. Leeson and Summers (1989) concluded that pullet growth is initially most sensitive to dietary protein and amino acids, whereas energy intake becomes more critical as the bird approaches maturity.

Skeletal size has also been considered as a criterion for assessment of pullet development. Lerner (1946) suggested that skeletal size is a limiting factor for growth, and Jaap (1938) indicated that shank length can be used as a reliable estimate of skeletal size per se. Skeletal development is related to adequate supplies of calcium, phosphorus, and vitamin D₃, although deficiencies of most nutrients can adversely affect normal vascularization of cartilage at the growth plate, a prerequisite to normal calcification (Leeson and Summers, 1988). Skeletal growth is intimately associated with general growth and development, and it is difficult to influence either independently. Leeson and Summers (1984) indicated that increased skeletal size of pullets in response to dietary protein was associated with reduced ash content of bones.

Minerals And Vitamins

As indicated above, little work has been done recently to evaluate the mineral and vitamin requirements of young eggstrain birds. There has been some interest in reevaluating nonphytate phosphorus needs, although, in general, the new data indicate no major change in previously reported requirement values. Both the young white-egg- (Douglas and Harms, 1986) and the young brown-egg-laying pullets (Carew and Foss, 1980) exhibit an inferior growth rate when fed starter diets containing less than 0.4 percent nonphytate phosphorus. The sodium requirement of the Leghorn pullet is approximately 0.15 percent of the diet regardless of age, although somewhat lower levels can be used after 10 weeks of age if excessive water intake is problematic (Manning and McGinnis, 1980).

Prelay Period

Daily nutrient requirements of pullets 10 to 17 days before first egg are generally considered to be greater than during the preceding 4 to 6 week period, although there is little evidence to show that pullets cannot meet these requirements through increased voluntary feed intake.

Hoyle and Garlich (1987) found no change in growth or development of Leghorn pullets in response to elevated levels of dietary energy or protein. As suggested above, energy intake is probably the most critical component for this age of bird, and energy intake can perhaps be manipulated best through stimulation of feed intake rather than by simply increasing the energy level of the feed.

The committee's review of research on the changes in metabolism of medullary bone immediately prior to maturity has led to reevaluation of the pullets' requirement for calcium at this time. Since modern egg-strain pullets exhibit a rapid increase in egg production and prolonged first multiegg clutch, it is obvious that a change in the requirements related to calcification must be accommodated before or at time of first egg. Keshavarz (1987) indicated that feeding a diet containing 3.5 percent calcium from as early as 14 weeks of age had no adverse effect on skeletal integrity, apparent renal function, or subsequent reproductive performance. Leeson et al. (1986, 1987a) also observed normal pullet development, skeletal integrity, and kidney histology when immature 19-week-old pullets were fed diets containing 3.5 percent calcium. These same workers indicated that calcium levels of 0.9 to 1.5 percent at this age were detrimental to early shell quality. In studies in which pullets were allowed to self-select nutrients, Classen and Scott (1982) showed that the birds consumed calcium in relation to needs for deposition of medullary bone and (or) onset of shell calcification.

There has been little research on the phosphorus and vitamin D₃ requirements of the prelay pullet.

Hens in Egg Production

Progress continues in the quest to use less feed in producing eggs. Most of this progress has resulted from decreasing the amount of feed that is required for body maintenance of laying hens.

Body Maintenance Needs

Management practices, as well as nutritional regimes, can affect the maintenance requirement. In warmer houses, layers need less energy from their feed because they expend less energy in maintaining body temperature. Hens eat less feed with increasing temperatures and decrease feed consumption drastically at temperatures above 30°C (Davis et al., 1973; National Research Council, 1981c).

Genetic selection can also affect the amount of feed required for maintenance. With chickens bred for higher rates of egg production, there is a decrease in the maintenance requirement relative to eggs produced. At a rate of 100 percent egg production (that is, one egg per hen per day), maintenance requirements must be fulfilled for the 12 days needed to produce a dozen eggs; at a rate of 75 percent egg production, 16 days of maintenance requirements must be met to obtain a dozen eggs.

Body size also affects maintenance requirements. A compilation of information from nonpasserine birds showed that basal metabolism was equal to 78.3 kcal per day × (kg body weight)723 (Lasiewski and Dawson, 1967). Conditions for collection of these data were that the birds were in a postabsorptive state, in a thermoneutral environment, and as nearly at rest as possible. Maintenance requirement, or the energy needed to sustain normal body processes and activities other than growth and egg production, is greater than that of basal metabolism. In the thermoneutral range of temperatures, maintenance for hens is approximately 100 kcal per day per kg body weight (MacLeod and Jewitt, 1988; Pesti et al., 1990). Strains of hens may differ in their maintenance needs because of metabolic or behavioral characteristics (Pesti et al., 1990).

Production Needs

Nutritional factors can affect the amount of feed required to produce eggs. For example, some research indicates that hens are able to make a good adjustment of feed intake to provide nearly identical daily energy intakes with up to 6 percent added dietary fat (Sell et al., 1987). But other research suggests that the hen is not very accurate in adjusting feed intake to provide equal daily energy intake when offered a range of dietary energy conditions (Morris, 1968; Rising et al., 1989). Regardless of the accuracy of energy adjustment, hens eat less of a high-energy, nutritionally balanced feed than of a low-energy feed to produce a dozen eggs.

Now that eggs can be produced with less feed, nutritionists have been permitted, or sometimes forced, to formulate diets differently than they did several years ago. Generally, it is assumed that a hen's daily requirements for nutrients, other than energy, are not changed by the level of feed consumption. If this is correct, then the difference in composition between the diet of a layer eating 80 g of feed per day and the diet of one eating 120 g of feed per day should be about 40 g of energy-supplying ingredients. But differences in daily feed consumption can cause the need for dramatic differences in dietary nutrient concentration, if diets are formulated to supply a specified amount of nutrient, other than energy, each day. Nutrient requirements of egg-type laying hens (Table 2-3) are expressed in terms of dietary concentrations for three levels of daily feed consumption. (The research reports on which the committee based its nutrient requirement decisions are listed in Appendix Table A-2.) Just how different rates of feed consumption can influence the formulation of a diet can be seen by using one nutrient—say, lysine, as an example. The lysine required each day by a white-egg-laying hen is 690 mg, or 0.69 g. Thus the diet of a white-egg-laying layer eating 100 g of feed per day should have a lysine concentration of 0.69 percent.

TABLE 2-3 Nutrient Requirements of Leghorn-Type Laying Hens as Percentages or Units per Kilogram of Diet (90 percent dry matter)

	Dietary		Amounts Require	d per Hen Daily (r	ng or IU)		
		Concentrations Required by White- Egg Layers at Different Feed Intakes	White-Egg Breeders at 100 g of Feed per Hen Daily ^b	White-Egg Layers at 100 g of Feed per Hen	Brown-Egg Layers at 110 g of Feed per Hen Daily ^c		
Nutrient	Unit	80 ^{a,b}		Daily		100 ^{a,b}	120 ^{a,b}
Protein and amino							
acids							
Crude proteind	%	18.8	15.0	12.5	15,000	15,000	16,500
Arginine ^e	%	0.88	0.70	0.58	700	700	<i>770</i>
Histidine	%	0.21	0.17	0.14	170	170	190
Isoleucine	%	0.81	0.65	0.54	650	650	715
Leucine	%	1.03	0.82	0.68	820	820	900
Lysine	%	0.86	0.69	0.58	690	690	760
Methionine	%	0.38	0.30	0.25	300	300	330
Methionine + cystine	%	0.73	0.58	0.48	580	580	645
Phenylalanine	%	0.59	0.47	0.39	470	470	520
Phenylalanine +	%	1.04	0.83	0.69	830	830	910
tyrosine							
Threonine	%	0.59	0.47	0.39	470	470	520
Tryptophan	%	0.20	0.16	0.13	160	160	175
Valine	%	0.88	0.70	0.58	700	700	<i>770</i>
Fat							
Linoleic acid	%	1.25	1.0	0.83	1,000	1,000	1,100
Macrominerals							
Calciumf	%	4.06	3.25	2.71	3,250	3,250	3,600
Chloride	%	0.16	0.13	0.11	130	130	145
Magnesium	mg	625	500	420	50	50	55
Nonphytate	%	0.31	0.25	0.21	250	250	275
phosphorusg							
Potassium	%	0.19	0.15	0.13	150	150	165
Sodium	%	0.19	0.15	0.13	150	150	165
Trace minerals							
Copper	mg	?	?	?	?	?	?
Iodine	mg	0.044	0.035	0.029	0.010	0.004	0.004
Iron	mg	56	45	38	6.0	4.5	5.0
Manganese	mg	25	20	17	2.0	2.0	2.2
Selenium	mg	0.08	0.06	0.05	0.006	0.006	0.006
Zinc	mg	44	35	29	4.5	3.5	3.9
Fat soluble vitamins	0						
A	IU	3,750	3,000	2,500	300	300	330
D_3	ΙÜ	375	300	250	30	30	33
E E	ΙÜ	6	5	4	1.0	0.5	0.55
K	mg	0.6	0.5	0.4	0.1	0.05	0.055
Water soluble	8	0.0	0.0	· · ·	0.1	0.00	0.000
vitamins							
B_{12}	mg	0.004	0.004	0.004	0.008	0.0004	0.0004
Biotin	mg	0.13	0.10	0.08	0.01	0.01	0.011
Choline	mg	1,310	1,050	875	105	105	115
Folacin	mg	0.31	0.25	0.21	0.035	0.025	0.028
Niacin	mg	12.5	10.0	8.3	1.0	1.0	1.1
Pantothenic acid	mg	2.5	2.0	1.7	0.7	0.20	0.22
Pvridoxine	mg	3.1	2.5	2.1	0.45	0.25	0.28
Riboflavin	mg	3.1	2.5	2.1	0.36	0.25	0.28
Thiamin	mg	0.88	0.70	0.60	0.07	0.23	0.08

NOTE: Where experimental data are lacking, values typeset in bold italics represent an estimate based on values obtained for other ages or related species.

^a Grams feed intake per hen daily.

^b Based on dietary ME_n concentrations of approximately 2,900 kcal/kg and an assumed rate of egg production of 90 percent (90 eggs per 100 hens daily).

^c Italicized values are based on those from white-egg layers but were increased 10 percent because of larger body weight and possibly more egg mass per day.

^d Laying hens do not have a requirement for crude protein per se. However, there should be sufficient crude protein to ensure an adequate supply of nonessential amino acids. Suggested requirements for crude protein are typical of those derived with corn-soybean meal diets, and levels can be reduced somewhat when synthetic amino acids are used.

^e Italicized amino acid values for white-egg-laying chickens were estimated by using Model B (Hurwitz and Bornstein, 1973), assuming a body weight of 1,800 g and 47 g of egg mass per day.

f The requirement may be higher for maximum eggshell thickness.

^g The requirement may be higher in very hot temperatures.

Hens eating 80 g of feed per day need a dietary lysine concentration of 0.86 percent to obtain 0.69 g per day; hens eating 120 g per day need a dietary lysine concentration of only 0.58 percent lysine to provide 0.69 g per hen per day. The basic concept is that high daily feed consumption permits low nutrient concentrations and low daily feed consumption demands high nutrient concentrations.

Equations have been developed to predict the energy required by chickens during egg production (McDonald, 1978; National Research Council, 1981c). These equations use the expected energy requirements of hens as related to body weight, daily egg mass, change in body weight, and ambient temperature to predict a total daily energy requirement. The data of Table 2-4 show the predicted daily energy requirements of hens as related to different body weights and rates of egg production, assuming no change in body weight and an ambient temperature of 22°C. The energy requirements derived from such calculations can be used to estimate daily feed intake by relating the hen's energy needs to the dietary energy concentration. Diets for laying hens, however, can be most accurately formulated on the basis of feed intake data obtained frequently (every 1 to 2 weeks) for individual flocks.

Most egg-type hens are given ad libitum access to feed; however, feeding programs may be modified after the maximum rate of egg mass output has been attained (Cerniglia et al., 1984; Cunningham, 1984). Laying hens eat more feed than is needed to support egg production. As a result, it may be more profitable to limit their feed intake. Doing so would also reduce the likelihood of health problems that can also result when hens are overly fat. Data on feed consumption in individual flocks, together with information on body weight, ambient temperature, and rate of egg production, may be used to determine the degree of feed restriction deemed appropriate.

Phase Feeding

Nutrient requirements presented in Table 2-3 assume that the amount of nutrient needed each day remains the same throughout a hen's time of production. Some feeding programs, however, are based on the assumption that the amount of nutrient needed each day is different at different stages of the production cycle. These programs are called phase feeding.

In phase feeding for flocks of laying hens, Phase 1 is designated as the time from the onset of egg production until past the time of the maximum egg mass output, usually at about 36 weeks of age, which is the time of maximum egg mass output. Phase 2 is the period between 36 and approximately 52 weeks, a period of high but declining egg production and increasing egg weight. Phase 3 is from about 52 weeks to the end of the production cycle, in some instances to 80 weeks. During Phase 3 the rate of egg production continues to decline while egg weight increases only slightly.

TABLE 2-4 Estimates of Metabolizable Energy Required per Hen per Day by Chickens in Relation to Body Weight and Egg Production (kcal)

Body	Rate of Eg	g Production (%)					
Weight (kg)	0	50	60	70	80	90	
1.0	130	192	205	217	229	242	
1.5	177	239	251	264	276	289	
2.0	218	280	292	305	317	330	
2.5	259	321	333	346	358	371	
3.0	296	358	370	383	395	408	

NOTE: A number of formulas have been suggested for prediction of the daily energy requirements of chickens. The formula used here was derived from that in *Effect of Environment on Nutrient Requirements of Domestic Animals* (National Research Council, 1981c): ME per hen daily = $W^{0.75}$ (173 - 1.95T) + 5.5 δW + 2.07 EE

where W = body weight (kg), T = ambient temperature (°C), $\delta W = \text{change in body weight (g/day)}$, and EE = daily egg mass (g). Temperature of 22°C, egg weight of 60 g, and no change in body weight were used in calculations.

A phase feeding program adjusts daily nutrient intakes according to expected requirements for maintenance and egg production. Generally, daily intakes of protein, amino acids, and phosphorus are reduced with each succeeding phase. Daily calcium intake usually is increased with each phase. Thus the dietary concentrations of these nutrients are changed accordingly.

The scientific validity of the phase feeding concept has not been established. Experimental results have failed to prove that a hen requires more nutrient per day at one stage of production than at another stage (Latshaw, 1981; Ousterhout, 1981; Sell et al., 1987). Relatively low levels of feed intake during early egg production, however, necessitate the use of high nutrient concentrations in diets during this phase of production.

Egg Weight

Egg weight is correlated with body weight of laying hens (Jull, 1924). The relative egg weight during a laying cycle parallels the relative body weight. Within a flock, heavier birds lay heavier eggs (Leeson and Summers, 1987a). A body weight decline in summer may account for the production of smaller eggs during that season (Cunningham et al., 1960).

Nutritional means may be used to alter egg weight slightly. Early in the egg production cycle, the objective would be to increase egg weight. In one study (Summers and Leeson, 1983), the weight of eggs from pullets was not affected by increases in dietary levels of methionine, linoleic acid, or protein above the established requirement. Another study showed that increasing the level of dietary linoleic acid from 0.6 percent to 4.3 percent increased by egg weight during the first 14 weeks of production; however, average daily egg yield was not affected (March and MacMillan, 1990). In a different study, adding 3 or 6 percent fat to diets fed during early

egg production increased egg weight by increasing yolk weight whether the diets were isocaloric or nonisocaloric (Sell et al., 1987).

When egg weight is increased by fat supplementation of diets, it is not known if the response is due to fat in general or is a specific response to linoleic acid (Whitehead, 1981; Balnave, 1982; Scragg et al., 1987). Increasing the percentage of fat or oil in isoenergetic diets caused hens to lay heavier eggs (Whitehead, 1981; Sell et al., 1987). Decreasing the dietary energy level, as may occur when sorghum or barley is substituted for corn, may decrease egg weight (Coon et al., 1988). Diet costs may increase when supplemental fats are used to obtain higher dietary fat and energy concentrations. Thus managers should determine the economic effectiveness of increasing egg weight in this way.

Older laying hens produce a high proportion of extralarge eggs for which monetary returns often do not offset costs of production. Thus, a goal of feed formulators may be to reduce the weight of eggs produced by older hens. Decreasing dietary levels of the most limiting amino acid can affect egg weight (Morris and Gous, 1988). For example, weight of eggs produced by hens more than 38 weeks of age was reduced by limiting methionine intake to 270 mg per hen daily, compared with feeding 300 mg methionine per hen daily (Peterson et al., 1983). A review of 12 scientific papers indicated that as the most limiting amino acid level decreased below the required level, egg weight and rate of egg production were proportionally reduced. This reduction occurred until egg weight decreased to about 90 percent of maximum. Further decreases in the amino acid level decreased only the rate of egg production. An exception to the general effects of amino acid adequacy and egg weight occurs with tryptophan, whereby a deficiency of this amino acid failed to decrease egg weight (Jensen et al., 1990).

Minerals And Vitamins

Mineral requirements of egg-type chickens in production are similar to mineral requirements of other poultry, with the exception of calcium. The onset of egg production creates a need for more calcium to make the eggshell.

A question arises about the best time to switch pullets from a low-calcium growing diet to a high-calcium laying diet. Feeding a diet with 3.25 percent calcium starting at 50 days of age increased the incidence of urolithiasis in later life (Wideman et al., 1985). Changing from a low- to a high-calcium diet at 14 weeks of age or later, however, caused no detrimental effects on performance through 60 weeks (Keshavarz, 1987). Although high-calcium levels are detrimental when fed early in a pullet's life, feeding high-calcium levels several weeks before the onset of egg production seems to do no harm.

The calcium requirement listed in Table 2-3 is similar to values listed in earlier editions. Definitive research is still lacking regarding several questions, however. Tests that cover a whole production cycle and that provide increments of calcium ranging from 3 to 4.5 g per hen daily would be helpful. Such tests would answer questions related to amounts of calcium needed, especially for the maintenance of eggshell strength in older layers. Conditions under which larger-particle-size calcium sources consistently improve eggshell strength should also be identified.

Levels of nutrients other than calcium may also affect eggshell strength. A wide sodium-to-chloride ratio can increase blood pH and bicarbonate concentrations (Cohen et al., 1972). These increases may be the mechanism by which eggshell strength is improved at thermoneutral zone temperatures with some diets when sodium chloride is replaced by sodium bicarbonate in the water (Frank and Burger, 1965) or feed (Miles and Harms, 1982; Makled and Charles, 1987).

Phosphorus levels may also affect eggshell strength. Excess dietary phosphorus may decrease eggshell strength (Arscott et al., 1962; Miles and Harms, 1982). The amount of phosphorus needed each day (Table 2-3) has been decreased from amounts recommended in earlier editions. A daily intake of 250 mg of nonphytate phosphorus should be adequate for normal production and health. Although feeding diets containing excess phosphorus is generally undesirable, poultry encountering heat stress may require additional phosphorus. Garlich et al. (1978) and McCormick et al. (1980) reported that chickens fed diets containing relatively high phosphorus levels were more tolerant of high ambient temperatures than were those fed normal phosphorus levels. The use of dietary phosphorus at requirement levels should result in less phosphorus in excreta. This fact may assume more importance in the future if manure application rates to land are determined on the basis of phosphorus content.

Research information published about vitamin requirements does not indicate the need for any major change in recommendations from the previous edition. However, results from several reports showed that, for maximum egg yield, the choline requirement was about 1,050 mg per hen daily (Parsons and Leeper, 1984; Keshavarz and Austic, 1985; Miles et al., 1986). Therefore the choline requirement for laying hens has been increased.

Brown-Egg-Laying Layers

Estimated nutrient requirements of brown-egg layers are listed in Table 2-3. Because little research has been

done with brown-egg-laying layers, the committee had little quantitative information to review for establishing nutrient requirements. Estimates of daily requirements given in Table 2-3 are listed as 10 percent greater than those of the white-egg-laying layers. The 10 percent increase is justified on the basis that brown-egg-laying layers have heavier body weights and generally produce more egg mass per hen daily.

Egg-Type Breeders

Nutrient requirements for egg-type breeders are listed in Table 2-3. Major nutrient requirements are the same for producing an egg for human consumption as for producing an egg for hatching; however, dietary levels of trace minerals and vitamins that result in maximum egg yield per day may be too low for the developing embryo (Naber, 1979). Vitamin and trace mineral levels in the egg can be increased by increasing the dietary levels. Higher riboflavin, pantothenic acid, and vitamin B_{12} levels are especially critical for maximum hatchability, although several other nutrients may also become limiting. As a result, several of the micronutrient requirements are higher in breeding diets than in laying diets.

Molting Hens

After 8 to 12 months of egg production, some flocks are molted as a means of extending the period of production (Zimmerman and Andrews, 1987). A combination of feed, water, and light restriction is usually used to stop egg production and cause a rest, which may last from 3 to 6 weeks. A rest can also be induced by free-choice feeding of a diet containing a deficiency or excess of a specific nutrient. Examples of nutrients used to induce molt include excess iodine (Arrington et al., 1967), excess zinc (Supplee et al., 1961), and sodium chloride deficiency (Whitehead and Shannon, 1974; Naber et al., 1984). After the rest, egg production can be initiated by stimulatory lighting. Little research information is available on the nutrient requirements of molted hens; therefore the committee has assumed that requirements are similar to those of hens during the first cycle of production.

TABLE 2-5 Typical Bo	dy Weights Feed	1 Requirements	and Energy	Consumption of Broilers

Age (weeks)	Body Weight (g)		Weekly Consum	Feed otion (g)	Cumulat Consum		Weekly Consumption ME/bird	ption (keal	Cumulativ Consumpt ME/bird)	
	Male	Female	Male	Female	Male	Female	Male	Female	Male	Female
1	152	144	135	131	135	131	432	419	432	419
2	376	344	290	273	425	404	928	874	1,360	1,293
3	686	617	487	444	912	848	1,558	1,422	2,918	2,715
4	1,085	965	704	642	1,616	1,490	2,256	2,056	5,174	4,771
5	1,576	1,344	960	738	2,576	2,228	3,075	2,519	8,249	7,290
6	2,088	1,741	1,141	1,001	3,717	3,229	3,651	3,045	11,900	10,335
7	2,590	2,134	1,281	1,081	4,998	4,310	4,102	3,459	16,002	13,794
8	3,077	2,506	1,432	1,165	6,430	5,475	4,585	3,728	20,587	17,522
9	3,551	2,842	1,577	1,246	8,007	6,721	5,049	3,986	25,636	21,508

NOTE: Values are typical for broilers fed well-balanced diets providing 3,200 kcal ME/kg.

MEAT-TYPE CHICKENS

Dietary requirements for meat-type chickens vary according to whether the birds are broilers being started and grown for market, broiler breeder pullets and hens, or broiler breeder males.

Starting and Growing Market Broilers

Chickens of broiler strains have been selected for rapid weight gain and efficient utilization of feed. Broilers are usually allowed to feed on an ad libitum basis to ensure rapid development to market size, although some interest has been expressed in controlling feed intake in an attempt to minimize the development of excessive carcass fat. Broilers are marketed at a wide range of ages and body weights (Table 2-5). Females may be grown to 900- to 1,000-g body weight to supply Cornish hens, mixed sexes may be reared to 1.8 to 2 kg for use as whole birds and specialty parts, and males may be grown to 2.8 to 3 kg for deboned meat. Thus it is difficult to establish a single set of requirements that is appropriate to all types of broiler production. Furthermore, nutrient requirements may vary according to the criterion of adequacy. In the instance of essential amino acids, greater dietary concentrations may be required to optimize efficiency of feed utilization than would be needed to maximize weight gain. There also is evidence that the dietary requirement for lysine to maximize yields of breast meat of broilers is greater than that needed to

maximize weight gain (Acar et al., 1991) and that differences exist among strains of broilers with respect to this need for more lysine (Bilgili et al., 1992).

Expression of a requirement for any nutrient is relative, and many factors must be considered. Many nutrients are interdependent, and it is difficult to express requirements for one without consideration of the quantity of the other. Examples include the relationships that exist between lysine and arginine and among calcium, phosphorus, and vitamin D₃ levels in the

Other factors that may affect requirements include age and gender of the animal. Some studies suggest that males require greater quantities of nutrients than do females at a similar age; however, when expressed as a percentage of the diet, there seems to be little difference in nutrient requirements of the sexes. The requirements for many nutrients seem to diminish with age, but for most nutrients there have been few research studies designed to precisely estimate requirements for all age periods, especially for those beyond 3 weeks of age.

Any expression of nutrient requirements can be only a guideline representing a consensus of research reports. These guidelines must be adjusted as necessary to fit the wide variety of ages, sexes, and strains of broiler chickens.

The values given in Table 2-6 are generally minimum levels that satisfy general productive activities and(or) prevent deficiency syndromes. Requirements are presented for specific age periods. These age periods are based on the chronology for which research data were available. These nutrient requirements are often implemented for younger age intervals or on a weight-of-feed consumed basis. Where information is lacking, bold italicized values represent an estimate based on values attained for other ages or related species. The data from the peer-reviewed scientific literature that serve as a basis for the committee's estimation of nutrient requirements are presented in Appendix Table A-3a.

Amino Acids

Relatively high concentrations of dietary amino acids are needed to support the rapid growth of meat-type chickens. Body weights of commercial meat-type chickens will increase 50- to 55-fold by 6 weeks after hatching. A large part of this increase in weight is tissue of substantial protein content. Thus, adequate amino acid nutrition is vital to the successful feeding program for this type of chicken.

Methionine plus Cystine

The greatest disagreement concerning amino acid requirements for broilers centers on the sulfur amino acids, methionine and cystine. In

TABLE 2-6 Nutrient Requirements of Broilers as Percentages or Units per Kilogram of Diet (90 percent dry matter)

		0 to 3 Weeks";	3 to 6 Weeks*;	6 to 8 Weeks*:
Nutrient	Unit	3,200 ^h	3,200 ^b	3,200 ⁵
Protein and amino acids				
Crude protein	%	23.00	20.00	18.00
Arginine	%	1.25	1.10	1.00
Glycine + serine	%	1.25	1.14	0.97
Histidine	%	0.35	0.32	0.27
Isoleucine	96	0.80	0.73	0.62
Leucine	%	1.20	1.09	0.93
Lysine	94.	1.10	1.00	0.85
Methionine	Œ.	0.50	0.38	0.32
Methionine + cystine	96	0.90	0.72	0.60
Phenylalanine	%	0.72	0.65	0.56
Phenylalanine + tyrosine	%	1.34	1.22	1.04
Proline	%	0.60	0.55	0.46
Threonine	%	0.80	0.74	0.68
Tryptophan	%	0.20	0.18	0.16
Valine	g _c	0.20	0.82	0.70
Hat Control Control	ia bara.	a Problem Volence of	en horasto e	20.10
Linoleic acid	g.	1.00	1.00	1.00
Macrominerals	Comp. Tribers		Same Carrier	1.00
Calcium	%	1.00	0.90	0.80
Chlorine	95	0.20	0.15	0.12
Magnesium	mg	600	600	600
Nonphytate phosphorus	g.	0.45	0.35	0.30
Potassium	%	0.30	0.30	0.30
Sodium	%	0.20	0.30	0.30
Trace minerals	ang arag	170 TURNET (1941)	T 21040-0-1091	
Copper	rng	- 8	1	8
lodine		0.35	035	0.35
iron	mg mg	80	80	80
Manganese		60	60	60
Selenium	mg	0.15	0.15	0 15
Zinc	mg	40	40	40
Fat soluble vitamins	mg	Covers (#Merce).	****	2000 344
A A	ru	1 500		7.700
D ₃	ICU	1,500	1,500	1,500
E E		200 10	200	200
K	IU		10	10
The colors of the control of the control of the colors of	mg	0.50	0.50	0.50
Water soluble vitamins			ataraes	
B_{12}	mg	0.01	0.01	0.007
Biotin	mg	0.15	0.15	0.12
Choline	mg	1,300	1,000	750
Folacin	mg	0.55	0.55	0.50
Niacin	mg	35	30	25
Pantothenic acid	mg	10	10	10
Pyridoxine	mg	3.5	3,5	3.0
Riboflavin	mg	3.6	3.6	3
Thiamin	mg	1.80	1.80	1.80

represent an estimate based on values obtained for other ages or related species.

[&]quot;The 0-to 3, 3-to 6, and 6-to 8-week intervals for notined requirements are based on chronology for which research data were available; however, these metries requirements are often implemented at younger age intervals or on a weight-of-feed consumed basis.

weight-of-feed consumed bass.

These are typical dietary energy concentrations, expressed in lead ME, /kg diet.
Different energy values may be appropriate depending or, local ingredient prices and availability.

Total conference on the energy concentration of the protein per se. There, however, should be sufficient endule protein in ensume an adequate introgen supply for synthesis of nonescential animousids. Suggested requirements for ender protein are typical of those derived with corresponding to the sufficient control so that the supplies of the sup

⁴The calcium requirement may be increased when diets contain high levels of phytate phosphorus (Nelson, 1984).

part, this is because most studies are not designed to determine both the requirements of methionine per se and the requirement for the combined quantity of methionine and cystine. Many attempts have been made, especially with purified diets, to ascertain the relative proportions needed of these two amino acids, with variable results. Many have attributed a share of the disagreement in estimated requirements to factors such as the sparing effects of choline (Quillen et al., 1961; Pesti et al., 1979) or sulfate (Gordon and Sizer, 1955; Ross and Harms, 1970) or the negative effects of copper sulfate (Baker and Robbins, 1979).

It is unfortunate that although a number of studies have been carried out to examine the effects of different dietary variables on the requirement for methionine, few of these actually made attempts to estimate an overall requirement value. Although calculations can be made in some instances, these do not have the statistical basis that values derived from the original data would have had.

Another factor that may contribute to the disagreement in results is the comparison of results using crystalline amino acid diets with results using diets based on practical ingredients, primarily corn and soybean meal. Although this difference may relate in part to the incomplete digestion of the protein in the intact ingredients, most recent digestibility studies suggest that amino acids in corn and soybean meal are well digested, on the order of 85 percent or more. Differences in digestibility of practical and semipurified diets are, therefore, not of sufficient magnitude to account for the major differences that seem to occur between these types of diets.

The cystine status of the basal diet is a major factor that contributes to the apparent disagreement in results, especially when diets with intact ingredients are used. Generally, a basal diet, considered deficient in sulfur amino acids, is supplemented with graded levels of methionine and the response determined. The point of maximum response is then noted, and the sum of dietary plus supplemental methionine is added to the dietary cystine content to arrive at the need for total sulfur amino acids (TSAA). However, this procedure assumes that the basal diet does not contain a surfeit of cystine. Therefore one must determine whether or not the basal diet is adequate or excessive in cystine before combining these values for a total TSAA estimate. Total dietary cystine levels can be influenced by dietary protein levels, choice of protein-contributing ingredients, and use of supplemental amino acids. Unfortunately, the majority of the reports estimate TSAA requirements and do not attempt to differentiate between needs for methionine and needs for TSAA.

For methionine per se, there is minimal research on which to base changes in the recommendation of 0.5 percent made in the previous edition. Of the reports in the literature for methionine requirements for the period from 0 to 21 days, two (Waldroup et al., 1979; Tillman and Pesti, 1985) are above the NRC (1984) recommendation, four (Dean and Scott, 1965; Robbins and Baker, 1980a; Moran, 1981; Thomas et al., 1985) are at or near that recommendation, and two (Klain et al., 1960; Hewitt and Lewis, 1972) are considerably below. For the period of 3 to 6 or 6 to 8 weeks, there is even less work on the requirements for methionine per se. The report of Moran (1981) plus estimates from a computer model (Hurwitz et al., 1978) would support retaining the previously recommended value until sufficient research has been conducted to support its modification.

Even greater diversity exists among estimates for TSAA requirements, as would be expected from the factors indicated above. Evaluation of results obtained from feeding crystalline amino acid diets certainly suggests a markedly lower TSAA value (Klain et al., 1960; Dean and Scott, 1965; Graber et al., 1971; Robbins and Baker, 1980a; Willis and Baker, 1980, 1981a; Baker et al., 1983). Although basing TSAA requirements on data using crystalline amino acids is perhaps not justifiable for practical diets, it does point out that the TSAA requirement could be less if a proper balance between available methionine and cystine existed.

In evaluating results from birds fed diets with intact ingredients, one can find values that support the change in recommended TSAA requirements for 0 to 3 weeks of age from 0.93 to 0.87 percent of the diet (Nelson et al., 1960; Hewitt and Lewis, 1972; Boomgaardt and Baker, 1973b,c; Woodham and Deans, 1975; Attia and Latshaw, 1979; Robbins and Baker, 1980a,b; Wheeler and Latshaw, 1981; Baker et al., 1983; Mitchell and Robbins, 1983; Thomas et al., 1985). In many of these studies, diets were supplemented with lysine, which permitted a lower protein level and reduced cystine content; therefore a surfeit of cystine was less likely to exist in these studies. Research is needed using practical ingredients to evaluate the separate needs for methionine and cystine in such diets.

For the 3- to 6-week period, most reports are in agreement with the previous recommendation (Graber et al., 1971; Holsheimer, 1981; Wheeler and Latshaw, 1981; Mitchell and Robbins, 1983). Two reports (Jensen et al., 1989; Mendonca and Jensen, 1989a) suggested a higher value, based in part on reduction in carcass fat content. There is minimal research on the TSAA needs from 6 to 8 weeks of age and little justification for change in the previous recommendation. More research is needed to delineate the separate needs for methionine and cystine in diets consisting of practical ingredients. This research may eliminate much of the current disagreement regarding TSAA needs of the broiler.

Arginine

The committee has made significant changes in its recommendation for the arginine requirements of broilers. It has eliminated from consideration all studies in which potential lysine:arginine antagonisms existed because such antagonisms are unlikely to occur with practical ingredients. Recommended requirements have been reduced to 1.25 and 1.1 percent for the 0-to 3- and 3- to 6- week growth periods, respectively.

The requirement of broilers from 0 to 3 weeks of age has been reduced from 1.2 to 1.1 percent of the diet. There has been little recent research on the requirements for this amino acid, but evaluation of previous research supports this reduction (Edwards et al., 1956; Boomgaardt and Baker, 1973a,b; Woodham and Deans, 1975; McNaughton et al., 1978; Burton and Waldroup, 1979). There is a dearth of published recommendations for the period from 3 to 6 weeks of age. Limited research, however, supports the previous recommendation (Holsheimer, 1981). Research results for the period from 6 to 8 weeks are inconclusive. Some work suggests that the previous requirement is low (Bornstein, 1970; Boomgaardt and Baker, 1973b), whereas other studies suggest that it is high (Chung et al., 1973; Twining et al., 1973; Thomas et al., 1977). Therefore, the previous requirement of 0.85 percent was not changed.

Tryptophan

Threonine

The committee has reduced the requirement for this amino acid from 0.23 to 0.2 percent for the broiler 0 to 3 weeks of age on the basis of its evaluation of published reports from many sources (Wilkening et al., 1947; Griminger et al., 1956; Klain et al., 1960; Boomgaardt and Baker, 1971; Hewitt and Lewis, 1972; Woodham and Deans, 1975; Steinhart and Kirchgessner, 1984; Smith and Waldroup, 1988a). Minimal research has been conducted on tryptophan requirements of the broiler at more than 3 weeks. Estimates from computer modeling (Hurwitz et al., 1978) suggest that lower levels of tryptophan may be required during this period, but these estimates have not been rigorously examined.

Considerable work has been conducted on the threonine requirement for broiler chickens in recent years. The majority of the studies support the present recommended value of 0.8 percent for broilers at 0 to 3 weeks of age (Uzu, 1986; Robbins, 1987; Thomas et al., 1987; Bertram et al., 1988; Smith and Waldroup, 1988b; Austic and Rangel-Lugo, 1989). Little research has been done on threonine requirements for broilers older than 3 weeks of age.

Isoleucine, Leucine, Valine, Phenylalanine, Phenylalanine plus Tyrosine, Glycine plus Serine, Histidine, and Proline

Sufficient studies with intact protein diets have been conducted to allow estimation of the requirements for leucine, isoleucine, and valine during the 0-to 3-week period (Almquist, 1947; D'Mello, 1974; Woodham and Deans, 1975; Thomas et al., 1988). Only a few studies with intact protein diets have been conducted for phenylalanine or phenylalanine plus tyrosine (Almquist, 1947; Woodham and Deans, 1975) and for glycine plus serine (Ngo and Coon, 1976) during the period from 0 to 3 weeks. Therefore the committee considered studies with purified diets (Fisher et al., 1957; Klain et al., 1960; Dean and Scott, 1965; Sasse and Baker, 1972; Coon et al., 1974; Baker et al., 1979) in estimating these requirements. The reported values for phenylalanine plus tyrosine and glycine plus serine vary greatly among studies, particularly in the latter instance. The histidine requirement for the period from 0 to 3 weeks is based primarily on purified diet studies (Klain et al., 1960; Dean and Scott, 1965; Baker et al., 1979). Although proline is not usually considered to be an essential amino acid for poultry, research has shown that young chicks may not synthesize sufficient proline to meet their requirements (Greene et al., 1962; Graber et al., 1970); thus, a dietary source of proline must be provided.

The committee found no published research data for this group of amino acids for the periods from 3 to 6 and 6 to 8 weeks, although the study by Mendonca and Jensen (1989b) suggested that the valine requirement for 3 to 6 weeks exceeds 0.70 percent. Since the lysine requirements for these growth periods are documented, the requirements for this group of amino acids for the periods from 3 to 6 and 6 to 8 weeks have been estimated from the lysine values by using the amino acid:lysine ratio for the period from 0 to 3 weeks. Thus the committee assumed that the ratios or patterns between these amino acids and lysine are relatively consistent throughout the growth stages.

Minerals

The extent of research conducted on different minerals and vitamins is often in direct proportion to their economic value or to the likelihood of encountering a dietary deficiency in practical diets. Thus there is a great deal of literature concerning the calcium and phosphorus requirements of the broiler and minimal research concerning requirements for trace elements. The precise requirements for minerals such as potassium, magnesium, and iron in practical diets are not well defined because practical diets are usually adequate or only slightly deficient in these minerals. The requirements for minerals such as iron, manganese, and zinc are much lower for chicks fed semipurified diets containing little or no phytate and fiber than for those fed

practical diets, mainly because of relatively poor bioavailability of some minerals in practical ingredients (Kratzer and Vohra, 1986). For example, the bioavailability of manganese is very low in most practical feedstuffs, and there is evidence that practical ingredients reduce the bioavailability of inorganic dietary manganese (Halpin and Baker, 1986). The bioavailability of minerals in inorganic mineral supplements also varies greatly. For example, the bioavailability of zinc in zinc sulfate is much higher than in zinc oxide (Wedekind and Baker, 1990). Consequently, the reported requirement for a mineral may vary among studies owing to differences in the bioavailability of the supplemental mineral source and the use of ingredients that interfere with utilization of the mineral under study.

Although substantial research has been conducted for most vitamins, the requirements for practical diets are not well defined. Practical diets are not markedly deficient in some vitamins. Consequently, several of the vitamin requirements are extrapolated from studies with purified or semipurified diets. The dietary levels needed to maximize some parameters may be higher than those needed to maximize growth. Examples of the latter include vitamin D₃ levels for maximum tibia ash (Waldroup et al., 1963a; Lofton and Soares, 1986), vitamin E levels for maximum immune response (Tengerdy and Nockels, 1973; Colnago et al., 1984), and riboflavin levels for prevention of leg paralysis (Ruiz and Harms, 1988a). It is generally assumed that vitamin requirements decrease with increasing age, although this relationship is not well documented with the exception of choline in purified diets.

Calcium and Phosphorus

No changes have been made in the previously recommended calcium requirement of the broiler chick. Requirements for phosphorus are expressed in terms of nonphytate phosphorus. The nonphytate phosphorus requirement for the chick at 0 to 3 weeks of age remains unchanged; however, recommended values for 3 to 6 and 6 to 8 weeks have been reduced on the basis of studies by O'Rourke et al. (1952), Waldroup et al. (1963b, 1974a), Twining et al. (1965), Sauveur (1978), Yoshida and Hoshii (1982a), and Tortuero and Diez Tardon (1983).

Potassium, Sodium, and Chlorine

A reduction has been made in the potassium requirement of the broiler. The potassium requirement of broilers fed a semipurified diet seems to be between 0.25 and 0.30 percent (Leach et al., 1959). The requirement for broilers fed a practical diet is not documented. The requirements for sodium and chlorine have been increased for the period from 0 to 3 weeks on the basis of recent studies. The requirements for these minerals seem to decrease with increasing age (Hurwitz et al., 1973; Edwards, 1984). The research of Edwards (1984) has justified a reduction in the levels of sodium and chlorine recommended for broilers at 6 to 8 weeks of age.

Magnesium

The reported requirement varies among studies. Part of this variation may be due to the calcium and phosphorus content of the diet. Although type of diet varies among studies, there does not seem to be a consistent relationship between diet type and the reported magnesium requirement. After 3 weeks of age, the values suggested by the committee are only estimates.

Iron and Copper

Although only a few studies have been conducted on iron requirements of broilers, the results are consistent and indicate that the requirement is approximately 80 mg/kg (Davis et al., 1968; McNaughton and Day, 1979). Southern and Baker (1982) report that the requirement was only 40 mg/kg for chicks fed a dextrose-case in diet. The copper requirement of 8 mg/kg is based on the study of McNaughton and Day (1979). The committee suggests only estimated values after 3 weeks of age.

Manganese

Values given for chicks of all ages show wide differences in requirements depending on the type of diet used. The requirement reported for chicks fed a semipurified dextrose-case in diet (14 mg/kg; Southern and Baker, 1983a) is much lower than that of chicks fed a diet containing practical ingredients (50 mg/kg/ Gallup and Norris, 1939a,b). **Zinc**

The zinc requirement of the young broiler is approximately 35 to 40 mg/kg in semipurified diets containing isolated soy protein or casein (Morrison and Sarett, 1958; O'Dell et al., 1958; Roberson and Shaible, 1958). Studies on corn-soybean meal and sesame meal diets suggest that the requirement is in excess of 40 mg/kg (Edwards et al., 1959; Lease et al., 1960; Zeigler et al., 1961). This conclusion was based primarily on small growth responses to zinc supplementation of the basal diets. The estimated zinc requirement is somewhat tenuous, because the estimate was based on calculated values for zinc content of the feed ingredients. Recent work by Wedekind et al. (1990) showed that the tibia zinc concentration of chicks fed a cornsoybean meal diet was increased markedly by dietary zinc supplementation but did not provide an estimate of requirements. The source of supplemental zinc used in most of the cited studies was zinc sulfate or zinc chloride. Availability of zinc varies among sources (Wedekind and Baker, 1990). In a diet containing egg white as the primary protein source, the requirement for zinc is only 14 to 18 mg/kg (Southern and Baker, 1983b; Dewar and Downie, 1984). Only tentative values are given for chicks after 3 weeks of age.

Iodine

Little research has been conducted to establish the iodine requirement of the broiler chick. The present requirement is based on the study by Creek et al. (1957).

Colonium

No changes have been made in the recommended dietary selenium concentrations for broiler chickens. A concentration of 0.15 mg selenium per kilogram of diet is recommended (Jensen et al., 1986).

Vitamins

Vitamin A

Tentative requirement values have been listed for all ages. The requirement estimates vary from 900 to 2,200 IU/kg among studies. Requirement values from more recent studies are lower than those from earlier ones.

Vitamin D

The requirement estimates for maximum growth are consistent among most studies. The requirement for maximum tibia ash, however, may be higher than that for growth (Waldroup et al., 1965; Lofton and Soares, 1986).

Vitamin I

Tentative values have been expressed for all ages. The results of the few studies conducted are variable. The requirement for prevention of encephalomalacia may be higher than that for growth only (Singsen et al., 1955). In addition, the requirement for maximum immune response may be much higher than that for growth (Tengerdy and Nockels, 1973; Colnago et al., 1984).

Vitamin K

The vitamin K requirements of the broiler are unchanged. The requirement is estimated at approximately 0.5 mg/kg for chicks fed glucose-isolated soy protein diets (Nelson and Norris, 1960, 1961b).

Riboflavin

The riboflavin requirements for broilers at 0 to 3 and 3 to 6 weeks of age (3.6 mg/kg of diet) are unchanged. Most studies indicate that the riboflavin requirement is 2.5 to 3.5 mg/kg. Several studies have indicated that the requirement for prevention of leg paralysis is higher than that for growth (Ruiz and Harms, 1988c).

Pantothenic Acid

Tentative requirements have been expressed for broilers of all ages. Little work has been done, and there is no good basis for the requirement in practical diets. The requirement is 5 mg/kg in a purified diet, and thus twice this level should be adequate for practical diets to compensate for potentially limited availability of pantothenic acid from the ingredients. Bauernfeind et al. (1942) reported that 7.5 to 10 mg of pantothenic acid per kilogram of diet was adequate for Leghorn chicks and that practical diets normally contain sufficient levels of this vitamin. Jukes and McElroy (1943) also reported a pantothenic acid requirement of 10 mg/kg of diet.

Niacin

The niacin requirement has been increased for broilers of all ages (see Table 2-5). Requirement estimates vary from 22 to greater than 55 mg/kg among studies using intact protein diets, with most estimates being in the range of approximately 25 to 35 mg/kg. The requirement is somewhat lower for purified diets (Ruiz and Harms, 1988a; 1990).

Vitamin R12

Few requirement studies have been conducted. The requirement seems to be approximately 0.01 mg/kg (Looi and Renner, 1974; Rys and Koreleski, 1974).

Choline

No changes have been made in the choline requirement of the broiler at 0 to 3 weeks of age, and tentative requirements are given for broilers at 3 to 6 and 6 to 8 weeks. Many studies have been conducted on choline requirements, and the requirement estimates are highly variable. Choline requirements are influenced by protein and sulfur amino acid content of the diet and by age of broilers. The requirements listed in Table 2-5 should be sufficient for practical diets containing adequate levels of methionine and cystine. The choline requirement is much lower and decreases markedly with increasing age for chicks fed purified diets (Molitoris and Baker, 1976; Lowry et al., 1987). A decrease in choline requirement with age has not been documented when practical diets are fed. Requirement values for broilers from 3 to 6 and 6 to 8 weeks, however, have been extrapolated from studies that used purified diets (Gardiner and Dewar, 1976; Molitoris and Baker, 1976; Lowry et al., 1987).

Biotin

No changes have been made in the biotin requirement of the broiler to 6 weeks of age, with a tentative requirement expressed for 6 to 8 weeks. Estimates from most studies indicate that the requirement is between 0.15 and 0.20 mg/kg.

Folic Acid

No changes have been made in the folic acid requirement of the broiler at 0 to 3 and 3 to 6 weeks of age, with tentative requirements expressed for 6 to 8 weeks. Requirement values vary among studies. Recent studies, however, indicate that the requirement is between 0.35 and 0.50 mg/kg when determined with semipurified diets. Thus the requirement is probably higher when birds are fed practical diets.

Thiamin

Tentative requirements are expressed for broilers of all ages. There is little research with broilers on which to base a requirement. The requirement seems to

be relatively low, and practical diets normally contain levels well in excess of the estimated requirements. *Pyridoxine*

The pyridoxine requirement has been increased for broilers of all ages, with a tentative requirement given for broilers at 6 to 8 weeks of age. Many studies have been conducted, with requirement estimates ranging from 2.3 to 3.5 mg/kg for intact protein diets. The requirement seems to be only approximately 1.0 mg/kg for a purified diet (Lee et al., 1976; Yen et al., 1976). The pyridoxine requirement, however, increases with an increase in dietary protein level (Gries and Scott, 1972a; Daghir and Shah, 1973).

Essential Fatty Acid Linoleic Acid

The linoleic acid requirement has been estimated as 1.0 percent of the diet (Balnave, 1970).

Broiler Breeder Pullets and Hens

Meat-type breeder hens will become obese if allowed ad libitum consumption of feed; therefore some form of nutrient limitation must be practiced. Most research has focused on feeding systems, with some form of quantitative restriction of intake generally practiced to maintain body weights within guidelines suggested by the breeder. Early research suggested that feeding bulky, high-fiber diets would successfully limit ME_n intake (Milby and Sherwood, 1953; Singsen et al., 1959; Isaacks et al., 1960; Summers et al., 1967; Fuller et al., 1973), but more recent studies indicate that modern broiler strains can consume large volumes of feed, a capability that makes this method impractical as a means of controlling weight (Waldroup et al., 1976a). Other studies have suggested that low-protein diets (Waldroup et al., 1966), diets low in specific amino acids (Singsen et al., 1964), or diets imbalanced in amino acids (Couch and Abbott, 1974) might control body weight when offered for ad libitum consumption, but such diets have not been readily accepted in commercial practice because of large variability in bird response.

Little research has been conducted to determine the specific nutrient requirements of meat-type females from hatch to maturity. Powell and Gehle (1975) estimated the tryptophan requirement of growing broiler breeder pullets; this seems to be the lone estimate of protein or amino acid needs during this age period. Harms (1980) and Harms and Wilson (1987) have suggested requirements for the growing pullet, but these have not been subjected to rigid evaluation. Therefore there is not sufficient research data on which to base suggested requirements for the growing and developing broiler breeder meat-type pullet at this time.

Nutrient requirement data presented in Table 2-7 for the broiler breeder meat-type hen are limited to those for which some documentation is available.

Protein And Amino Acids

Chickens do not require a specific level of crude protein per se; rather, they have a requirement for specific amino acids plus sufficient protein to supply either the nonessential amino acids themselves or amino nitrogen for their synthesis. In the instance of meat-type breeder hens, there is a paucity of research directed toward determining specific requirements for essential amino acids. Therefore a minimum crude protein intake is generally designated to provide adequate amounts of essential amino acids whose requirements are not adequately known.

Daily crude protein intakes of 18 to 20 g per hen seem adequate, assuming that essential amino acid needs are met (Waldroup et al., 1976b; Pearson and Herron, 1981; Spratt and Leeson, 1987), although more abundant levels (up to 23 g/day) may be needed during periods of highest productivity to achieve maximum egg mass yield (Jeroch et al., 1982; Schloffel et al., 1988). Because the size of the

TABLE 2-7 Nutrient Requirements of Meat-Type Hens for Breeding Purposes as Units per Hen per Day (90 percent dry matter)

Nutrient	Unit	Requirements	
Protein and amino acids		-	
Protein ^a	g	19.5	
Arginine	mg	1,110	
Histidine	mg	205	
Isoleucine	mg	850	
Leucine	mg	1,250	
Lysine	mg	765	
Methionine	mg	450	
Methionine + cystine	mg	700	
Phenylalanine	mg	610	
Phenylalanine + tyrosine	mg	1,112	
Threonine	mg	720	
Tryptophan	mg	190	
Valine	mg	750	
Minerals			
Calcium	g	4.0	
Chloride	mg	185	
Nonphytate phosphorus	mg	350	
Sodium	mg	150	
Vitamin	_		
Biotin	$\mu\mathrm{g}$	16	

NOTE: These are requirements for hens at peak production. Broiler breeder hens are usually fed on a controlled basis to maintain body weight within breeder guidelines. Daily energy consumption varies with age, stage of production, and environmental temperature but usually ranges between 400 and 450 ME kcal per hen at peak production. For nutrients not listed, see requirements for egg-type breeders (Table 2-3) as a guide. Where experimental data are lacking, values typeset in bold italics represent an estimate based on values obtained for other ages or related species.

^a Broilers do not have a requirement for crude protein per se. There, however, should be sufficient crude protein to ensure an adequate nitrogen supply for synthesis of nonessential amino acids. Suggested requirements for crude protein are typical of those derived with corn-soybean meal diets, and levels can be reduced somewhat when synthetic amino acids are used.

egg has a significant effect on the initial weight of the chick and its subsequent performance (Gardiner, 1973; Guill and Washburn, 1973; Proudfoot and Hulan, 1981), maximum egg weight during early production is an important economic factor. The protein requirement for dwarf breeder hens does not exceed 13.6 percent of the diet (Larbier et al., 1979).

Excessive crude protein intakes are to be avoided. Daily intakes of 27 g per hen had adverse effects on hatchability (Pearson and Herron, 1981, 1982). Lower crude protein intakes may be satisfactory if additional amino acid supplementation is practiced. Bornstein et al. (1979) calculated that a daily crude protein intake of 15.6 to 16.5 g per hen would be sufficient in terms of an ideal amino acid mixture. Performance of hens fed corn-soybean meal diets providing 16 g protein per day was not improved by supplemental lysine and methionine (Waldroup et al., 1976b).

Few trials have been conducted to determine specific amino acid requirements. Harms and Wilson (1980) reported a daily requirement for methionine of between 400 and 478 mg; 400 mg per day gave performance statistically equivalent to that at higher levels of intake. Halle et al. (1984), using nitrogen balance studies, indicated a TSAA need of 694 mg per day. For dwarf (dw) hens, Guillaume (1977) estimated daily methionine and lysine needs of 360 to 380 and 750 mg per hen, respectively.

Wilson and Harms (1984) obtained satisfactory performance with average daily intakes per hen of 682 mg of TSAA, 808 mg of lysine, 1,226 mg of arginine, and 223 mg of tryptophan, with 18.6 g of crude protein per day. Using various prediction models or equations, several workers have estimated amino acid requirements (Waldroup and Hazen, 1976; Waldroup et al., 1976c; Scott, 1977; Bornstein et al., 1979). In the study by Bornstein et al. (1979), hens fed diets formulated to meet these requirements on the basis of prediction models performed as well as those fed diets formulated in the conventional way.

Energy

Broiler breeder hens are usually fed on a controlled basis to maintain body weight within breeder guidelines. Daily energy consumption will vary with age, stage of production, and environmental temperature, but will usually range from 400 to 450 kcal *ME* per hen daily (Waldroup and Hazen, 1976; Waldroup et al., 1976a; Bornstein et al., 1979; Bornstein and Lev, 1982; Pearson and Herron, 1982; Spratt and Leeson, 1987; Spratt et al., 1990a,b).

Minerals And Vitamins

Calcium

Shell strength of eggs from meat-type hens increases as calcium level is increased (Mehring, 1965). Egg production and hatchability of meat-type hens on litter were not improved by feeding more than 3.91 g of calcium per hen daily (Wilson et al., 1980). One of the best determinants of calcium adequacy for breeder hens is egg specific gravity; eggs should have a specific gravity of 1.080 or greater for optimal hatchability (McDaniel et al., 1979). Since meat-type hens are usually given a daily allotment of feed early in the morning before significant eggshell calcification occurs, supplying a portion of the calcium in an afternoon feeding may improve eggshell quality (Farmer et al., 1983; Van Wambeke and DeGroote, 1986). Feeding the entire dietary allocation in the afternoon, however, may significantly reduce hatchability because of production of eggs with thicker eggshells (Brake, 1988).

Phosphorus

No significant differences in egg production, hatchability of fertile eggs, or specific gravity of eggs were noted in feeding from 532 to 1,244 mg total phosphorus per hen daily (163 to 863 mg nonphytate phosphorus per hen daily), although egg production was improved numerically by feeding 718 mg total phosphorus (338 mg nonphytate phosphorus) per day (Wilson et al., 1980). For both calcium and phosphorus, requirements for hens maintained in cages may be significantly greater than for hens on litter floors (Harms et al., 1961; Singsen et al., 1962; Harms et al., 1984).

Egg production, feed efficiency, egg weight, fertility, and hatchability of meat-type breeder hens were not improved by feeding more than 154 mg of sodium per hen daily (Damron et al., 1983); sodium intakes in excess of 320 mg per day were shown to reduce fertility.

Chlorine

Harms and Wilson (1984) reported that 254 mg of chlorine per hen daily resulted in the best overall performance of meat-type broiler hens, as measured by egg production and hatchability. However, performance on this intake did not differ significantly from performance on intakes of 185 mg per day.

Biotin

The requirement for biotin by the meat-type hen has been estimated to be 16 µg per hen daily. The hen may be considered to be receiving adequate biotin if the yolk biotin concentration is at least 550 ng/g (Whitehead et al., 1985).

Broiler Breeder Males

Historically, meat-type breeder cockerels have been grown with the females. Because of recent changes in genetics and management practices, an increasing number of males are being grown or fed separately. Males maintained in floor pens with natural mating may be fed from a separate feeding system; males maintained in cages for artificial

insemination may be individually fed. The major advantage of separate feeding is control of body weight and its subsequent impact on fertility and mating ability. Thus a set of nutrient requirements for male meat-type breeders, although limited in scope, is listed in Table 2-8. It should be noted that diets intended for use by the breeder hen, when fed to control male body weight, appear to have no detrimental effects on male performance.

Protein

Protein requirements of breeder cockerels have been evaluated during the growing and adult periods by using both White Leghorn and Meat-type cockerels. In studies with Single Comb White Leghorn (SCWL) cockerels, low crude protein levels fed during the grower period reduced body weights and delayed testicular development, but, on subsequent feeding of adequate protein, reproductive performance was not impaired (Wilson et al., 1965; Jones et al., 1967). Diets containing 12.4 percent crude protein offered for ad libitum consumption to broiler breeder males during the period of 7 to 21 weeks of age were adequate for development of the reproductive system and subsequent reproductive performance (Wilson et al., 1971). Broiler breeder males can be fed 12 to 14 percent crude protein on a restricted basis after 4 weeks of age with no adverse effects on final body weight, sexual maturity, or semen quality; a greater number of males produced semen through 53 weeks when fed 12 percent crude protein than when fed higher levels (Wilson et al., 1987a). In a subsequent study (Wilson et al., 1987b), a 9 percent crude protein diet fed beginning at 43 days and continuing through 50 weeks was adequate to support maximum reproductive performance. In both these studies, amino acid content was maintained at a constant percentage of the protein level. There were no differences in semen characteristics of broiler breeder males fed 12 to 18 percent crude protein during the period from 4 to 20 weeks; males fed 15 percent crude protein during the period from 1 to 4 weeks had significantly higher fertility from 24 to 27 weeks than did males fed 20 percent crude protein (Vaughters et al., 1987). Semen production of broiler breeder males kept in cages can be maintained from 20 to 60 weeks on a daily protein intake of 10.9 to 14.8 g per day (Buckner and Savage, 1986).

TABLE 2-8 Nutrient Requirements of Meat-Type Males for Breeding Purposes as Percentages or Units per Rooster per Day (90 percent dry matter)

		Age (weeks))		
	Unit	0 to 4	4 to 20	20 to 60	
Metabolizable energy ^a	kcal	_	_	350 to 400	
Protein and amino acids					
Protein ^b	0/0	15.00	12.00	_	
Lysine ^c	%	0.79	0.64	_	
Methionine ^c	0/0	0.36	0.31	_	
Methionine + cystine ^c	0/0	0.61	0.49	_	
Minerals					
Calcium	0/0	0.90	0.90	_	
Nonphytate phosphorus	0/0	0.45	0.45	_	
Protein and amino acids					
Protein	g	_	_	12	
Arginine ^c	mg	_	_	680	
Lysine ^c	mg	_	_	475	
Methionine ^c	mg	_	_	340	
Methionine + cystine ^c	mg	_	_	490	
Minerals	Č				
Calcium	mg	_	_	200	
Nonphytate phosphorus	mg	_	_	110	

NOTE: For nutrients not listed, see requirements for egg-type pullets (Table 2-3) as a guide. Where experimental data are lacking, values typeset in bold italics represent an estimate based on values obtained for other ages or related species.

Energy

Daily energy intakes of 400 (McCartney and Brown, 1980) and 458 kcal *ME* per bird (Brown and McCartney, 1983) have been reported as adequate for broiler breeder males maintained on litter. For broiler breeder males maintained in cages, 346 (Brown and McCartney, 1986) or 358 kcal *ME* per bird daily (Buckner et al., 1986) were sufficient.

Minerals

The calcium requirement of the breeder cockerel is much lower than that of the hen, but levels fed to the hen apparently are not detrimental to the reproductive performance of the male. Wilson et al. (1969) indicated that the calcium requirement of SCWL cockerels did not exceed 0.2 percent, but that levels as high as 3 percent were not detrimental. In calcium balance studies with SCWL cockerels, Norris et al. (1972) found that the daily requirement was 7.98 mg per kg of body weight. Kappleman et al. (1982) concluded that there were no differences in the reproductive performance of broiler breeder cockerels fed 0.5 to 7 g of calcium daily per bird.

Phosphorus

Norris et al. (1972) found that diets containing 0.1 percent nonphytate phosphorus were satisfactory for SCWL cockerels. Bootwalla and Harms (1989) found that no more than 110 mg of nonphytate phosphorus per bird daily were needed for maintaining reproductive capacity and bone integrity in broiler breeder cockerels.

^a Energy needs are influenced by the environment and the housing system. These factors must be adjusted as required to maintain the body weight recommended by the breeder.

^b Broilers do not have a requirement for crude protein per se. There, however, should be sufficient crude protein to ensure an adequate nitrogen supply for synthesis of nonessential amino acids. Suggested requirements for crude protein are typical of those derived with corn-soybean meal diets, and levels can be reduced somewhat when synthetic amino acids are used.

^c Amino acid requirements estimated by using the model of Smith (1978).

3

Nutrient Requirements of Turkeys

The nutrient requirements of turkeys are divided into needs of birds used as a source of growth and needs of those for reproduction. These two categories differ largely in the proportion of nutrients devoted to productive use as opposed to those used for maintenance activities.

Requirement values given in Table 3-1 are usually minimum levels that satisfy general productive activities and(or) prevent deficiency symptoms. The values given often represent an approximation of values from more than one study. Where information is lacking, italicized values represent an estimate based on values obtained for other ages or related species. Values selected by the committee as best representing the requirement were those for which the research was recent and performed under practical terms in which all nutrient needs in addition to the nutrient in question were satisfied. The experimental data from the peer-reviewed scientific literature that are the basis for the committee's nutrient requirement recommendations are given in Appendix Table A-4.

STARTING AND GROWING TURKEYS

The growth rate of turkeys has increased greatly during the past decade. Approximate live body weights per age and feed consumption data of contemporary turkeys are shown in Table 3-2. Increased growth rates have occurred through the efforts of the major commercial breeders, and parent stock has increased in size as well, particularly the hen. Further processing of the carcass into convenience products also has expanded and now occupies the greatest part of total production.

Substantial improvements in the rates of gain and feed efficiencies of commercially available strains have occurred during the last decade. The nutrient requirements given in Table 3-1 are based on earlier research and the chronological age of the experimental turkeys used at that time. For the most part, these nutrient levels are still being employed by the industry at large; however, because of improvements in growth rates these levels are now being used at earlier ages. Such changes have not been experimentally verified as being appropriate, but commercial results indicate satisfactory performance. Examples of these age adjustments for male and female turkeys are shown in Table 3-1, footnotes a and b, respectively.

Commercially available strains of turkey may differ in the chronology of their development. The nutrient requirements given on Table 3-1 represent the approximate needs for development of large-type turkeys. Medium- and small-type turkeys finish progressively earlier than the large. For the given nutrient levels to be employed effectively, those levels representing each age interval should be provided according to the corresponding stages of development.

The requirements are expressed as concentrations in the feed. These concentrations are such that adequate total intake is ensured and the nutrient balance is favorable. Both factors are necessary. A balanced feed having lower nutrient concentrations than shown may not permit sufficient intake to meet the bird's absolute need. Conversely, an increased concentration of nutrients ensures adequacy but may not be cost effective.

Pelleting is widely practiced in feed manufacturing, and feeding a pelleted diet usually leads to an improvement in performance. Pelleting may increase nutrient digestibility in some constituent feedstuffs; however, the primary result is improved use of the nutrients already available apparently because of reduced physical activity by the bird. Generally, pelleting facilitates feed intake, increases net energy of production from metabolizable energy (*ME*), and reduces overall feed wastage (Moran, 1989b). These benefits are accentuated as feed nutrient level decreases and as birds become progressively older, provided the feed remains in pelleted form.

TABLE 3-1 Nutrient Requirements of Turkeys as Percentages or Units per Kilogram of Diet (90 percent dry matter)

		Growing To	ırkeys, Males	and Females					- Common
		0 to 4 Weeks ^a ; 0 to 4 Weeks ^b ;	4 to 8 Weeks ^a ; 4 to 8 Weeks ^b ;	8 to 12 Weeks ^a ; 8 to 11 Weeks ^b ;	12 to 16 Weeks"; 11 to 14 Weeks ^b ;	16 to 20 Weeks ^a ; 14 to 17 Weeks ^b :	20 to 24 Weeks ^a ; 17 to 20 Weeks ^b :	Breeders Holding;	Laying Her
Nutrient	Unit	$2,800^{c}$	$2,900^{c}$	3,000°	3,100°	$3,200^{c}$	3,300°	2,900°	2,900
Protein and amino acids		·······	***************************************						
Protein ^d	%	28.0	26	22	19	16.5	14	12	14
Arginine	%	1.6	1.4	1.1	0.9	0.75	0.6	0.5	0.6
Glycine + serine	%	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.5
Histidine	%	0.58	0.5	0.4	0.3	0.25	0.2	0.2	0.3
Isoleucine	%	1.1	1.0	0.8	0.6	0.5	0.45	0.4	0.5
Leucine	%	1.9	1.75	1.5	1.25	1.0	0.8	0.5	0.5
Lysine	%	1.6	1.5	1.3	1.0	0.8	0.65	0.5	0.6
Methionine	%	0.55	0.45	0.4	0.35	0.25	0.25	0.3	0.0
Methionine + cystine	%	1.05	0.95	0.8	0.65	0.55	0.25		
Phenylalanine	%	1.0	0.9	0.8	0.05	0.6		0.4	0.4
Phenylalanine + tyrosine	%	1.8	1.6	1.2			0.5	0.4	0.55
Threonine	%	1.0	0.95		1.0	0.9	0.9	0.8	1.0
Tryptophan	%	0.26	0.33	0.8 0.2	0.75	0.6	0.5	0.4	0.45
Valine	%	1.2	1.1		0.18	0.15	0.13	0.1	0.13
Fat Salasana and Anna	nemarkaniauka		atherine agreem	0.9	0.8	0.7	0.6	0.5	0.58
Linoleic acid	%	1.0							
Macrominerals	Higo to the state of	Establish Fig. 12	1.0	0.8	0.8	0.8	0.8	0.8	
Calcium ^e	%	10							
	%	1.2	1.0	0.85	0.75	0.65	0.55	0.5	2.25
Nonphytate phosphorus f Potassium		0.6	0.5	0.42	0.38	0.32	0.28	0.25	0.35
Sodium	%	0.7	0.6	0.5	0.5	0.4	0.4	0.4	0.6
	%	0.17	0.15	0.12	0.12	0.12	0.12	0.12	0.12
Chlorine	%	0.15	0.14	0.14	0.12	0.12	0.12	0.12	0.12
Magnesium	mg	500	500	500	500	500	500	500	500
Trace minerals									
Manganese	mg	60	60	60	60	60	60	60	60
Zinc	mg	70	65	50	40	40	40	40	65
Iron	mg	80	60	60	60	50	50	50	60
Copper	mg	8	8	6	6	6	6	6	8
Iodine	mg	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Selenium	mg	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Fat soluble vitamins			-1	ment of the section o	71211201217090001100	reserved and an arrange	144164615555		Transfer to the state of the st
A	IU	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
D_3^g	ICU	1,100	1,100	1,100	1,100	1,100	1,100	1,100	1,100
E	IU	12	12	10	10	10	10	. 10	25
K	mg	1.75	1.5	1.0	0.75	0.75	0.50	0.5	1.0
Water soluble vitamins		obabasingueba	ochedavis vselvi:	islabada Namara			file showing that the life	eskirovanaki	1.0 0-53-53-53-53-53-5
B _{i2}	mo	0.003	0.003	0.003	n 000	0.000	0.000		
Biotin ^h	mg mg	0.25	0.003	0.125	0.003	0.003	0.003	0.003	0.003
Choline	mg	1,600	1,400		0.125	0.100	0.100	0.100	0.20
Folacin		A STATE OF THE PARTY OF THE PAR		1,100	1,100	950	800	800	1,000
Niacin	mg	1.0	1.0	0.8	0.8	0.7	0.7	0.7	1.0
Pantothenic acid	mg	60.0	60.0	50.0	50.0	40.0	40.0	40.0	40.0
Pyridoxine	mg	10.0	9.0	9.0	9.0	9.0	9.0	9.0	16.0
ryndoxine Riboflavin	mg	4.5	4.5	3.5	3.5	3.0	3.0	3.0	4.0
The state of the s	mg	4.0	3.6	3.0	3.0	2.5	2.5	2.5	4.0
Thiamin	mg	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0

NOTE: Where experimental data are lacking, values typeset in bold italics represent estimates based on values obtained from other ages or relate species or from modeling experiments.

^aThe age intervals for nutrient requirements of males are based on actual chronology from previous research. Genetic improvements in body weight gain have led to an earlier implementation of these levels, at 0 to 3, 3 to 6, 6 to 9, 9 to 12, 12 to 15, and 15 to 18 weeks, respectively, by the industry at large.

^bThe age intervals for nutrient requirements of females are based on actual chronology from previous research. Genetic improvements in body weight gain have led to an earlier implementation of these levels, at 0 to 3, 3 to 6, 6 to 9, 9 to 12, 12 to 14, and 14 to 16 weeks, respectively, by the industry at large.

^cThese are approximate metabolizable energy (ME) values provided with typical corn-soybean-meal-based feeds, expressed in keal ME_n/kg diet. Such energy, when accompanied by the nutrient levels suggested, is expected to provide near-maximum growth, particularly with pelleted feed.

^dTurkeys do not have a requirement for crude protein per se. There, however, should be sufficient crude protein to ensure an adequate nitrogen supply for synthesis of nonessential amino acids. Suggested requirements for crude protein are typical of those derived with corn-soybean meal diets, and levels can be reduced when synthetic amino acids are used.

[&]quot;The calcium requirement may be increased when diets contain high levels of phytate phosphorus (Nelson, 1984)."

 $f_{\hbox{Organic}}$ phosphorus is generally considered to be associated with phytin and of limited availability.

^gThese concentrations of vitamin D are considered satisfactory when the associated calcium and phosphorus levels are used.

^hRequirement may increase with wheat-based diets.

Age (weeks)			Feed Cons Week (kg)	sumption per)	n per Cumulative Feed Consumption (kg)		ME Consu (Mcal)	imption per Week
	Male	Female	Male	Female	Male	Female	Male	Female
1	0.12	0.12	0.10	0.10	0.10	0.10	0.28	0.28
2	0.25	0.24	0.19	0.18	0.29	0.28	0.53	0.5
3	0.50	0.46	0.37	0.34	0.66	0.62	1.0	1.0
4	1.0	0.9	0.70	0.59	1.36	1.21	2.0	1.7
5	1.6	1.4	0.85	0.64	2.21	1.85	2.5	1.9
6	2.2	1.8	1.10	0.80	3.31	2.65	3.2	2.3
7	3.1	2.3	1.40	0.98	4.71	3.63	4.1	2.8
8	4.0	3.0	1.73	1.21	6.44	4.84	5.0	3.5
9	5.0	3.7	2.00	1.42	8.44	6.26	6.0	4.3
10	6.0	4.4	2.34	1.70	10.78	7.96	7.0	5.1
11	7.1	5.2	2.67	1.98	13.45	9.94	8.0	5.9
12	8.2	6.0	2.99	2.18	16.44	12.12	9.0	6.8
13	9.3	6.8	3.20	2.44	19.64	14.56	9.9	7.6
14	10.5	7.5	3.47	2.69	23.11	17.25	10.8	8.4
15	11.5	8.3	3.73	2.81	26.84	20.06	11.6	9.0
16	12.6	8.9	3.97	3.00	30.81	23.06	12.3	9.6
17	13.5	9.6	4.08	3.14	34.89	26.20	13.1	10.1
18	14.4	10.2	4.30	3.18	39.19	29.38	13.8	10.5
19	15.2	10.9	4.52	3.31	43.71	32.69	14.5	10.9
20	16.1	11.5	4.74	3.40	48.45	36.09	15.2	11.2
21	17.0	a	4.81	a	53.26	a	15.9	a
22	17.9	a	5.00	a	58.26	a	16.5	a
23	18.6	a	5.15	a	63.41	a	17.1	a
24	19.4	a	5.28	a	68.69	a	17.4	a

TABLE 3-2 Growth Rate and Feed and Energy Consumption of Large-Type Turkeys

Energy

In calculating the total metabolizable energy for the complete feed, the metabolizable energies provided by each feedstuff are assumed to be additive. The ME_n content of the complete feed influences feed intake, which, in turn, may influence the concentrations of most other nutrients that are needed to satisfy requirements. An inverse relationship exists between the ME_n concentration of the diet and feed consumption of turkeys. However, as discussed in Chapter 1 (Setting Dietary Levels), changes in dietary ME_n concentration and thus, the use of specific nutrient-to-dietary ME_n ratios in formulating turkey diets is questionable, especially when economical growth and feed efficiency are primary objectives (Pesti and Fletcher, 1983; Sell et al., 1985; 1989).

The ME_n levels given in Table 3-2 at each age period are not intended to be absolute but to establish a feed intake reference for other nutrients. The energy and amino acid levels given would be satisfied largely when corn and soybean meal are combined with a small amount of added fat, in turn permitting near-maximum growth. Nutrient levels may be increased without adversely affecting performance; however, a moderate reduction in nutrient levels would likely require pelleting of the associated feed to prevent adverse effects on growth rate.

Net energy of production is difficult to estimate because maintenance expenditures vary extensively. Environmental temperature is one of the most influential factors affecting maintenance, which, in turn, may lead to changes in feed intake.

Changes in the maintenance energy requirement in response to environmental temperature may not be linear. Hurwitz et al. (1980) observed that the maintenance energy requirement for both sexes of turkeys, during the period from 32 to 60 days of age, was between 2.45 and 2.70 kcal/g⁶⁷ of body weight at 12°C. This requirement progressively decreased from 12° to 24°C, then remained constant between 24° and 28°C and increased thereafter through 35°C. The maintenance energy need in response to temperature also differs with age. In a study on the 20-week-old male turkey, Hurwitz et al. (1983b) found the requirement at 10°C to approximate 2.15 kcal/g⁶⁷, but unlike the requirement for the younger bird (32 to 60 days) there was an uninterrupted decrease through to 35°C. In both of these studies the advantage to net energy of production increased as temperature increased; however, feed intake and growth were not altered accordingly.

Protein And Amino Acids

A protein requirement of 28 percent for starting poults is supported by the work of Lloyd et al. (1949), Atkinson et al. (1957), Herz et al. (1975a), and Richter et al. (1980). Reduced levels of protein can decrease early growth, but if the protein reduction is moderate, compensatory gain of large-type turkeys prior to marketing may overcome the deficit. The progressive reduction in the protein requirement as the turkey grows is well established. A level of 12 percent protein with 2,900 kcal *ME*/kg for holding turkeys prior to reproduction is consistent in terms of the protein:energy ratio with the 14 percent protein at 3,526 kcal *ME*_n reported by Meyer et al. (1980a). The protein need for egg production has been observed to vary from 10 to 18 percent of the diet, with the value of 14 percent chosen as being the most representative.

Research on the amino acid requirements of turkeys has largely been conducted on the starting poult. With the exception of lysine and the sulfur amino acids, little experimentation has been done to determine the amino acid requirements of growing turkeys. Fisher (1982a) and Hurwitz et al. (1983a) employed body analyses and feed intake together with calculated maintenance needs to estimate requirements. The protein requirements shown in Table 3-1 are based on either actual experimentation, modeling, or are calculated as a ratio with lysine when the requirement for lysine at the ages in question has been measured experimentally.

The starting poult's arginine requirement of 1.6 percent of the diet is supported by the research of Almquist (1952) and Warnick and Anderson (1973) and the modeling of Hurwitz et al. (1983a). Dunkelgod et al. (1970) and D'Mello and Emmans (1975) reported higher arginine requirement

^a No data given because females are usually not marketed after 20 weeks of age.

values when they fed amino acid mixtures or diets based on wheat-corn gluten meal, respectively.

The isoleucine requirement listed for starting turkeys (1 percent of the diet) is based largely on the research of Warnick and Anderson (1973) and agrees well with the value of 1.03 percent obtained from modeling by Hurwitz et al. (1983a). Similarly, the leucine requirement (1.9 percent of the diet) is based on the determined value of 1.86 percent reported by Warnick and Anderson (1973) and 1.96 percent from modeling by Hurwitz et al. (1983a).

The lysine and sulfur amino acid needs have been well investigated because of their frequent limitation under practical conditions. Starting poults require 1.6 percent lysine in the diet. This value represents an average of the determined values 1.55 percent (Balloun and Phillips, 1957b), 1.6 percent (Kummero et al., 1971), 1.68 percent (Warnick and Anderson, 1973), 1.5 percent (Tuttle and Balloun, 1974), and 1.55 percent (D'Mello and Emmans, 1975). The value of 1.42 percent obtained by modeling (Hurwitz et al., 1973) is noticeably lower than those measured by bioassay. Lysine needs after the first 4 weeks of life have been derived mainly from the research of Tuttle and Balloun (1974), Jensen et al. (1976), and Potter et al. (1981).

The poult's requirement of 0.55 percent methionine in the diet is greater than the 0.53 percent given in the previous edition of this report and is the value that best represents the reports of Almquist (1952), Baldini et al. (1957), and Murillo and Jensen (1976a). Requirement values beyond starting were provided from the experimentation of Murillo and Jensen (1976a) and Behrends and Waibel (1980). The total sulfur amino acid requirement value of 1.1 percent for starting poults was derived from the observations of 1.04 percent by Warnick and Anderson (1973), 1.05 percent by Murillo and Jensen (1976b), 1.10 percent by Potter and Shelton (1979), and 1.1 percent by Behrends and Waibel (1980), as well as the 1.05 percent from modeling by Hurwitz et al. (1983a). Requirement values specifically for methionine subsequent to starting largely represent the observed needs to optimize performance as reported by Potter and Shelton (1979, 1980), Murillo and Jensen (1976a), and Behrends and Waibel (1980), together with the modeling estimate by Hurwitz et al. (1983a).

Mineral

The calcium requirement determined with starting poults has been reported to be as high as 1.7 percent (Motzok and Slinger, 1948) and 1.5 percent (Wilcox et al., 1953) and as low as 1.0 percent (Slinger et al., 1961) and 0.81 percent (Formica et al., 1962). Neagle et al. (1968) reported a requirement of 1.2 percent dietary calcium when total phosphorus and vitamin D levels were 0.8 percent and 1,100 ICU/kg of diet, respectively. The latter calcium requirement for growing turkeys has been substantiated by Nelson et al. (1961), Sullivan (1961), and Formica et al. (1962). Hens in egg production need approximately 2.25 percent calcium in the feed, as shown by Balloun and Miller (1964a), Arends et al. (1967), Potter et al. (1974), and Waldroup et al. (1974b).

The nonphytate phosphorus requirement of 0.6 percent for starting poults agrees with the research reported by Almquist (1954), Bailey et al. (1986), and Stevens et al. (1986). This value has been shown to decrease with age (Day and Dilworth, 1962; Sullivan, 1962). Reported nonphytate phosphorus requirements for breeder hens in egg production range from 0.3 percent (Waldroup et al., 1974b; Slaugh et al., 1989) to 0.55 percent (Atkinson et al., 1976). The latter relatively high value probably occurred because of a low phosphorus availability in the feedstuffs employed; thus 0.35 percent was selected to represent the requirement.

The magnesium requirement, given as 500 mg/kg of diet, has been reduced from the 600 mg listed in the previous edition to better reflect the value of 475 mg/kg reported by Sullivan (1964). The manganese requirement may vary with the type of diet and supplement used. The recommended value of 60 mg/kg is the same as the requirement observed by Kealy and Sullivan (1966). The same level was reported by Atkinson et al. (1967b) as the requirement for breeder hens. Zinc needs are known to depend on the levels of other dietary constituents. The recommended level of 70 mg/kg was determined with practical diets having phytic acid present, whereas 41 mg/kg were adequate in a purified diet where phytic acid was absent (Dewar and Downie, 1984).

Vitamins

The previous requirement for vitamin A was listed as 4,000 IU/kg of diet. Vitamin A at 5,000 IU/kg of feed provides for maximum growth performance and liver storage (Prinz et al., 1986) and has been chosen to represent the requirement, although 2,000 IU/kg will also support optimal performance (Prinz et al., 1983). Vitamin A at 5,000 IU/kg is also recommended for breeder hens, but lower levels (about 2,500 IU/kg) have been shown to maintain egg production, hatchability, and survival (Stoewsand and Scott, 1961; Jensen et al., 1965).

Vitamin D_3 at 900 IU/kg of feed has been shown to be more than adequate for the starting poult in most studies (Baird and Greene, 1935; Hammond, 1941; Stadelman et al., 1950); however, Neagle et al. (1968) found that 1,100 IU/kg was necessary to maximize both growth and toe ash concentration when the diet contained 1.2 percent calcium and 0.8 percent total phosphorus. Discrepancies in vitamin D_3 needs of poults

may relate to the level of this vitamin in the breeder hen's feed. Stevens et al. (1984) observed that 900 IU/kg in the breeder hen's diet supported maximum egg yield, hatchability, and subsequent survival of the poult, but liver storage was considered marginal.

The value given as the vitamin E requirement of starting turkeys is the same as that reported by Scott et al. (1965) when the dietary selenium concentration was 0.1 mg/kg. The vitamin E requirement of breeder hens was observed to be twice this level (24 IU/kg; Jensen and McGinnis, 1957). Extensive increases in vitamin E well above requirements for optimal growth are necessary in order to provide the carcass meaningful protection against oxidative rancidity when carcasses are held in frozen storage (Sheldon, 1984).

All other vitamin requirements have been determined only for the first 4 or 8 weeks of age. In some instances, there is good agreement among the researchers on the requirement value but, in other instances, considerable disparity exists. The committee has revised the requirement values given for several vitamins either to better represent old information or to reflect new reports. Vitamin K at 1 mg/kg of diet was increased to 1.75 mg/kg to be the same as the value observed by Griminger (1957) to optimize blood prothrombin time. The new value is considered adequate under practical conditions because poults used by Griminger (1957) were reared in wire-floored pens and coprophagy, as an additional source of vitamin K, was prevented.

Ruiz and Harms (1989a) reported that the poult's requirement for riboflavin was greater than 3.5 mg/kg of diet. The value given in the previous edition was 3.6 mg/kg, and this has been increased to 4.0 mg/kg. Conversely, Ruiz and Harms (1989b) reported the pantothenic acid requirement to be less than 8.6 mg/kg of diet; thus the previously listed requirement of 11 mg/kg was reduced to 10 mg/kg.

The dietary need for choline is known to be influenced by the levels of other nutrients involved in methyl group metabolism. The previously listed choline requirement was 1,900 mg/kg of diet, which was largely based on the report of Evans (1943), wherein the levels of ancillary nutrients influential to methyl group metabolism were not ensured. Harms and Miles (1984) reported that the choline requirement for poults between 0 and 4 weeks of age was less than 1,490 mg/kg of diet. Blair et al. (1986), using turkeys between 4 and 8 weeks of age, reported that the requirement was less than 1,250 mg/kg. To reflect these observations, the present requirement has been reduced to 1,600 and 1,400 mg/kg of diet for the period from 0 to 4 and 4 to 8 weeks, respectively.

The requirements for many vitamins after 8 weeks of age have not been determined for turkeys. Only measurements of the vitamin D_3 , pantothenic acid, biotin, and folacin requirements have been conducted on breeder hens.

	Females			Males	
Age (weeks)	Weight (kg)	Egg Production (%)	Feed per Turkey Daily (g)	Weight (kg)	Feed per Turkey Daily (g)
20	8.4	0	260	14.3	500
25	9.8	0	320	16.4	570
30	11.1	0^a	310	19.1	630
35	11.1	68	280	20.7	620
0	10.8	64	280	21.8	570
15	10.5	58	280	22.5	550
0	10.5	52	290	23.2	560
5	10.5	45	290	23.9	570
50	10.6	38	290	24.5	580

TABLE 3-3 Body Weights and Feed Consumption of Large-Type Turkeys during the Holding and Breeding Periods

NOTE: These values are based on experimental data involving "in-season" egg production (that is, November through July) of commercial stock. It is estimated that summer breeders would produce 70 to 90 percent as many eggs and consume 60 to 80 percent as much feed as in-season breeders.

Requirement values for other vitamins were estimated from experimentally determined values for younger ages and changes in requirements observed with chickens.

TURKEY BREEDERS

Through the first 12 to 16 weeks of age, male and female turkeys being grown for reproductive purposes generally have been fed the same diet as birds intended for meat production. Thereafter, various efforts have been implemented to avoid obesity. Limiting body weight gain of males by either restricting feed access (Krueger et al., 1978) or providing a low-protein feed for ad libitum consumption (Meyer et al., 1980b) is effective as long as the practices are not so severe that they delay semen production. Typical nutrient levels employed from this time through the active breeder period correspond to those of the holding feed, as given in Table 3-1.

Excess body weight of hens is less of a problem than with males because an extensive loss of body weight occurs with hens as time in lay progresses. Table 3-3 includes a sample of hen performance through the breeder period. Inadequate body weight gain prior to stimulatory lighting delays the onset of lay and reduces egg production (Krueger et al., 1978; Meyer et al., 1980a). Starting both sexes on feed having the lowest concentration of nutrients for which a balance can be formulated and continuing this regimen to and through the breeder period on an ad libitum consumption basis minimizes the likelihood of obesity without adversely affecting performance (Ferket and Moran, 1985, 1986).

^a Light stimulation is begun at this point.

4

Nutrient Requirements of Geese

Geese are reared under a variety of feeding programs. In the production of "farm geese," the goslings are given starter feed for about 2 weeks and then allowed to forage for a variety of pasture and grain feedstuffs. Under these conditions, they are marketable at about 18 weeks. In another program, the goslings are fed limited amounts of prepared feed throughout the growing period but are still allowed considerable foraging. These geese are marketed at about 14 weeks of age, following liberal feeding of a high-energy finishing diet. Geese may also be provided feed for ad libitum consumption in confinement and marketed as "junior" or "green geese" at about 10 weeks. A program practiced in European countries involves the production of goose livers for paté de foie gras. The geese are grown to about 12 weeks and are then force-fed a high-energy diet for the production of livers of high-fat content. Geese for breeding purposes are fed holding and breeding diets for the intensive production of fertile eggs.

The nutrient requirements data presented in Table 4-1 are primarily applicable to geese reared in confinement. The nitrogen-corrected metabolizable energy (ME_n) concentrations heading each column are not requirements; instead they represent what are considered typical dietary ME_n values used for rearing geese commercially. Feed consumption by growing geese decreases as dietary ME_n level increases, but not in direct proportion (Stevenson, 1985). Consequently, geese fed high-energy diets consume greater amounts of energy, and deposit more body fat, than do geese fed lower-energy diets (Roberson and Francis, 1963a; Stevenson, 1985).

Data obtained from research done since 1980 by using fast-growing geese were used to establish the protein requirements given in Table 4-1. These data show that starting geese (0 to 4 weeks of age) require no more than 20 percent protein (Allen, 1981; Nitsan et al., 1983; Summers et al., 1987) for satisfactory growth, carcass composition, and feathering. Earlier research (Roberson and Francis, 1963a,b) with White Chinese geese had indicated that the protein requirement during the period from 0 to 6 weeks was 24 percent. In view of recent data, it is questionable whether this higher requirement applies to modern, commercial geese. No research data on the protein requirement of geese used for breeding or egg production were found in the literature.

Little information has been published describing the amino acid, mineral, or vitamin requirements of geese (Appendix Table A-5). Roberson and Francis (1966) reported that 0.90 percent lysine was needed for maximum growth and efficiency of feed utilization by 0- to 3-week-old White Chinese geese fed a diet containing

TABLE 4-1 Nutrient Requirements of Geese as Percentages or Units per Kilogram of Diet (90	narcant dry matter)

Nutrients	Unit	0 to 4 Weeks; 2,900 ^a	After 4 Weeks; 3,000 ^a	Breeding; 2,900a
Protein and amino acids				-
Protein	%	20	15	15
Lysine	%	1.0	0.85	0.6
Methionine + cystine	%	0.60	0.50	0.50
Macrominerals				
Calcium	%	0.65	0.60	2.25
Nonphytate phosphorus	%	0.30	0.3	0.3
Fat soluble vitamins				
A	IU	1,500	1,500	4,000
D_3	IU	200	200	200
Water soluble vitamins				
Choline	mg	1,500	1,000	?
Niacin	mg	65.0	35.0	20.0
Pantothenic acid	mg	15.0	10.0	10.0
Riboflavin	mg	3.8	2.5	4.0

NOTE: For nutrients not listed or those for which no values are given, see requirements of chickens (Table 2-5) as a guide. Where experimental data are lacking, values typeset in bold italic represent an estimate based on values obtained for other ages or species.

These are typical dietary energy concentrations expressed in kcal ME_p/kg diet.

20 percent protein and 2,950 kcal ME_n/kg . More recently, Mateova et al. (1980) found that 1.10 percent lysine was satisfactory for starting geese. Mateova et al. (1980) also reported that from 4 to 8 weeks of age geese needed 0.85 percent lysine in a diet containing 2,945 kcal ME_n/kg . Nitsan et al. (1983) used body composition, maintenance needs, and absorption rate of amino acids to estimate the lysine requirements of geese. Subsequent testing of the results in feeding trials indicated that goslings required 1.07 and 0.60 percent lysine during the period from 0 to 2 and 2 to 7 weeks, respectively. Requirements of geese for other essential amino acids were estimated by Nitsan et al. (1983), and the results indicated that 0.58 percent total sulfur amino acids (TSAA) and 0.29 percent methionine were needed from 0 to 2 weeks of age and 0.47 percent TSAA and 0.15 percent methionine were required from 2 to 7 weeks.

Calcium and total phosphorus requirements of geese were estimated at 0.4 percent and 0.46 percent of the diet, respectively, for geese from 0 to 4 weeks of age (Aitken et al., 1958). These estimates have not been corroborated by recent research. Briggs et al. (1953) documented the need for dietary folic acid, choline, and niacin by goslings but did not estimate requirements. Battig et al. (1953) reported that 66 mg of dietary niacin per kilogram of diet (40 mg supplemented plus 26 mg in the ingredients) were required to prevent perosis and maximize growth of geese to 3 weeks of age.

Serafin (1981) fed purified diets to Embden goslings from hatch to 2 or 3 weeks and found that, for growth and liveability, requirements for riboflavin, niacin, pantothenic acid, and choline were no more than 3.8, 31.2, 12.6, and 1,530 mg/kg, respectively. Laboratory analysis of the basal purified diet showed that concentrations of the vitamins studied were very low; hence the requirement data reported herein represent levels of supplemental vitamins that were supplied in highly available forms. Thus, supplemental vitamins, which probably were readily utilized by the geese, were used to establish the requirements for riboflavin, niacin, pantothenic acid, and choline. Requirements established in this way may not be totally applicable to feeding commercial geese because vitamins supplied by commonly used ingredients of geese diets are less available than those of supplemental origin.

TABLE 4-2 Approximate Body Weights and Feed Consumption of Commercially Reared Male and Female Geese to 10 Weeks of Age

Age (weeks)	Average Body Weight (kg)	Feed Consumption by 2-Week Period (kg)	Cumulative Feed Consumption (kg)
0	0.11	0.00	0.00
2	0.82	0.96	0.96
4	2.05	2.93	3.89
6	3.05	3.20	7.09
8	4.05	4.34	11.43
10	4.85	4.68	16.11

The paucity of research on the nutrient requirements of geese illustrates the need for additional efforts focused on this area of nutrition.

Body weight and feed consumption data presented in Table 4-2 are approximations obtained from a combination of research results and input from persons involved in the production of geese.

5

Nutrient Requirements of Ducks

Ducks can be grown successfully in either of two environments—an open rearing system, in which the growing house opens to an exercise yard with water for wading or swimming, or a confinement growing system, in which ducks are raised in environmentally controlled houses with litter or combination litter and wire floors.

Pelleted diets are utilized more efficiently by ducks than are diets in mash form primarily because of reduced wastage and ease of consumption (Wilson, 1973; Dean, 1986). Starter diets (0 to 2 weeks) usually are fed as pellets of 3.18 mm (1/8 inch) diameter, and grower diets (after 2 weeks) are given in 4.76-mm (3/16 inch) form (Elkin, 1987).

Ducks typically are given 2 or 3 feeds during the growing period. Information presented in Table 5-1 is on the basis of a two-feed program, a diet containing 22 percent protein for the period of 0 to 2 weeks and a 16 percent protein diet for the period from 2 to 7 weeks (Dean, 1972a, 1986). The need for 22 percent protein during the starting period, however, is questionable because Wilson (1975) and Siregar et al. (1982) reported that protein levels of 18 and 19 percent, respectively, in diets providing 3,000 to 3,025 kcal ME_n/kg , were adequate from 0 to 2 weeks. A typical three-feed program may consist of diets containing 20, 18, and 16 percent protein for the periods from 0 to 2, 2 to 4, and 4 to 7 weeks, respectively. The growth rate of ducklings is not affected greatly by the ME_n concentration of the diet; however, feed efficiency is usually improved and carcass fat increased when dietary ME_n is increased (Wilson, 1975; Leclercq, 1986). Few data are available documenting the ME_n values of feed ingredients for ducks. Mohamed et al. (1984) found that the ME_n values of several feedstuffs were very similar for ducks and broiler chickens.

Although most ducks grown commercially in the United States are White Pekins, considerable research

TABLE 5-1 Nutrient Requirements of White Pekin Ducks as Percentages or Units per Kilogram of Diet (90 percent dry matter)

Nutrient	Unit	0 to 2 Weeks; 2,900 ^a	2 to 7 Weeks; 3,000 ^a	Breeding; 2,900 ^a
Protein and amino acids				
Protein	%	22	16	15
Arginine	%	1.1	1.0	
Isoleucine	%	0.63	0.46	0.38
Leucine	%	1.26	0.91	0.76
Lysine	%	0.90	0.65	0.60
Methionine	%	0.40	0.30	0.27
Methionine + cystine	%	0.70	0.55	0.50
Tryptophan	%	0.23	0.17	0.14
Valine	%	0.78	0.56	0.47
Macrominerals				
Calcium	%	0.65	0.60	2.75
Chloride	%	0.12	0.12	0.12
Magnesium	mg	500	500	500
Nonphytate phosphorus	%	0.40	0.30	
Sodium	%	0.15	0.15	0.15
Trace minerals				
Manganese	mg	50	?b	?
Selenium	mg	0.20	?	?
Zinc	mg	60	?	?
Fat soluble vitamins	C			
A	IU	2,500	2,500	4,000
D_3	IU	400	400	900
E	IU	10	10	10
K	mg	0.5	0.5	0.5
Water soluble vitamins				
Niacin	mg	55	55	55
Pantothenic acid	mg	11.0	11.0	11.0
Pyridoxine	mg	2.5	2.5	3.0
Riboflavin	mg	4.0	4.0	4.0

NOTE: For nutrients not listed or those for which no values are given, see requirements of broiler chickens (Table 2-5) as a guide. Where experimental data are lacking, values typeset in bold italics represent an estimate based on values obtained for other ages or species.

^a These are typical dietary energy concentrations as expressed in kcal ME_n/kg diet.

^b Question marks indicate that no estimates are available.

data obtained by using other breeds of ducks (that is, Muscovy and "mule" ducks) have been used to fill several voids in the requirement data of Table 5-1, especially with respect to amino acids and minerals. Published research reviewed in Appendix Table A-6 on lysine and total sulfur amino acid (TSAA) requirements indicates that values listed in the previous edition of this report were too high (Jeroch and Hennig, 1965; Dean, 1967; Gazo et al., 1970; Leclercq and de Carville, 1977a,b; Adams et al., 1983; Elkin et al. 1986). Adjustments were made accordingly. In addition, a tentative methionine requirement for starting ducks (0.40 percent) is given on the basis of data reported by Elkin et al. (1986). Noteworthy is information published recently by Elkin et al. (1988) showing that the relative value of the D-methionine isomer was 78 percent of that of the L-isomer. Consequently, in instances where supplemental methionine is needed in duck diets, adjustments may be needed in supplemental levels of the DL-methionine sources used.

Only single papers have been published documenting the requirements of starting ducks for arginine, tryptophan, leucine, isoleucine, and valine (Chen and Shen, 1979; Wu et al., 1984; Yu and Shen, 1984). The values for these nutrients listed in Table 5-1 must therefore be viewed as tentative. The same is true of the requirement values for breeding ducks because relevant information is scarce (Cvetanov et al., 1969).

Research to determine the mineral and vitamin requirements of ducks has focused primarily on the starting period (0 to 2 or 3 weeks of age). In most instances, data on these nutrients are meager, and, with the exception of some research on dietary selenium and niacin requirements, only one report has appeared in the literature since 1980. Leclercq et al. (1990) reported that the calcium requirements of Muscovy ducks were 0.46 and 0.42 percent for age periods of 3 to 8 and 8 to 12 weeks, respectively. No information has been published recently on the calcium requirements for modern-day Pekin ducks.

TABLE 5-2 Approximate Body Weights and Feed Consumption of White Pekin Ducks to 8 Weeks of Age

Age (weeks)	Body W	eight (kg)	Weekly Feed	d Consumption (kg)	Cumulative F	eed Consumption (kg)	
	Male	Female	Male	Female	Male	Female	
0	0.06	0.06	0.00	0.00	0.00	0.00	
1	0.27	0.27	0.22	0.22	0.22	0.22	
2	0.78	0.74	0.77	0.73	0.99	0.95	
3	1.38	1.28	1.12	1.11	2.11	2.05	
4	1.96	1.82	1.28	1.28	3.40	3.33	
5	2.49	2.30	1.48	1.43	4.87	4.76	
6	2.96	2.73	1.63	1.59	6.50	6.35	
7	3.34	3.06	1.68	1.63	8.18	7.98	
8	3.61	3.29	1.68	1.63	9.86	9.61	

Body weight and feed consumption data for ducks from time of hatching to 8 weeks of age are given in Table 5-2.

6

Nutrient Requirements of Ring-Necked Pheasants, Japanese Quail, and Bobwhite Quail

As was true for geese and ducks, little information is available on the nutrient requirements of the game birds that are most frequently considered part of the poultry industry—Ring-necked pheasants, Japanese quail, and Bobwhite quail. Although these species do not constitute a major share of the poultry industry, there are an increasing number of specialized farms involved in their production.

RING-NECKED PHEASANTS

Information available on the nutrient requirements of the Ring-necked pheasant indicates that diets of relatively high nutrient concentrations are needed during the starting period (Table 6-1). Protein and amino acid needs, where documented (Appendix Table A-7), resemble those of turkeys. Also, pheasants are especially prone to leg disorders and abnormal feather growth when certain key nutrients such as niacin, riboflavin, choline, manganese, and zinc are inadequate (Sunde and Bird, 1957; Scott et al., 1959). Pheasant chicks are especially vulnerable to undefined dietary factors that impair leg development, and including extra zinc in diets has been shown to reduce the impact of these factors (Cook et al., 1984). A high level of calcium, as in a breeder ration, can cause leg problems and high mortality if fed to pheasant chicks (Woodard et al., 1979).

All nutrient requirements listed for female pheasants in egg production except for protein are tentative. Data presented by Monetti et al. (1982, 1985) indicate that dietary protein concentration should be maintained so that percentage of protein per megacalorie ME_p/kg of diet does not exceed 5.6.

Often, pheasants are fed diets designed to produce birds for use on game-release farms. Diets relatively high in protein and low in energy may be used to encourage the development of lean pheasants suitable for release.

JAPANESE QUAIL

Japanese quail are used for commercial specialty meat and egg production and also are valued research animals. Consequently, the nutrient requirements of Japanese quail have been documented to a greater extent than have those of other game bird species. Few definitive data have been published since 1984, when the previous edition of this report was published and

TABLE 6-1 Nutrient Requirements of Ring-Necked Pheasants as Percentages or Units per Kilogram of Diet (90 percent dry matter)

Nutrient	Unit	0 to 4 Weeks; 2,800a	4 to 8 Weeks; 2,800 ^a	9 to 17 Weeks; 2,700 ^a	Breeding; 2,800a
Protein and amino acids					
Protein	%	28	24	18	15
Glycine + serine	%	1.8	1.55	1.0	0.50
Linoleic Acid	%	1.0	1.0	1.0	1.0
Lysine	%	1.5	1.40	0.8	0.68
Methionine	%	0.50	0.47	0.30	0.30
Methionine + cystine	%	1.0	0.93	0.6	0.60
Protein	%	28	24	18	15
Macrominerals					
Calcium	%	1.0	0.85	0.53	2.5
Chlorine	%	0.11	0.11	0.11	0.11
Nonphytate phosphorus	%	0.55	0.50	0.45	0.40
Sodium	%	0.15	0.15	0.15	0.15
Trace minerals					
Manganese	mg	7 0	70	60	60
Zinc	mg	60	60	60	60
Water soluble vitamins	0				
Choline	mg	1,430	1,300	1,000	1,000
Niacin	mg	70.0	70	40.0	30.0
Pantothenic acid	mg	10.0	10.0	10.0	16.0
Riboflavin	mg	3.4	3.4	3.0	4.0

NOTE: Where experimental data are lacking, values typeset in bold italics represent an estimate based on values obtained for other ages or species. For nutrients not listed or those for which no values are given, see requirements of turkeys (Table 3-1) as a guide.

^a These are typical dietary energy concentrations, expressed in kcal ME_n /kg diet.

Shim and Vohra (1984) presented a comprehensive review. Data appearing since 1984 have supported the values listed in the 1984 edition for protein (Sinha and Verma, 1984; Steigner, 1990) and for total sulfur amino acids (TSAA; Shrivastav and Panda, 1987) for the starting and growing period. In the instance of protein, however, Steigner (1990) reported that a strain of Japanese quail selected for rapid growth required a greater dietary protein concentration than did random-bred quail. Similarly, information provided by Shim and Lee (1984, 1988) and by Shim and Chen (1989) showed that the dietary requirements for lysine and TSAA for breeding quail in the 1984 edition were appropriate in relation to the stated metabolizable energy contents of the diet. The lack of data to further define requirements or to corroborate single sets of observations (Appendix Table A-8) on requirements of Japanese quail, especially breeding quail, necessitates the continued listing of a large number of tentative requirement values in Table 6-2.

TABLE 6-2 Nutrient Requirements of Japanese Quail (Coturnix) as Percentages or Units Per Kilogram of Diet (90 percent dry matter)

Nutrient	Unit	Starting and Growing;	Breeding; 2,900 ^a
Protein and amino a	oida	2,900ª	
Protein and amino a	%	24.0	20.0
Arginine	/0 %	1.25	1.26
Glycine + serine	%	1.15	1.17
Histidine	%	0.36	0.42
Isoleucine	%	0.98	0.42
Leucine	%	1.69	1.42
Lysine	%	1.30	1.00
Methionine	%	0.50	0.45
Methionine +	%	0.75	0.70
cystine	/0	0.73	0.70
Phenylalanine	%	0.96	0.78
Phenylalanine +	%	1.80	1.40
tyrosine	/0	1.00	1.70
Threonine	%	1.02	0.74
Tryptophan	%	0.22	0.19
Valine	%	0.22	0.17
Fat	70	0.73	0.72
Linoleic acid	%	1.0	1.0
Macrominerals	70	1.0	1.0
Calcium	%	0.8	2.5
Chlorine	%	0.14	0.14
Magnesium	mg	300	500
Nonphytate	%	0.30	0.35
phosphorus	, 0	0.50	0.00
Potassium	%	0.4	0.4
Sodium	%	0.15	0.15
Trace minerals	, 0	0.10	0.11
Copper	mg	5	5
Iodine	mg	0.3	0.3
Iron	mg	120	60
Manganese	mg	60	60
Selenium	mg	0.2	0.2
Zinc	mg	25	50
Fat soluble vitamins			
A	IU	1,650	3,300
D_3	ICU	750	900
E	IU	12	25
K	mg	1	1
Water soluble vitam			
B_{12}	mg	0.003	0.003
Biotin	mg	0.3	0.15
Choline	mg	2,000	1,500
Folacin	mg	1	1
Niacin	mg	40	20
Pantothenic acid	mg	10	15
Pyridoxine	mg	3	3
Riboflavin	mg	4	4
Thiamin	mg	2	2

NOTE: Where experimental data are lacking, values typeset in bold italics represent an estimate based on values obtained for other ages or species. For values not listed for the startinggrowing periods, see requirements for turkeys (Table 3-1) as a guide.

^a These are typical dietary energy concentrations, expressed in kcal ME_n /kg diet.

TABLE 6-3 Nutrient Requirements of Bobwhite Quail as Percentages or Units per Kilogram of Diet (90 percent dry matter)

			\ I	• /
Nutrient	Unit	0 to 6 Weeks; 2,800 ^a	After 6 Weeks; 2,800 ^a	Breeding; 2,800 ^a
Protein and ami	no acids			
Protein	%	26	20.0	24.0
Methionine	%	1.0	0.75	0.90
+ cystine				
Fat				
Linoleic acid	%	1.0	1.0	1.0
Macrominerals				
Calcium	%	0.65	0.65	2.4
Nonphytate	%	0.45	0.30	0.70
phosphorus				
Sodium	%	0.15	0.15	0.15
Trace minerals				
Chlorine	%	0.11	0.11	0.11
Iodine	mg	0.30	0.30	0.30
Water soluble v	itamins			
Choline	mg	1,500.0	1,500.0	1,000.0
Niacin	mg	30.0	30.0	20.0
Pantothenic	mg	12.0	9.0	15.0
acid	-			
Riboflavin	mg	3.8	3.0	4.0

NOTE: Where experimental data are lacking, values typeset in bold italics represent an estimate based on values obtained for other ages or species. For values not listed for the starting-growing periods, see requirements for turkeys as a guide.
^a These are typical dietary energy concentrations, expressed in kcal ME_n /kg diet.

Bobwhite Quail

The committee has made few changes in the nutrient specifications for Bobwhite quail (Table 6-3). Its reevaluation of the data (Appendix Table A-9) used to establish the previous requirements resulted in some modifications in protein, TSAA, calcium, and phosphorus recommendations for starting-growing Bobwhite quail. As with other game birds reared commercially, Bobwhite quail grown for game-release farms should be fed diets of relatively low energy content during the growing period to prevent excessive fattening.

7

Signs of Nutritional Deficiencies in Chickens and Turkeys

Clinical manifestation of nutrient deficiencies often occurs in conjunction with an alteration of normal biological processes that are unique for the nutrient. Some enzymes depend on particular vitamins and minerals for their functioning, and their activity diminishes with an inadequacy. In other instances, a particular physiological response or change in metabolite concentration may occur. This information was primarily obtained from formal experiments in which the inadequacies were definitive. Under field conditions, nutrient inadequacies are usually marginal, occasionally multiple, and often confounded with management problems or disease. To supplement physical observation of these signs, the committee has provided biochemical and physiological measurements for use in diagnosis. Table 7-1 presents a summary of the known biochemical and physiological measurements for diagnosing each nutrient deficiency. Additional information is available in the associated references

Inadequate dietary vitamins and minerals in the chicken or turkey hen's diet are likely to reduce the egg contents accordingly and have adverse effects on embryonic development. Normal embryonic development proceeds through several events at which death of the embryo is common. The largest number of deaths occur during the transition from anaerobic to aerobic respiration with the establishment of the chorioallantois, which takes place between 3 to 4 days incubation and emergence at 18 to 21 days incubation. The same problems occur with other poultry species, and nutrient inadequacies generally accentuate death rates at these times (Couch and Ferguson, 1972).

Embryos are well developed at the end of incubation, and embryos that die as a result of nutrient deficiencies at this time may exhibit typical physical symptoms. These symptoms are assembled for each nutrient in Table 7-2. The symptoms can be similar for different nutrients, and the extent of the inadequacy may change the nature of the symptoms as well as when death occurs. Deficiency symptoms are expressed to a greater extent in growing birds than in adults. Table 7-3 gives a list of these symptoms by tissue affected, as a diagnostic aid. The table also presents information on these changes such that each can be rationalized in terms of nutrient function. References provided are not complete but are intended to be salient and most recent for cross-indexing purposes. Again, such information is usually the product of formal experimentation and not complicated by practical circumstances.

PROTEIN AND AMINO ACID DEFICIENCIES

Protein is made up of amino acids. The need for the essential amino acids determines the need for protein, and a reduction in dietary protein that results in deficiencies of several essential amino acids creates general symptoms. Productive activities suffer the most. For example, the energy used by growing birds is heavily committed to assembling the contractile elements in muscle cells but not to increasing cell number; thus protein inadequacies readily affect muscle size but not fiber number (Timson et al., 1983). Similarly, the effect of protein inadequacies on protein synthesis in the liver and oviduct is greatest with the laying hen (Muramatsu et al., 1987).

Deficiencies of individual essential amino acids usually have the same effect as when protein is deficient; however, additional symptoms may appear that characterize certain amino acids. Inadequate lysine is known to cause depigmentation of the wing feathers in Bronze turkey poults (Vohra and Kratzer, 1959) and certain colored chicks (Klain et al., 1957). A variety of abnormalities in feather development occur with deficiencies of arginine, valine, leucine, isoleucine, tryptophan, phenylalanine, and tyrosine in growing chicks (Newberne et

TABLE 7-1 Biochemical and Physiological Measurements for Diagnosis of Nutrient Deficiencies in Chickens and Turkeys

Nutrients	Biochemical and Physiological Measurements	References
Histidine	Reduced breast muscle anserine and carnosine.	Robbins et al., 1977; Amend et al., 1979
Lysine	Reduced hemoglobin and hematocrit.	Braham et al., 1961
Vitamin A	Hepatic vitamin A is indicative of a deficiency, but blood	Rogers, 1969; Nockels and Phillips, 1971;
	level is not. Liver xanthine dehydrogenase and kidney	Jensen, 1974; Bruckental and Ascarelli, 1975;
	arginase both increase even in the first stages of a deficiency.	Nockels et al., 1984
	Reduced glycogen phosphorylase in liver, and red and white	
	muscles. Increased thyroid size and reduced T_3 and T_4 .	
Vitamin D	Calcium-binding protein of intestine; 1,25-(OH) ₂ -D ₃ versus	Bar et al., 1972; Ohmdahl and DeLuca, 1973;
	24,25-(OH) ₂ -D ₂ in serum (complicated by dietary calcium	Morrissey et al., 1977; Boyan and Ritter, 1984;
	and phosphorus); plasma alkaline phosphatase;	Kaetzel and Soares, 1985
	nonproteolipid phospholipid content of rachitic cartilage.	
Vitamin E	Superoxide dismutase; glutamic-oxaloacetictransaminase;	Walter and Jensen, 1964; Arnold et al., 1974;
	plasma and tissue vitamin E concentration (all measurements	Sklan et al., 1981; Sklan and Donoghue, 1982
	affected by selenium as well).	
Vitamin K	Prothrombin clotting time of plasma.	Griminger et al., 1970
Thiamin	Transketolase in erythrocytes and leucocytes; plasma pyruvic	Lofland et al., 1963; Anonymous, 1977
	acid.	
Riboflavin	Liver xanthine dehydrogenase; erythrocyte glutathione	Chou, 1971; Lee, 1982
	reductase.	
Niacin	Level and ratio of niacin excretion products N'-methyl-	Darby et al., 1975
	nicotinamide and N'-methyl-2-pyridone-5-carboxyamide	
	(untested for fowl).	
Biotin	Blood pyruvate carboxylase; ratio of C 16:1 to C 18:0 fatty	Edwards, 1974; Whitehead and Bannister, 1980
	acids in blood.	G 1D 11 1006
Pantothenic acid	Hepatic coenzyme A.	Cupo and Donaldson, 1986
Pyridoxine	Serum glutamic oxaloacetic transaminase; plasma glycine-	Daghir and Balloun, 1963; Sifri et al., 1972; Lee
n 1 ·	serine ratio aspartic aminotransferase.	et al., 1976
Folacin	Dihydrofolic acid reductase in liver; serine hydroxymethyl	Rabbani et al., 1973; Zamierowski and Wagner,
V:4 D	transferase in liver.	1977
Vitamin B ₁₂	B ₁₂ in blood; excretion of methylmalonic acid.	Cox and White, 1962; Lau et al., 1965
Choline	Serum phospholipids.	Seifter et al., 1972
Linoleic acid	Linoleate, arachidonate, and eicosatrienoate concentrations in	Machlin and Gordon, 1960
Coloium	liver lipids.	Dor et al. 1072, 1079a hi Dor and Hummitz, 1072
Calcium	Calcium in hen's blood (but not in chick's unless deficiency is	Bar et al., 1972, 1978a,b; Bar and Hurwitz, 1973
	severe); intestinal calcium-binding protein (complicated by	
	D ₃ metabolites and phosphorus); turkey poults differ from	
Chlorine	chicks.	Looph and Nashaim 1062; Cahan and Humvita
Chiornie	Hemoconcentration; alkalosis.	Leach and Nesheim, 1963; Cohen and Hurwitz, 1974; Hamilton and Thompson, 1980
Connor	Plasma ceruloplasmin; lysyl oxidase in aorta, liver, tendon,	Kim and Hill, 1966; Miller and Stake, 1974;
Copper	and bone; erythrocyte superoxide dismutase.	Bettger et al., 1979; Opsahl et al., 1982
Iodine	Plasma thyroxine and tri-iodothyronine.	Singh et al., 1968
Iron	Hematocrit; blood hemoglobin concentration; transferrin	Davis et al., 1962; Waddell and Sell, 1964;
11011	saturation; anemia with lipemia.	Planas, 1967
Magnesium	Magnesium concentration in blood.	Sell et al., 1967; Hajj and Sell, 1969
Manganese	Chondroitin sulfate in bone; manganese concentration in	Leach, 1968; Reid et al., 1973; DeRosa et al., 1980
wianganese	bone; superoxide dismutase.	Ecacii, 1700, Reid et al., 1773, DeRosa et al., 1700
Phosphorus	Serum inorganic phosphorus; renal calcium-binding protein.	Miller and Stake, 1974; Bar et al., 1978a,b
Potassium	Plasma potassium; metabolic acidosis (complicated by	Burns et al., 1953; Cohen and Hurwitz, 1974
1 Otassiuiii	sodium).	Duris Ct al., 1933, Colicii alia Hui witz, 1974
Selenium	Plasma glutathionine peroxidase.	Noguchi et al., 1973; Dean and Combs, 1981;
Scicilium	i iasina giatamonnie peroxidase.	Cantor et al., 1982
Sodium	Metabolic acidosis (complicated by potassium).	Nott and Combs, 1969; Cohen and Hurwitz, 1974
Zinc	Plasma and bone zinc; thymidine kinase; alkaline	Miller and Stake, 1974; Oberleas and Prasad,
Z111C	i iasina ana oone zine, myimane kinase, aikanne	minor and blake, 17/7, Obericas and Hasad,

TABLE 7-2 Signs of Deficiency in the Embryo

Nutrients	Deficiency Signs	References
Vitamin A	Death at about 48 hours of incubation from failure to develop the circulatory system; abnormalities of kidneys, eyes, and skeleton.	Asmundson and Kratzer, 1952; Thompson et al., 1965; Heine et al., 1985
Vitamin D	Death at about 18 or 19 days of incubation, with malpositions, soft bones, and with a defective upper mandible prominent.	Sunde et al., 1978; Narbaitz and Tsang, 1989
Vitamin E	Early death at about 84 to 96 hours of incubation, with hemorrhaging and circulatory failure (implicated with selenium).	Card et al., 1930; Latshaw and Osman, 1974
Vitamin K	No physical deformities from a simple deficiency, nor can they be provoked by antivitamins, but mortality occurs between 18 days and hatching, with variable hemorrhaging.	Griminger, 1964; Hauschka and Reid, 1978a
Thiamin	High embryonic mortality during emergence but no obvious symptoms other than polyneuritis in those that survive.	Polin et al., 1962; Charles et al., 1972
Riboflavin	Mortality peaks at 60 hours, 14 days, and 20 days of incubation, with peaks prominent early as deficiency becomes severe. Altered limb and mandible development, dwarfism, and clubbing of down are defects expressed by embryo.	Romanoff and Bauernfeind, 1942; Landauer, 1967
Niacin	Embryo readily synthesizes sufficient niacin from tryptophan. Various bone and beak malformations occur when certain antagonists are administered during incubation.	Snell and Quarles, 1941; Landauer, 1956; Caplan, 1972
Biotin	High death rate at 19 to 21 days of incubation, and embryos have parrot beak, chondrodystrophy, several skeletal deformities, and webbing between the toes.	Cravens et al., 1994; Couch et al., 1947
Pantothenic acid	Deaths appear around 14 days of incubation, although marginal levels may delay problems until emergence. Variable subcutaneous hemorrhaging and edema; wirey down in poults.	Kratzer et al., 1955; Beer et al., 1963
Pyridoxine Folic acid	Early embryonic mortality based on antivitamin use. Mortality at about 20 days of incubation. The dead generally appear normal, but many have bent tibiotarsus, syndactyly, and mandible malformations. In poults, mortality at 26 to 28 days of incubation with abnormalities of extremities and circulatory system.	Landauer, 1967 Sunde et al., 1950a; Kratzer et al., 1956a
Vitamin B ₁₂	Mortality at about 20 days of incubation, with atrophy of legs, edema, hemorrhaging, fatty organs, and head between thighs malposition.	Olcese et al., 1950; Ferguson et al., 1955
Manganese	Peak deaths prior to emergence. Chondrodystrophy, dwarfism, long bone shortening, head malformations, edema, and abnormal feathering are prominent.	Lyons and Insko, 1937
Zinc	Deaths prior to emergence, and the appearance of rumplessness, depletion of vertebral column, eyes underdeveloped, and missing limbs.	Kienholz et al., 1961; Turk, 1965
Copper Iodine	Deaths at early blood stage with no malformations. Prolongation of hatching time, reduced thyroid size, and incomplete abdominal closure.	Bird et al., 1963 Rogler et al., 1959a, b
Iron	Low hematocrit; low blood hemoglobin; poor extra- embryonic circulation in candled eggs.	Dewar et al., 1974; Morck and Austic, 1981
Selenium	High incidence of dead embryos early in incubation.	Latshaw et al., 1977

TABLE 7-3 Nutrients Associated with Various Signs of Deficiency in Growing Birds

Deficiency Signs	Descriptions	Species	Associated Nutrients
kin lesions	Crusting and scab formation	Chick, poult,	Biotin, pantothenic acid
	around eyes and beak		
	Bottoms of feet rough and	Chick, poult	Biotin, pantothenic acid
	calloused with hemorrhagic		
	cracks	Chi-h-	7:
	Scaliness on feet	Chick	Zinc, niacin
	Lesions around eyes, eyelids	Chick, poult	Vitamin A
	stuck together Mouth, inflammation of oral	Poult, chick	Niacin
	mucosa (chicken black tongue)	1 ouit, effick	Nacin
eather abnormalities	Uneven feather growth,	Chick, poult	Protein, amino acid
surier denominances	abnormally long primary	Cinek, pour	imbalance
	feathers, feathers not lying		
	smoothly		
	Frizzled and rough	Chick, poult	Zinc, niacin, pantothenic
	8	71	acid, folic acid, lysine
	Black pigmentation in breeds	Chick	Vitamin D
	with red and brown feathers		
	Depigmentation	Chick, poult,	Copper, iron, folacin
ervous disorders	Convulsions with head	Chick, pigeon	Thiamin
	retraction		
onvulsions with hyperexcitability	Chick, poult, duckling	Pyridoxine	
yperirritability	Chick, poult, duckling	Magnesium, sodium chloride	
haracteristic fright reaction with	Chick	Chloride	
tanic spasms	D. I.	F 1 .	
pastic cervical paralysis, neck	Poult	Folacin	
tended with birds appearing to ok down			
urled-toe paralysis, gross	Chick	Riboflavin	
llargement of sciatic and	CHICK	Kiboliavili	
achial nerves with myelin			
generation			
ncephalomalacia, tetanic spasms	Chick	Vitamin E	
ith head retraction, hemorrhagic	Cilien	, E	
sions in cerebellum			
lood and vascular system	Anemia	All poultry	
acrocytic		Vitamin B ₁₂	
acrocytic, hyperchromic		Folacin	
icrocytic, hypochromic		Iron, copper	
icrocytic		Pyridoxine	
emorrhage, intramuscular,	Chick, poult	Vitamin K, copper	
bcutaneous, internal from aortic			
pture		0.1	
xudative diathesis	Chick, poult	Selenium, vitamin E	
nlarged heart	Chick, poult	Copper	Vitamin E. aclasissa
uscle	Muscular dystrophy, white	Chick, duck, poult	Vitamin E, selenium
	areas of degeneration in skeletal muscle		
		Doult	Vitamin E. galanium
	Cardiac myopathy	Poult	Vitamin E, selenium
one disorders	Gizzard myopathy	Poult All poultry	Vitamin E, selenium Vitamin D, calcium or
one districts	Soft, easily bent bones and beak (rickets)	An pouru y	phosphorus deficiency or
	ocak (Hekets)		imbalance
	Hock enlargement	Poult, chick, gosling,	Niacin, zinc
		duckling	,
	Perosis	Chick, poult	Biotin, choline, vitamin
		- ·, r · ·	B ₁₂ , manganese, zinc,
			folacin
	Bowed legs	Duck	Niacin
	Shortening and thickening of	Chick	zinc, manganese
	leg bones		, 5
	Curled toes	Chick	Riboflavin
iarrhea		Chick, duck, poult	Niacin, riboflavin, biotin

NOTE: Slow growth and general lack of vigor are generally associated with malnutrition. The signs listed in this table are more specific indications of deficiencies of particular nutrients.

al., 1960; Robel, 1977; Penz and Kratzer, 1984). Chavez and Kratzer (1974) observed a foot pad dermatitis in poults when methionine was deficient, but cystine had to be adequate for the dermatitis to occur. Grau (1945) reported a tongue deformity in chicks fed a purified diet deficient in leucine, isoleucine, or phenylalanine, but these observations were not confirmed by Bragg (1953) with practical feedstuffs.

VITAMIN DEFICIENCIES

Vitamin A

Substitution of the body's secretory epithelia by keratinized surfaces is the most important change occurring with a vitamin A deficiency. Corneal, conjunctival, esophageal, and tracheal secretory membranes are all altered in chickens (Aydelotte, 1963). Mucus formation depends on vitamin A (DeLuca et al., 1971). Loss of membrane integrity, in turn, alters water retention (Lopen et al., 1973) and impairs the ability to withstand infection (Singh and Donovan, 1973; Sijtsma et al., 1989). Inadequate vitamin A also reduces the immune system's response to challenge and further contributes to disease susceptibility (Davis and Sell, 1989; Sklan et al., 1989).

The appearance of keratinized secretory surfaces is followed by a typical ataxia. Alterations in bone growth create several areas of compression on the central nervous system that cause a loss in mobility (Howell and Thompson, 1967). Inadequate vitamin A also adversely affects the pituitary-gonadal axis to create other symptoms that are not readily obvious (Fletcher, 1971). Nockels et al. (1984) reported that hypothyroidism is an early indication of vitamin A deficiency in chicks. Reductions in testes size, circulating testosterone, and fertility have been reported during vitamin A deficiency in cockerels (Padedes and Garcia, 1959; Hall et al., 1980).

Muscles in vitamin-A-deficient birds have a high level of glycogen, which cannot be readily used because phosphorylase activity is inordinately low (Nockels and Phillips, 1971; Sundeen et al., 1980). Alternatively, glucose is provided by extensive gluconeogenesis from protein (Nir and Ascarelli, 1967; Bruckental et al., 1974), and nitrogen end products increase such that deposits of uric acid appear in the kidneys and ureters (Bruckental and Ascarelli, 1975; Chandra et al., 1984).

Vitamin A in feedstuffs is labile, and concentrated supplements are normally given to ensure that the requirement is met. Misuse of these concentrates has led to occasional toxicosis problems. Skin lesions at the commissure of the beak, nose, and eyes attributable to mucus membrane hyperplastic activity have been shown to occur in chicks within 72 hours after oral dosing with 60,000 IU (Kriz and Holman, 1969). The appearance of rachitic bones together with a hyperplastic parathyroid results from the antagonism known to exist with vitamin D (Metz et al., 1985; Tang et al., 1985; Veltmann et al., 1987). Excessive vitamin A has also been shown to antagonize vitamin E (Vahl and Van't Klooster, 1987) and increase the likelihood of a deficiency when vitamin E and selenium nutriture is marginal (Combs, 1976).

Plant source feedstuffs usually provide carotenoid pigments that may be converted into vitamin A. The most favorable such pigment in this respect is β -carotene (Flegal et al., 1971), and conversion largely occurs at the intestine during absorption (Sklan, 1983). Because of the susceptibility of vitamin A sources to oxidative losses, synthetic antioxidants often are included in premixes and complete feeds (Grundboeck et al., 1977).

Vitamin D

Poultry require vitamin D to effectively use calcium. After absorption, the vitamin is hydroxylated at the 25-position in the liver and then transferred to the kidney, where the 1,25-dihydroxy metabolite is formed (Ameenuddin et al., 1985). All of the vitamin metabolites affect calcium utilization in one way or another, but the 1,25-dihydroxy-vitamin D seems to have the greatest impact. Vitamin D metabolites induce the synthesis of calcium-binding proteins in the intestine, kidney, and uterus through the efforts of vitamin D metabolites at both transcriptional and post-transcriptional levels. Calcium-binding proteins enhance calcium absorption from the intestine, recovery from the urine, and shell deposition, respectively (Coty, 1980; Jande et al., 1981; Roth et al., 1981; Clemens et al., 1988).

Vitamin D also induces the formation of osteocalcin, a protein in bone (Anonymous, 1981). Osteocalcin is believed to participate in the organic-inorganic matrix. Vitamin D is implicated by converting specific glutamic acid residues in osteocalcin to γ -carboxylglutamic acid metabolites that interact with calcium. Bone alterations associated with osteocalcin appear to be more involved with resorption and turnover when calcium is needed elsewhere in the body than growth. Presumably, vitamin D also provides proliferative signals for undifferentiated cells in the intestine (Cross and Peterlik, 1983) and pancreatic islets (Clark et al., 1987).

Vitamin D_2 represents the plant source of this vitamin and arises from the ultraviolet irradiation of ergosterol (Kobayashi and Yasumura, 1973), whereas vitamin D_3 occurs in animals upon irradiation of 7-dehydro-cholesterol in skin (Beadle, 1977). Vitamin D_3 is about 10-fold more effective with chicks than vitamin D_2 (Hurwitz et al., 1967). A large part of this difference in

activity seems to involve metabolite formation in the liver, where enhanced glucuronidation of the 25-hydroxy-vitamin D₂ favors biliary excretion (Le Van et al., 1981).

Gross symptoms occurring because of a vitamin D deficiency can largely be attributed to a reduction of intestinal binding protein and lack of calcium recovered from feed (McCarthy et al., 1984). During vitamin D deficiency, growing birds develop hypocalcemia, which, in turn, stunts skeletal development through widened cartilage at epiphyses of long bones and weakened shafts (Noff et al., 1982; Long et al., 1984). For some reason, an abnormal blackening of the feathers also occurs with some pigmented chicks (Glazener and Briggs, 1948). Once the skeleton has assumed adult size, a vitaminosis D is obvious only with hens in production. Egg production and egg weight decrease while the eggshell thins as bone reserves are progressively depleted (Vohra et al., 1979).

Hens in production cyclically release estrogen from the ovary to maximize 1,25-dihydroxy-vitamin D production concurrent with eggshell formation (Castillo et al., 1979). As a result, levels of calcium-binding protein in the uterus (Navickis et al., 1979) and calcium in the medullary bone (Takahashi et al., 1983) are altered to facilitate eggshell formation. Vitamin D nutriture of the hen also influences its content in egg yolk and the subsequent need for this vitamin by the chick (Bethke et al., 1936; Griminger, 1966; Stevens and Blair, 1985).

Vitamin D removed from the yolk is metabolized by the embryo as it is by the adult, and 1,25-dihydroxy-vitamin D is the dominant metabolite (Bishop and Norman, 1975). An additional activity for this metabolite is recovery of calcium from the shell at the chorioalloic membrane to support skeletal mineralization prior to hatching (Narbaitz, 1987). The yolk sac membrane also responds to 1,25-dihydroxy-vitamin D at the same time, and a portion of the calcium from the shell is transferred into the yolk for later use upon hatching (Clark et al., 1989); however, one or more of the other metabolites must also be present if complete embryonic development and emergence from the shell is to occur (Ameenuddin et al., 1982).

The very low content of vitamin D in feedstuffs is generally ignored in feed formulation, and the complete requirement is satisfied by using concentrated premixes. Overuse of vitamin D concentrates can lead to a toxicity. High levels of 1,25-dihydroxy-vitamin D occur with a toxicosis, along with hypercalcemia and soft tissue mineralization (Morrissey et al., 1977; Ratkowski et al., 1982). Leg problems may arise with growing birds because of bone calcium loss (Cruickshank and Sim, 1987), but few obvious changes occur with hens other than a general depression in performance (Ameenuddin et al., 1986). Toxic levels of vitamin D may be transferred into the egg to create similar problems for the embryo; however, the hypercalcemia occurs from shell resorption, and bone mineralization is enhanced (Narbaitz and Fragiskos, 1984).

Vitamin D in feed may not be totally available to poultry. This vitamin is susceptible to destruction by oxidation and significant losses may occur unless supplemental antioxidants are used (Fritz et al., 1942). Also, mycotoxins in feeds interfere with the utilization of dietary vitamin D (Bird, 1978; Gedek et al., 1978; Kohler et al., 1978). Losses of vitamin D because of oxidation and poor utilization may result in a deficiency of the vitamin even though initial dietary concentrations of vitamin D substantially exceed known requirements.

Vitamin E

Vitamin E is composed of an array of tocopherols derived from plant sources that act as antioxidants within the animal. Hydrophobic areas of tissues, particularly cell membranes, are the sites of action for vitamin E (Erin et al., 1984), whereas selenium is a cofactor for complementary antioxidant activities in the aqueous portion (Xu and Diplock, 1983). Dietary vitamin E is absorbed from the intestine with fat, and its dissemination follows depletion of lipoprotein contents from circulation (Massey, 1984). In turn, tissue vitamin E content parallels feed vitamin E levels, and tissues receiving the highest proportions are intestine, liver, fat depots, and muscle (Astrup, 1979).

The amount of vitamin E needed to avoid a deficiency largely depends on the adequacy of the accompanying selenium and on circumstances presenting oxidative threats to the system. An inadequacy of both vitamin E and selenium leads to exudative diathesis, which is a subdermal accumulation of viscous blue-green-colored exudate from endothelial failures in portions of the vascular system (Scott, 1966a). Myopathies of the gizzard, heart, and, to a lesser extent, the skeletal muscles are also apparent. Skeletal muscles, particularly the breast, become more myopathic when the sulfur amino acids are also deficient. Exudative diathesis can be eliminated and most myopathies can be greatly relieved when selenium alone is increased (Combs and Scott, 1974).

Vitamin E deficiency symptoms that do not benefit from increased selenium are encephalomalacia (Hassan et al., 1985) and the susceptibility of red blood cells to hemolysis (Dobinska et al., 1982). Degeneration of the Perkinji layer of cells in the cerebellum results in nervous symptoms typified as sudden prostration with toes and legs outstretched, toes flexed, and head outstretched. High concentrations of dietary PUFA lead to

increased contents in cell membranes and, in turn, the additional susceptibility to oxidative stress may enhance the possibilities of encephalomalacia (Budowski and Crawford, 1986). Other stressors such as ozone in the environment (Bartov et al., 1981) or peroxidized fat (Budowski et al., 1979) or medium-chain fatty acids (Ikumo, 1980) contained in the feed also increase the possibility of a vitamin E deficiency.

Adult fowl are less susceptible to a vitamin E deficiency than are actively growing chicks, and the symptoms differ. Males become infertile because sperm become incompetent (Friedrichsen et al., 1980). Reduced egg production and hatchability occur when both vitamin E and selenium are deficient over a prolonged period with hens (Latshaw and Osman, 1974). Although supplemental selenium can completely overcome these problems, chicks from these eggs are particularly susceptible to encephalomalacia (Bartov and Bornstein, 1980) and muscular dystrophy (Ewen and Jenkins, 1967).

Adding excessive vitamin E to feed can have adverse effects. Nockels et al. (1976) reported that feeding 8,000 IU/kg reduced body weight gain and gave a waxy appearance to the feathers. Should either vitamin D or vitamin K be marginal when high levels of vitamin E are being fed, then rachitic bones and blood clotting failures, respectively, may occur (March et al., 1973; Murphy et al., 1981; Franchini et al., 1988). However, dietary excesses approximating 100 to 500 IU/kg of feed are advantageous to the oxidative stability of broiler (Lin et al., 1989) and turkey (Sheldon, 1984) meat products.

Vitamin K

Vitamin K is used as a cofactor to synthesize γ -carboxyglutamic residues from glutamic acid in proteins located in the liver and bone. The liver protein is involved in the synthesis of several blood clotting factors, including prothrombin clotting of blood (Suttie, 1987), and the bone protein, osteocalcin, is implicated in calcification of bone matrix (Hauschka et al., 1989).

Although inadequate dietary vitamin K alters bone osteocalcin, symptoms associated with the skeletal system are not as apparent as blood clotting problems (Scott, 1966b; Hauschka and Reid, 1978b). Hemorrhaging may occur subcutaneously, intermuscularly, and internally and may lead to anemia and the appearance of hypoplastic bone marrow. A greatly extended blood clotting time may result in death from exsanguination. Vitamin K adequacy is usually measured in terms of prothrombin clotting time with decalcified plasma (Griminger et al., 1970).

Dietary vitamin K may be of three sources. Vitamin K_1 , or phylloquinone, largely occurs in the leafy parts of plants. Vitamin K_2 , or menaquinone, is of bacterial origin, particularly those bacterial located in the large intestine. Vitamin K_3 , or menadione, has been synthesized and does not occur in nature as such. Antivitamin K compounds, whether synthetic (Lowenthal and MacFarlane, 1965) or natural (Griminger, 1987), act as anticoagulants. Menadione generally exhibits the greatest vitamin K activity (Dua and Day, 1966), except when anticoagulants are given and the converse occurs (Griminger, 1965). Dietary anticoagulants lead to vitamin K deficiency symptoms commensurate with the extent of toxicity (Veltmann et al., 1981; Bai and Krishnakumari, 1986).

Inadequate vitamin K under practical circumstances is most likely to occur during the starting period, and supplementation of the feed at this time is advantageous (Fritz, 1969). Starting feeds seldom contain forage meals, and a poorly developed intestinal microflora together with the use of antimicrobials further reduces access to the vitamin (Bornstein and Samberg, 1954). Nelson and Norris (1961a) showed that the inclusion of 0.1 percent sulfaquinoxaline increased the chick's need for supplemental vitamin K by fourfold to sevenfold.

Adults usually have a well-developed intestinal microflora, and vitamin K inadequacies are unusual. Vitamin K_2 is not readily absorbed from the large intestine but it is digested after coprophagy of cecal excreta (Berdanier and Griminger, 1968). The caging of hens minimizes coprophagy, and minimal amounts of vitamin K reach the egg (Cravens et al., 1941). Griminger and Brubacher (1966) observed that dietary vitamin K_3 is transferred to the yolk as vitamin K_2 , but vitamin K_1 is best transferred and remains as such.

Use of vitamin K by embryos parallels that by adults. A deficiency with the embryo alters bone metabolism, but no physical deformities occur (Hauschka and Reid, 1978a). Adverse effects on blood clotting are not apparent until after hatching, when hemorrhaging and mortality occur should trauma be encountered (Griminger, 1964).

Thiamin (Vitamin B1)

Thiamin is a cofactor for several enzymes catalyzing decarboxylationand transketolation-type reactions. Although the activity of all these enzymes is depressed in a thiamin deficiency, the accrual of pyruvic acid from decreased brain pyruvic oxidase seems to manifest the most symptoms (Lofland et al., 1963). Ataxia and awkward backward flexions of the head and neck are typical nervous symptoms (Gries and Scott, 1972b). Deficient birds can rapidly detect and discriminate against feeds that do not provide the vitamin (Hughes and Wood-Gush, 1971) and are high in carbohydrate content (Thornton and Shutze, 1960).

Most complete feeds satisfy the thiamin requirement because grains and their by-products usually contain adequate

amounts. Thiamin is unstable to heat at neutral and alkaline pH (Dwivedi and Arnold, 1973), and pelleting (Guo and Summers, 1969) or extrusion (Beetner et al., 1974) under these circumstances facilitates loss. Amaranth is very low in thiamin, and the level is reduced further if it is heated to destroy growth-inhibiting properties (Laovoravit et al., 1986). Inclusion of certain fish meals having enzymes capable of destroying thiamin may also decrease dietary content (Ishihara et al., 1974; Bryan et al., 1975). Use of medicants acting as a thiamin antagonist can also cause a deficiency (Ott et al., 1965; Shindo et al., 1972).

The hen transfers thiamin to the egg in proportion to dietary content (Polin et al., 1963). Although the dietary inadequacies possible under practical terms do not affect breeder flock productivity, high mortality of embryos occurs prior to hatching and chicks that hatch express a polyneuritis (Polin et al., 1962; Charles et al., 1972).

Riboflavin (Vitamin B2)

Riboflavin acts as a cofactor for many enzymes involved in oxidation-reduction. Erythrocyte glutathione reductase (Lee, 1982) and liver xanthine dehydrogenase (Chou, 1971) are two enzymes in fowl shown to need riboflavin, and their activities reflect dietary adequacy. Prior to the development of concentrated riboflavin sources, milk products were incorporated in feed to avoid deficiencies (Culton and Bird. 1940).

Riboflavin deficiencies lead to neurological problems, particularly with the sciatic and brachial nerves, where myelin degeneration, Schwann cell proliferation, and axis cylinder fragmentation have been observed (Phillips and Engel, 1938). Symptoms involving the legs of chickens appear as splay and hock resting postures, and curling of the toes occurs to a lesser extent (Wyatt et al., 1973a; Ruiz and Harms, 1988a). Turkey poults (Ruiz and Harms, 1989a) and pheasants (Scott et al., 1959) exhibit similar symptoms as the chick, whereas ducks (Fritz et al., 1939) and geese (Serafin, 1981) are more likely to have a bowing of the legs in conjunction with perosis. Goff et al. (1953) noted that increased hematocrit, increased mean corpuscular volume, decreased mean hemoglobin concentration, and a marked heterophil leucocytosis appeared in the chick prior to neurological manifestations.

Adult cockerels can endure a riboflavin-deficient feed for a prolonged period before neurological and blood problems similar to those of the growing chick appear (Arscott, 1972). Deficiency symptoms can be reversed upon riboflavin administration to adults, but correction with growing birds becomes increasingly difficult as expression progresses.

Laying hens transfer riboflavin into the yolk and albumen by hormonally induced binding proteins in the liver and oviduct, respectively (Hamazume et al., 1984). Saturation of these carriers is dependent on dietary riboflavin content (White et al., 1986), and an inadequacy is more likely to adversely affect embryonic development than harm the hen (Tarhay et al., 1975). Severe inadequacies cause death of embryos at 60 hours incubation because of circulatory system failures (Romanoff and Bauernfeind, 1942). Moderate inadequacies result in deaths at 14 days incubation, with the appearance of shortened limbs, malformed mandibles, and clubbing of the down. Marginal deficiencies further delay mortality until pipping, and symptoms are largely dwarfism with clubbed down.

Niacin

Niacin represents nicotinic acid and nicotinamide, both of which have similar activity in fowl (Ruiz and Harms, 1988b). Many enzymes in glycolysis, lipogenesis, and energy metabolism use niacin as a cofactor. Tryptophan may be converted into niacin; however, the efficiency is poor and not recommended as a substitute for diet supplementation (Ruiz and Harms, 1990).

Availability of niacin in grain and grain by-products is generally low (Manoukas et al., 1968; Yen et al., 1977); thus their contribution in determining dietary adequacy is usually ignored. Chicks at hatch have considerable tryptophan contained in the protein of the yolk; thus a niacin deficiency will not readily occur unless the feed is low for both the amino acid and the vitamin (Snell and Quarles, 1941). Briggs et al. (1943) reported that 2 weeks were required to provoke a deficiency with chicks and that an inflammation of the oral cavity and occasional poor feathering, dermatitis, and perosis—a malformation of the bones—were the primary symptoms. Turkey poults (Ruiz and Harms, 1988b), pheasants (Scott et al., 1959), ducks (Heuser and Scott, 1953), and goslings (Serafin, 1981) all expressed perosis as the primary deficiency symptom.

Biotin

Biotin acts as a cofactor for enzymes performing carboxylations. Acetyl coenzyme A carboxylase, which participates in fatty acid synthesis, and pyruvate carboxylase, which enables gluconeogenesis from intermediates in the Kreb's cycle, are both affected by biotin nutriture (Whitehead and Bannister, 1980; Watkins and Rogel, 1989). Biotin tends to concentrate in liver, kidney, and bone, the primary sites of activity of enzymes requiring this vitamin (Frigg and Torhorst, 1982). Analysis of complete feeds indicates that adequate biotin is

present; however, low availability of biotin from certain grains may result in marginal concentrations in comparison with biotin requirements (Frigg. 1976).

Symptoms of a biotin deficiency are skin lesions appearing on the foot pad, shank, and toes, together with eye exfoliation and exudative dermatitis (Marusich et al., 1970). Skin lesions can be related to alterations in the fatty acid composition of associated waxes (Logani et al., 1977). Low dietary fat and the necessity for fatty acid synthesis lead to an abnormal array of fatty acids that predisposes poultry to a fatty liver and kidney syndrome (FLKS) (Whitehead and Randall, 1982). Subjecting these birds to a fast such that gluconeogenesis is accelerated precipitates a high death rate from lack of glucose (Whitehead and Siller, 1983). Tibiotarsal bones are frequently longitudinally distorted. Presumably, reduced biotin prevents ready formation of prostaglandins from essential fatty acids, and bone growth fails to respond to stresses during development (Watkins et al., 1989).

Biotin-binding proteins are found in the yolk and albumen of eggs (Bush et al., 1988). The amount of biotin associated with the yolk binding protein changes with biotin content in the feed. Hatchability is affected when the feed is deficient (White et al., 1987). Embryonic mortality because of inadequate biotin occurs largely during the last 3 days of incubation. Dwarfing, chondystrophy, and deformities of the mandibles and skeleton appear at that time (Couch et al., 1947).

Chicks hatched from breeder hens given marginal dietary biotin have increased risk of a deficiency (Whitehead et al., 1985). Provoking a deficiency is dependent on many factors, particularly those affecting supplementary biotin synthesis by microbes in the ceca and coprophagy. Caging and use of probiotics and medicants in the feed are influential in this respect (Leeson, 1982).

Pantothenic Acid

Pantothenic acid serves as a prosthetic group with coenzyme A and thereby is essential in energy metabolism. Inadequate pantothenic acid not only reduces the productive use of available energy (Beagle and Begin, 1976; Cupo and Donaldson, 1986) but also impairs detoxification mechanisms that depend upon acetylation (Kietzmann, 1981). Grains contain low concentrations of pantothenic acid, and complete feeds are usually marginal in satisfying the requirement (Southern and Baker, 1981; Ruiz and Harms, 1989b).

Deficiency symptoms are associated with the skin and nervous system of growing chicks (Gries and Scott, 1972b). Skin lesions include crusts and scabs, which first appear at the angles of the eyes and beak. Lesions on the feet are seldom and slight. Biotin deficiency symptoms are similar except lesions on the feet are more severe and appear before those on the head. Although an extensive ataxia also occurs, lesions associated with the nervous system are difficult to detect. Turkey poults present the same symptoms as chicks (Kratzer and Williams, 1948a), but poor feathering is the most prevalent deficiency sign in pheasants and quail (Scott et al., 1964).

Adult cockerels receiving inadequate pantothenic acid have reduced semen volume and fertility as well as skin lesions (Goeger and Arscott, 1984). Considerably higher levels of pantothenic acid are needed by chicken and turkey hens to maintain hatchability than for egg production (Kratzer et al., 1955; Balloun and Phillips, 1957a). Embryonic mortality occurs from about 14 days incubation or thereafter, depending on the extent of pantothenic acid inadequacy (Beer et al., 1963). Chicks that hatch are of poor quality and have variable degrees of subcutaneous hemorrhaging and edema ("stunted chick disease").

Pyridoxine (Vitamin B6)

Pyridoxine, pyridoxal, and pyridoxamine are the 3 active forms of vitamin B_6 . Vitamin B_6 is a cofactor in decarboxylation and transamination reactions of amino acids. Decarboxylations lead to at least four amines that affect nervous system functioning. Transaminations of certain glycolysis and Kreb's cycle intermediates form most of the nonessential amino acids, whereas the reverse is the basis of gluconeogenesis from protein. Aspartic transaminase in the liver (Lee et al., 1976) and plasma glycine-serine ratio (Sifri et al., 1972) have been employed to evaluate vitamin B_6 nutriture.

The vitamin B₆ content of complete feeds usually satisfies most requirements (Scheiner and DeRitter, 1968). However, the vitamin availability is dependent on the digestibility of each feedstuff (Heard and Annison, 1986). The dietary requirement level may increase as dietary protein increases (Daghir and Shah, 1973), or due to the presence of linatin when linseed meal is used (Kratzer and Williams, 1948b; Klosterman et al., 1967). The inclusion of certain drugs that act as competitive inhibitors may also increase the dietary requirement (Fuller and Dunahoo, 1959).

Symptoms exhibited by vitamin-B₆-deficient chicks differ with the extent of the inadequacy (Daghir and Balloun, 1963; Gries and Scott, 1972a). A severe deficiency produces an ataxia in combination with nervousness and intermittent episodes of hyperactivity. Prominent pathological findings include hemorrhages at various locations, particularly primary wing feather follicles, and gizzard erosions. Marginal vitamin B₆ deficiencies are most likely to be expressed as a perosis because of problems with bone growth. Miller (1963) observed high proportions of pendulous crops with vitamin-B₆-deficient chicks.

Blood alterations are also typical of a vitamin B₆ inadequacy. An extreme deficiency leads to a microcytic, polychromatic hypochromic anemia in conjunction with atrophy of the spleen, thymus, and bursa of Fabricius (Asmar et al., 1968). Marginal deficiencies provoke a microcytic, normochromic polycythemia (Blalock and Thaxton, 1984), and deficient chicks show a decreased immunoglobulin M and immunoglobulin G response to antibody challenge (Blalock et al., 1984).

Although specific symptoms of vitamin B_6 deficiency are not obvious in adult chickens, deficient hens lose body weight and exhibit reduced egg production (Attar et al., 1967). Deficient hens also have relatively low serum glutamic-oxaloacetic acid transaminase activities and high serum nonprotein nitrogen levels (Attar et al., 1967). The vitamin B_6 content of eggs reflects that in the feed, and the level necessary to maintain egg production is one-half of that required for hatchability (Fuller et al., 1961). Characteristics of vitamin- B_6 -deficient embryos have not been reported, but antivitamins injected into eggs cause early deaths (Landauer, 1967).

Folic acid

Folacin represents folic acid (pteroyl- γ -monoglutamic acid) and the array of extended glutamic acid conjugates. Enzymes engaged in one-carbon metabolism use folic acid as a cofactor in methyl and methylene group synthesis. Dietary folacin is absorbed and converted to the reduced form (5-methyl-tetrahydrofolic acid) by the intestine and is distributed throughout the body.

Although most complete feeds provide sufficient folic acid from their natural ingredients, marginal inadequacies are possible (Cropper and Scott, 1967). The requirement decreases with age because diminished growth rate reduces the need for deoxyribonucleic acid synthesis (Naber et al., 1957; Balek and Morse, 1976). Accentuated formation of uric acid with excessive dietary protein increases the folic acid requirement (Creek and Vasaitis, 1963), as does inadequate choline (Young et al., 1955) and serine (Rabbani et al., 1973). Use of medicants that antagonize folic acid formation by cecal microflora and management that prevents coprophagy also increases the dietary requirement (Stokstad and Jukes, 1987).

The most obvious symptom of inadequate folic acid is perosis with the chick (Daniel et al., 1946) and cervical paralysis with turkey poults (Miller and Balloun, 1967). Macrocytic anemia, abnormal nuclear bodies in erythrocytes, and numerous mitoses and hypersegmented granulocytes occur with marginal deficiencies when no physical symptoms are manifested (Maxwell et al., 1988).

Inadequate folic acid with the hen impairs the oviduct's response to estrogen and ability to form albumen (Anderson and Jackson, 1975; Burns and Jackson, 1979). More folic acid is needed to sustain hatchability than egg production; thus the embryo will suffer before the hen (Sunde et al., 1950a). High embryonic mortality occurs around 20 days of incubation, and the dead from severely depleted hens exhibit a marked bending of the tibiotarsus, and, to a lesser extent, syndactyly and deformed mandibles. Chicks that successfully emerge are stunted and have feathers that are poorly developed and abnormally pigmented (Lillie et al., 1950).

Vitamin B12 (Cobalamin)

Vitamin B_{12} is a cofactor for enzymes transferring one-carbon units and catalyzing rearrangements in the carbon skeleton of several metabolic intermediates. In fowl, vitamin- B_{12} -mediated one-carbon transfers involve methionine, serine, choline, and thymidine (Gillis and Norris, 1949; Henderson and Henderson, 1966; Langer and Kratzer, 1967), whereas the interconversion of methylmalonyl coenzyme A to succinyl coenzyme A is one of the rearrangement reactions requiring vitamin B_{12} (Ward et al., 1988).

The spleen, bone marrow, liver, kidney, and skin have high concentrations of vitamin B_{12} (Monroe et al., 1952). Although plant feedstuffs are devoid of vitamin B_{12} , its availability from animal products and cecal microflora after coprophagy makes deficiencies unlikely (Milligan et al., 1952). Deficiencies in chicks have been created by greatly increasing dietary protein content such that carbon rearrangement enzyme activities are accentuated (Rys and Koreleski, 1974; Patel and McGinnis, 1980; Ward et al., 1985). Poor feathering and mortality are the most obvious symptoms of a vitamin B_{12} deficiency, and gizzard erosions may also appear (Mushett and Ott, 1949; Milligan et al., 1952).

Yacowitz et al. (1952) fed a high-protein all-vegetable diet devoid of vitamin B_{12} to hens in cages and reported a reduction in hatchability. Olcese et al. (1950) observed that most embryonic mortality due to vitamin B_{12} deficiency in hens occurs at about 17 days of incubation, with atrophy of the leg musculature and hemorrhaging common. Ferguson et al. (1955) further observed fatty organs, dwarfing, and edema.

Choline

Choline may be synthesized in fowl; however, the extent is limited, and supplementation is necessary when demand exceeds biosynthesis capacity. Choline serves a diversity of needs, particularly as a component of phospholipids for the formation of membranes and lipoproteins. Choline also acts as a methyl donor, and its use in this respect becomes important when de novo synthesis of one-carbon units cannot meet demand.

Need for supplemental choline is the greatest with the starting bird because all facets of use are likely to be maximal (Seifter et al., 1972; Pesti et al., 1980). As growth diminishes, the necessity for choline supplementation disappears (Molitoris and Baker, 1976). Perosis is the primary symptom of a choline deficiency in chicks (Fritz et al., 1967) and turkey poults (Evans et al., 1943), whereas Bobwhite quail develop enlarged hocks and bowed legs (Serafin, 1974).

Estrogenic hormones greatly accentuate the choline need for phospholipid synthesis in the hen's liver to support yolk formation (Vigo and Vance, 1981). Supplemental choline may relieve the hepatic accumulation of fat and improve egg yolk formation (Schexnailder and Griffith, 1973; Tsigabe et al., 1988). Minimal dietary choline does not affect hatchability with either chickens (Gish et al., 1949) or turkeys (Ferguson et al., 1975), but Japanese quail and their developing embryos readily express general signs of deficiency (Latshaw and Jensen, 1971, 1972).

MINERAL DEFICIENCIES

Calcium and Phosphorus

Bone formation is highly dependent on the dietary concentrations of calcium and phosphorus as well as on adequate intake of vitamin D₃ (Hart et al., 1922; Dunn, 1924; McGowan and Emslie, 1934). Deficiency of any one of these nutrients will result in rickets. Poor growth may also be a sign of calcium or phosphorus deficiency.

Dietary excesses of either calcium or phosphorus should be avoided because such excesses can hinder the intestinal absorption of other mineral elements (Gutowska and Parkhurst, 1942; Schaible and Bandemer, 1942; Migicovsky and Emslie, 1947). The phosphorus that comes from plant products (that is, phytin) should not be depended on to fulfill the phosphorus requirement for two reasons: it is not readily available in its natural form to the bird, and it may bind calcium, zinc, iron, and manganese so as to render them unavailable (Nelson and Walker, 1964; Kratzer and Vohra, 1986).

Pullets at the beginning of the laying period undergo considerable metabolic stress associated with adjustment to the need to supply approximately 2.4 g of calcium daily to the oviduct for shell formation (Mueller et al., 1964; Hurwitz and Bar, 1971; Scott et al., 1971). Some birds mobilize large amounts of calcium from their skeleton during this period, and the bones may become so demineralized that the birds are unable to stand and appear paralyzed. The sternum and rib bones are frequently deformed, and all bones are easily broken. Dietary management to prevent this condition (generally termed "cagelayer fatigue" but more precisely described as osteoporosis) has not been devised (Roland et al., 1968).

Magnesium

When fed a diet very deficient in magnesium, chicks grow slowly for about 1 week and then stop growing and become lethargic. Chicks fed diets marginal in magnesium may grow quite well but exhibit reduced levels of plasma magnesium and symptoms of neuromuscular hyperirritability when disturbed (Almquist, 1942; Bird, 1949). Chicks show a brief convulsion and then enter a comatose state from which they usually recover, but sometimes death occurs.

A magnesium deficiency in laying hens results in a rapid decline in blood magnesium level, withdrawal of magnesium from bone, decline in egg production, and, eventually, a comatose state and death (Cox and Sell, 1967). Magnesium content and hatchability of eggs also are reduced when hens are fed magnesium-deficient diets (Sell et al., 1967; Hajj and Sell, 1969). Increasing either the calcium or the phosphorus content of the diet accentuates magnesium deficiency (Nugara and Edwards, 1963). Normally, adequate magnesium is present in the natural ingredients of practical diets to meet the requirements of poultry.

Manganese

Manganese deficiency in chicks and poults results in perosis or slipped tendon (Wilgus et al., 1937; Ringrose et al., 1939). Deficiencies of other nutrients, such as choline and biotin, may also be involved in inducing perosis (Jukes, 1940; Jukes and Bird, 1942). The usual signs of perosis are swelling and flattening of the hock joint, with subsequent slipping of the Achilles tendon from its condyles. The tibia and the tarsometatarsus may exhibit bending near the hock joint and lateral rotation. One or both legs may be affected. A shortening and thickening of the long bones of the wings and legs are also observed. The disorder, insofar as manganese is concerned, is aggravated by excess dietary calcium and phosphorus (Schaible and Bandemer, 1942).

In laying and breeding birds, manganese deficiency results in lowered egg production, reduced eggshell strength, poor hatchability, and reduced fertility. Manganese-deficient embryos exhibit shortening of the long bones, parrot beak, and wiry down (Lyons and Insko, 1937; Caskey et al., 1939).

Potassium, Sodium, and Chlorine

A deficiency of potassium results in high mortality and retarded growth of chicks and causes reduced egg

production and eggshell thickness in laying hens (Ben-Dor, 1941; Gillis, 1948; Leach, 1974). It is not usually necessary to add potassium to practical feed formulations, since such formulas generally contain about 0.7 to 1.0 percent potassium.

A deficiency of sodium in chicken diets results in poor growth, increased adrenal weight, and decreased egg production (Burns et al., 1952, 1953; Nott and Combs, 1969). Frequently, sodium supplementation is minimized to reduce the moisture level in the excreta.

Signs of chlorine deficiency in chicks include poor growth, mortality, hemoconcentration, and reduced blood chlorine level (Leach and Nesheim, 1963). Chlorine-deficient chicks show a nervous condition resembling tetany and fall forward with legs extended backward when stimulated by a sharp noise.

Iodine

Iodine is necessary for the synthesis of thyroid hormones. Iodine deficiency results in goiter, which is the enlargement of the thyroid glands (Wilgus et al., 1953; Rogler et al., 1959a). The glands may increase to many times their usual size. If the deficiency is not too severe, the increased efficiency of the enlarged gland in "trapping" iodine from the bloodstream may compensate for the low dietary concentration. When this is the case, the production of thyroid hormones is normal, although the thyroid glands are enlarged.

Inadequate production of thyroid hormones results in poor growth, egg production, and egg size. Iodine deficiency in breeders results in low iodine content of the egg and, consequently, decreased hatchability and thyroid enlargement in the embryos.

Copper

Copper deficiency in poultry causes an anemia in which the red blood cells are small and low in hemoglobin (Elvehjem and Hart, 1929). Bone deformities can occur (O'Dell et al., 1961). Pigmentation of feathers in New Hampshire and Rhode Island Red chickens is reduced (Hill and Matrone, 1961). Copper is required for the activity of the enzyme needed for the cross-linking of lysine in the protein elastin (O'Dell et al., 1961; Starcher et al., 1964). Dissecting aneurism of the aorta occurs in birds deficient in copper because of the defect in elastin formation. Copper deficiency also results in marked cardiac hypertrophy (Carlton and Henderson, 1963).

Iron

Iron deficiency in chickens and turkeys causes an anemia in which the red blood cells are reduced in size and low in hemoglobin (Elvehjem and Hart, 1929). In red-feathered chickens, pigmentation does not occur when the diet is deficient in iron (Hill and Matrone, 1961; Davis et al., 1962).

Selenium

Selenium is closely associated with vitamin E and other antioxidants in practical feed formulation. The principal sign of deficiency in chicks is exudative diathesis (Creech et al., 1957; Patterson et al., 1957; Nesheim and Scott, 1958). A requirement for selenium supplementation, even in the presence of vitamin E, is demonstrated by the poor growth, muscular dystrophy, and mortality of chicks fed purified diets or diets based on grains produced on low-selenium soils (Nesheim and Scott, 1958). Selenium is required for prevention of myopathies of the gizzard and heart in turkeys (Walter and Jensen, 1963; Scott et al., 1967). Pancreatic fibrosis, with resultant reductions in the pancreatic output of lipase, trypsinogen, and chymotrypsinogen, has also been associated with selenium deficiency (Thompson and Scott, 1970; Gries and Scott, 1972c). Selenium is a structural component of glutathione peroxidase, an enzyme needed to quench peroxides generated during metabolism (Rotruck et al., 1973).

There is wide variability in the amount and availability of selenium in the soils of different geographic areas (Scott and Thompson, 1971; Scott, 1973). Consequently, cereals and plant-derived feedstuffs are variable sources of selenium. Grains from some areas contain sufficient selenium to render them toxic to chicks. The effects of toxic levels of selenium are listed in Table 8-1. The amount of supplementary selenium permissible in diets is regulated in the United States and Canada.

Zinc

Zinc has many biochemical functions. Deficiency causes retarded growth and frayed feathers (O'Dell et al., 1958; Sullivan, 1961). The extent of fraying varies from almost no feathers on the wings and tail to only slight defects in the development of some of the barbules and barbicels. The long bones of the legs and wings are shorter and thicker than normal (Kratzer et al., 1958; Morrison and Sarett, 1958; O'Dell et al., 1958). The hock joint may be enlarged. Layer and breeder diets deficient in zinc reduce egg production and hatchability (Kienholz et al., 1961).

8

Toxicity of Certain Inorganic Elements

Current information on toxic dietary levels of inorganic elements for poultry is summarized in Table 8-1. A similar summary that describes the mineral tolerances of animals has been provided by the National Research Council (1980b). Toxicity, as defined here, is any adverse effect on performance. Reduced growth rate is the most common criterion used to indicate the specific level at which a particular mineral is toxic. Although most of the information in the table was obtained from experiments in which the mineral was added in the form of an inorganic compound, organic compounds served as the source of minerals in some reports. For instance, some of the information on the toxicity of selenium was obtained by feeding seleniferous wheat

The toxicity of a mineral is influenced by the nature of the compound in which it is present (for example, methyl mercury is much more toxic than mercuric chloride). Toxicity may also be influenced markedly by the composition of the diet, particularly with respect to other minerals and chelating agents. Selenium included in the diet at 10 ppm reduces the growth rate, but when it is fed in combination with 1,000 ppm of silver, a level as high as 40 ppm does not reduce growth (Jensen, 1975a). Copper at a level of 800 ppm in a practical turkey diet is not toxic, but 50 ppm of copper in a purified diet reduces growth. The toxicity of copper is modified by the sulfur amino acid content of the diet. Vanadium is much more toxic in a purified diet than in a practical diet, and the toxicity is increased by adding lactose to the practical diet (Hafez and Kratzer, 1976). Conversely, vanadium toxicity is reduced by including cottonseed meal in the diet (Berg, 1965; Berg and Lawrence, 1971; Sell et al., 1986a). In many instances, a high dietary level of one mineral antagonizes another element, resulting in a physiological deficiency of minerals essential for the animal. Because many different factors affect the quantity of a mineral needed to produce toxicity, diverse observations have been reported on the toxic effects of any given mineral.

TABLE 8-1 Toxic Dietary Concentrations of Inorganic Elements and Compounds for Poultry

Element or Compound	Species	Age	Chemical Form	Toxic Concentration (ppm) ^a	Toxic Effects	References
Aluminum	Chicken	Immature	AlCl ₂	500	Reduced growth	Storer and Nelson, 1968
Aluminum	Chicken	Immature	Al ₂ (SO ₄) ₃	1,000	Reduced growth	Storer and Nelson, 1968
Aluminum	Chicken	Immature	Al ₂ (SO ₄) ₃	2,200	Rickets	Deobold and Elvehjem, 1935
Aluminum	Chicken	Mature	Al ₂ (SO ₄) ₃	3,000	Reduced egg production	Hussein et al., 1989
Arsenic	Chicken	Laying hen	As ₂ O ₅	100	Reduced body weight; reduced egg production	Hermayer et al., 1977
Barium	Chicken	Immature	BaCO ₃ , BaCl ₂	200	Reduced growth	Taucins et al., 1969
Barium	Chicken	Immature	BaCl ₂	2,000	Death	Taucins et al., 1969
Bromine	Chicken	Immature	NaBr	5,000	Reduced growth	Doberenz et al., 1965
Cadmium	Chicken	Immature	$CdSO_4 \cdot H_2O$	25	Reduced growth	Hill et al., 1963
Cadmium	Chicken	Immature	CdSO ₄	40	Reduced growth	Hill, 1974
Cadmium	Turkey	Immature	$CdCl_2$	20	Reduced growth	Supplee, 1961
Cadmium	Chicken	Adult	CdSO ₄	12	Decreased egg production	Leach et al., 1979
Chlorine	Chicken	Immature	Arginine • HCL, NaCl and KCl	15,000	Reduced growth	Nesheim et al., 1964
Chromium	Chicken	Immature	K₂CrO₄	300	Reduced growth	Kunishisa et al., 1966
Chromium	Chicken	Immature	Cr ₂ (SO ₄) ₃	300	Reduced growth	Kunishisa et al., 1966
Chromium	Chicken	Adult	CrCl ₃ ·6H ₂ O	10	Egg quality	Jensen and Maurice, 1980
Cobalt Cobalt	Chicken Chicken	Immature	CoCl₂·6H₂O	206	Reduced growth	Hill 1974
SEASTRACTIONS SAIDS STREET, SAIDS	Chicken	Immature	CoCl ₂	100	Reduced growth	Hill, 1979
Copper	Chicken	Immature	CuO 5U O	806	Reduced growth; mortality	Mehring et al., 1960
Copper		Immature	CuSO ₄ ·5H ₂ O	800	Exudative diathesis: muscular dystrophy	Jensen, 1975b
Copper	Chicken	Immature	CuSO ₄ ·5H ₂ O	500	Reduced growth; gizzard erosion	Poupoulis and Jensen, 1976
Copper	Chicken	Immature	CuSO₄+5H ₂ O	250	Reduced growth; gizzard erosion	Robbins and Baker, 1980a,b
Copper	Turkey	Immature	CuSO ₄ +5H ₂ O	676 (practical diet)	Reduced growth	Vohra and Kratzer, 1968
Соррег	Turkey	Immature	CuSO₄•5H₂O	800 (purified diet)	Reduced growth	Supplee, 1964
Copper	Turkey	Immature	CuCO ₃	50 (purified diet) 800 (practical diet not toxic)	Reduced growth	Waibel et al., 1964
Fluorine	Chicken	Immature	NaF	1,000		
Fluorine	Chicken	Immature	NaF	500 (similar level of F		Doberenz et al., 1965 Gardiner et al., 1959
Fluorine	Chicken	T	M-T	as CaF not toxi		
Fluorine	Chicken	Immature Immature	NaF NaF	500 750	Reduced growth	Weber et al., 1969
Fluorine	Chicken	Adult	NaF	750 1,300	Reduced growth	Berg and Martinson, 1972
Iodine	Chicken	Laying hen	KI	625	Reproductive characteristics Reduced egg production,	Guenter and Hahn, 1986 Arrington et al., 1967
Iron	Chicken	Immature	Fe ₂ (SO ₄) ₃	4.500	egg size, and hatchability Rickets	Doobold and Flushiam 1025
Lead	Chicken	Immature	Pb acetate	1,000	Reduced growth	Deobold and Elvehjem, 1935
Lead	Chicken	Immature	Pb acetate	320	Lethargy, 50% mortality	Damron et al., 1969
Lead	Chicken	Mature	Pb acetate	200	Reduced egg production	Vengris and Mare, 1974 Edens and Garlich, 1983
Lead	Japanese quail	Mature	Pb acetate	10	Reduced egg production	Edens and Garlich, 1983
Magnesium	Chicken	Immature	MgO	5,700	Growth, skeletal development	Atteh and Leeson, 1983
Magnesium	Chicken	Immature	MgCO ₃	6,000	Reduced growth	Chicco et al., 1967
Magnesium	Chicken	Immature	MgCO ₃	6,400	Reduced growth; mortality	Nugara and Edwards, 1963
Magnesium	Chicken	Adult	MgSO ₄	19,600	Reduced egg production	McWard, 1967
Magnesium	Chicken	Adult	MgCO ₃	11,200	Reduced egg production	Stillmak and Sunde, 1971
Manganese	Chicken	Immature	MnCl ₂ ·4H ₂ O	4,000	Reduced growth	Southern and Baker, 1983a
Manganese	Turkey	lmmature	MnSO ₄ ·H ₂ O	4,800	Reduced growth	Vohra and Kratzer, 1968
Mercury	Chicken	Immature	HgSO ₄ , HgCl ₂	400	Reduced growth	Hill et al., 1964
Mercury	Chicken	Immature	HgCl ₂	250'	Reduced growth, mortality	Parkhurst and Thaxton, 1973
Mercury	Chicken	Immature	CH ₃ Hg dicyanamide	33	Reduced growth; mortality	Gardiner, 1972
Mercury	Chicken Chicken	Immature	CH ₃ HgCl	### 55	50% mortality	Soares et al., 1973
Molybdenum		Immature	Na ₂ MoO ₄	500	Reduced growth; mortality	Davies et al., 1960
Molybdenum Molybdenum	Chicken Chicken	Immature Laying hen	$Na_2MoO_4 \cdot 2H_2O$ $Na_2MoO_4 \cdot 2H_2O$	350 500	Reduced growth Reduced egg production and	Berg and Martinson, 1972 Lepore and Miller, 1965
Molybdenum	Turker	Immel	N-M-O	200	hatchability	
Nickel	Turkey Chicken	Immature Immature	NaMoO ₄ NiSO ₄ or Ni acetate	300 500	Reduced growth Reduced growth	Kratzer, 1952 Weber and Reid, 1968

Element or			Chemical	Toxic Concentration	Toxic	
Compound	Species	Age	Form	(ppm)a	Effects	References
Nickel	Chicken	Immature	NiCl	400	Reduced growth	Hill, 1979
Nitrate	Turkey	Immature	NaNO ₃	900^{b}	Reduced growth; mortality	Adams et al., 1967
Nitrate	Turkey	Immature	NaNO ₃	450(N)b	No effect on meat color	Mugler et al., 1970
Nitrite	Chicken	Immature	KNO ₂	658(N)	Decreased vitamin A in liver and thyroid enlargement	Sell and Roberts, 1963
Selenium	Chicken	Immature	Na ₂ SeO ₃ + Se in wheat	10	Reduced growth	Carlson and Leitis, 1957
Selenium	Chicken	Immature	Na ₂ SeO ₃	10	Reduced growth	Jensen, 1975a
Selenium	Chicken	Immature	Na ₂ SeO ₃	20 (+1,000 Ca)	Reduced growth	Jensen, 1975a
Selenium	Chicken	Laying hen	Se in wheat	10	Reduced hatchability	Moxon and Wilson, 1944
Selenium	Chicken	Adult	Na ₂ SeO ₃	5	Decreased hatchability	Ort and Latshaw, 1978
Silver	Chicken	Immature	AgSO ₄	200	Reduced growth	Hill et al., 1964
Silver	Chicken	Immature	AgNO ₃	900	Exudative diathesis (prevented by Se or vitamin E)	Peterson and Jensen, 1975a
Silver	Chicken	Immature	AgNO ₃	900	Anemia, enlarged hearts	Peterson and Jensen, 1975h
Silver	Turkey	Immature	Ag acetate or nitrate	900	Anemia, enlarged hearts, and muscular dystrophy prevented by Cu + Se)	Jensen et al., 1974
Sodium	Chicken	Immature	Na glutamate	8,900f	Reduced growth	Nesheim et al., 1964
Sodium	Chicken	Laying hen	Na ₂ SO ₄	12,000 ^b	Reduced egg production	Krista et al., 1961
Sodium chloride	Chicken	Immature	NaCl ,	7,000 ⁶	Reduced growth; mortality	Krista et al., 1961
Sodium chloride	Chicken	Laying hen	NaCl	10,000*	Reduced egg production	Krista et al., 1961
odium chloride	Chicken	Adult	NaCl	40,000-60,000	Reduced egg production	Damron and Kelly, 1987
odium chloride	Turkey	Immature	NaCl	4,000 ^b	Reduced body weight; mortality	Krista et al., 1961
odium chloride	Turkey	Immature	NaCl	27,000	Lung congestion; enlarged kidneys; mortality	Morrison et al., 1975
Sodium chloride	Duck	Immature	NaCl	4,000 ^b	Reduced body weight	Krista et al., 1961
Sodium chloride	Turkey	Mature	NaCl	60,000	Reduced growth	Roberts, 1957
odium chloride	Turkey	Immature	NaCl	40,000	Reduced growth: pendulous.crop	Harper and Arscott, 1962
Strontium	Chicken	Immature	SrCO ₃	6,000	Reduced growth	Weber et al., 1968
iulfate	Chicken	Immature	K ₂ SO ₄ , Na ₂ SO ₄ , CaSO ₄	14,000	Reduced growth	Leach et al., 1960
ulfate	Chicken	Laying hen	Na ₂ SO ₄	8,100	Reduced egg production	Krista et al., 1961
ungsten	Chicken	Immature	Sodium tungstate	500	Reduced growth	Teekell and Watts, 1959
anadium	Chicken	Immature	NH ₄ VO ₃	8	Reduced growth	Berg, 1963
anadium	Chicken	Immature	Ca ₃ (VO ₄) ₂	30	Reduced growth	Romoser et al., 1961
anadium	Chicken	Immature	$Ca_3(VO_4)_2$	200	Mortality	Romoser et al., 1961
anadium	Chicken	Immature	NH ₄ VO ₃ or VOSO ₄	25	Reduced growth; mortality	Hathcock et al., 1964
anadium	Chicken	Immature	NaVO ₃	5	Reduced growth	Hill, 1974
anadium	Chicken	Immature	NH ₄ VO ₃	10	Reduced growth	Summers and Moran, 1972
anadium	Chicken	Laying hen	V in dicalcium phosphat	e 6	Depressed albumin quality	Sell et al., 1982
anadium	Chicken	Laying hen	NH ₄ VO ₃	15	Depressed albumin quality	Berg et al., 1963
anadium	Chicken	Laying hen	NH ₄ VO ₃	20	Depressed albumin quality; reduced body weight	Berg et al., 1963
anadium	Chicken	Laying hen	NH_4VO_3	30	Depressed egg production	Berg et al., 1963
anadium	Chicken	Laying hen	NH ₄ VO ₃	50	Depressed hatchability	Berg et al., 1963
inc	Chicken	Immature	ZnSO ₄ , ZnCO ₃	1,500	Reduced growth	Roberson and Schaible, 196
inc	Chicken	Immature	ZnO "	3,000	Reduced growth	Johnson et al., 1962
inc	Chicken	Immature	ZnO	800	Reduced growth; bone ash (sucrose-fish meal diet)	Berg and Martinson, 1972
ânc	Chicken	Immature	ZnSO ₄	2,000		Jensen, 1975b
and the second of the second	Chicken	Immature	ZnSO ₄	3,000	The state of the s	Jensen, 1975b
anc					Se in diet)	

 $[^]a$ Dietary concentrations of the elements unless specified otherwise. b In water. c Diet low in Cl $^-$ ion.

9

Composition of Feedstuffs Used in Poultry Diets

Feed formulation involves the judicious use of feed ingredients to supply in adequate amounts and proportions the nutrients required by poultry. Because it is impractical to analyze each batch of feedstuff for its nutrient content, reliance must be placed on feedstuff composition data that have been compiled on the basis of many laboratory analyses. Feedstuffs vary in composition. The nutrient values given in the following tables are averages reflecting the concentrations of nutrients most likely to be present in the feedstuffs commonly used in poultry feeds.

Feedstuff composition data presented in this edition (Tables 9-1 and 9-2) were obtained from several sources, including the *United States-Canadian Tables of Feed Composition* (National Research Council, 1982), the Association of American Feed Control Officials, commercial firms, and individual scientists. In many instances, the values have been changed to reflect results of analyses of feed ingredients obtained from contemporary crop cultivars and recently employed processing methods. Additional information provided in the composition tables include nitrogen-corrected true metabolizable energy (*TME*_n) data for many feed ingredients and information on the true digestibility of amino acids for numerous feedstuffs. Also, equations are provided to estimate the amino acid concentration of certain ingredients on the basis of proximate analysis or on the basis of the protein content of the ingredients.

From a nutritional point of view, there is no "best" diet formula in terms of ingredients that are used. Ingredients should, therefore, be selected on the basis of availability, price, and the quality of the nutrients they contain. Certain ingredients invariably constitute the greatest part of diets, in terms of both amount and cost. Cereal grains and fats are the primary energy-supplying ingredients, and oilseed meals and animal-protein meals are used commonly as major sources of amino acids. Some important nutritional characteristics of many energy- and protein-supplying ingredients are discussed in this chapter. Sulphur, which are common contaminants in feedstuffs, and their effects are discussed in the final section.

CEREAL GRAINS

Bushel weights (bulk densities) of cereal grains are used in commerce to establish market grades and prices. Bushel weights of grains also have been used as criteria of feeding value, and in some instances this practice seems justified for poultry. For example, at standard moisture levels there is a strong relationship between bushel weight and general feeding value of oats and barley. An increase in bushel weight of these grains is a reflection of an increase in the proportion of the meaty kernel and a decrease in the proportion of fibrous hull. Thus there is a definite increase in the metabolizable energy (*ME*)—and usually protein—content of barley and oats as bushel weight increases. Similarly, there seems to be a direct relationship between the *ME* content of grain sorghum and wheat as bushel weight increases over a wide range. A relationship between bushel weight and the *ME* content of corn is not so evident. In situations in which corn, sorghum, or wheat fails to achieve maturity because of early frost or early harvest, there usually are decreases in the starchy endosperm portion of the grain and bushel weight and *ME* content are usually low. Regression equations relating the *ME* of corn to various factors such as moisture content at harvest and bushel weight have been reported (Leeson and Summers, 1975, 1976b; Leeson et al., 1977b). Ranges in bushel weight that may be encountered with different grains are shown in Table 9-3.

The feeding value of grain sorghums (milo) is markedly

TABLE 9-1 Composition (Excluding Amino Acids) of Some Feeds Commonly Used for Poultry (data on as-fed basis)

Entry Num- ber	Feed Name Description	Interna- tional Feed Number ^a	Dry Mat- ter (%)	ME _n (kcal/ kg)	TME _n (keal/ kg)	Pro- tein (%)	Ether Ex- tract (%)	Lino- leic Acid (%)	Crude Fiber (%)	Cal- cium (%)	Total Phos- phorus (%)	Non- phytate Phos- phorus (%)	Potas- sium (%)	Chlo- rine (%)
	Alfalfa Medicago sativa													
01 02 03	meal dehydrated, 17% protein meal dehydrated, 20% protein Bakery	1-00-023 1-00-024	92 92	1,200 1,630	1,011	17.5 20.0	2.5 3.6	$0.47 \\ 0.58$	24.1 20.2	1.44 1.67	$0.22 \\ 0.28$	0.22	2.15 2.15	$0.47 \\ 0.47$
00	waste, dehydrated (dried bakery product)	4-00-466	92	3,862	3,696	10.5	11.7		1.2	0.13	0.24	TOTAL .	0.35	1.23
04	Barley Hordeum vulgare grain	4-00-549	89	2 640	0.000	21.0	10	0.00		0.00	0.00	0.3=	0.40	
05	grain, Pacific coast Broadbean Vicia faba	4-07-939	89	2,640 2,620	2,900	9.2	1.8 2.0	0.83 0.85	5.5 6.4	0.03 0.05	0.36 0.32	0.17	0.48 0.53	0.15 0.15
06	seeds Blood	5-09-262	87	2,431	2,339	24.0	1.4		7.0	0.11	0.54		1.2	
07 08	meal, vat dried meal, spray or ring dried	5-00-380	94	2,830		81.1	1.6		0.5	0.55	0.42		0.18	0.27
09	Brewer's Grains dehydrated	5-00-381 5-02-141	93 92	2,080	3,625	88.9 25.3	6.2	0.10 2.94	0.6 15.3	0.41	0.30		0.18	0.27
	Buckwheat, common Fagopyrum sagittatum		-	_,,,,,,		20.0	0,22	2.01	10.0	V.20	0.02		0.00	0.12
10	grain	4-00-994	88	2,660	2,755	10.8	2.5		10.5	0.09	0.32	0.12	0.40	0.04
	Cane Molasses—see Molasses Canola Brassica napus-Brassica													
H	campestris seeds, meal prepressed solvent extracted, low erucic acid, low glucosinolates Casein	5-06-145	93	2,000	2,070	38.0	3.8		12.0	0.68	1.17	0.30	1.29	
12	dehydrated	5-01-162	93	4,130	4,134	87.2	0.8		0.2	0.61	1.00	1.00	0.01	
13	precipitated dehydrated Cattle	5-20-837	92	4,118		85.0	0.06		0.2	0.68	0.82	0.82	0.01	
14	skim milk, dehydrated Coconut Cocos nucifera	5-01-175	93	2,537		36.1	1.0		0.2	1.28	1.02	1.02	1.60	0,90
15	kernels with coats, meal solvent extracted (copra meal) Corn, Dent Yellow Zea mays indentata	5-01-573	92	1,525	10 2 10 10 10 10 10 10 10 10 10 10 10 10 10	19.2	2.1		14.4	0.17	0.65		1.41	0.03
16 17	distillers' grains, dehydrated distillers' grains with solubles, dehydrated	5-28-235 5-28-236	94 93	1,972 2,480	3,097	27.8 27.4	9:2 9:0	— 4.55	12.0 9.1	0.10 0.17	0.40 0.72	0.39 0.39	0.17 0.65	0.07 0.17
18 19	distillers' solubles, dehydrated gluten, meal, 60% protein	5-28-237 5-28-242	92 90	2,930 3,720	3,811	28.5 62.0	9.0 2.5	4.55	4.0 1.3	0.35	1.27 0.50	1.17 0.14	1.75 0.35	0.26 0.05
20	gluten with bran (corn gluten feed)	5-28-243	90	1,750	2,228	21.0	2.5		8.0	0.40	0.80	Subsection 1	0.57	0.22
21 22	grain grits by-product (hominy feed)	4-02-935 4-03-011	89 90	3,350 2,896	3,470 3,269	8.5 10.4	3.8 8.0	2,20 3.28	2.2 5.0	0.02	0,28 0.52	0.08	0.30	0.04 0.05
23	Cotton Gossypium spp. seeds, meal mechanically extracted,	5-01-617	93	2,320		40.9	3.9	2.47	12.0	0.20	1.05		1.19	0.04
24	41% protein (expeller) seeds, meal prepressed solvent	5-07-872	90	2,400	_	41.4	0.5		13.6	0.15	0.97	0.22	1.22	0.03
25	extracted, 41% protein seeds, meal prepressed solvent	5-07-873	91	1,857	2,135	44.7	1.6		11.1	0.15	1.25	0.37		
	extracted, 44% protein Feathers—see Poultry Fish													
26	solubles, condensed	5-01-969	51	1,460		31.5	7.8	_	0.2	0.30	0.76		1.74	2.65
27	solubles, dehydrated Fish, Anchovy Engraulis ringen	5-01-971	92	2,830		63.6	9.3	0.12	0.5	1.23	1.63		0.37	2.05
28	meal mechanically extracted Fish, Herring Clupea harengus	5-01-985	92	2,580	*MAN	64.2	5.0	0.20	1.0	3.73	2.43		0.69	0.60
29	meal mechanically extracted Fish, Menhaden Brevoortia tyrannus	5-02-000	93	3,190		72.3	10.0	0.15	0.7	2.29	1.70		1.09	0.90
30	meal mechanically extracted Fish, White Gadidae (family)- Lophiidae (family)-Rajidae (family)	5-02-009	92	2,820	2,977	60.05	9.4	0.12	0.7	5.11	2.88		0.65	0.60
31	meal mechanically extracted Gelatin	5-02-025	91	2,593	*****	62.6	4.6	0.08	0.7	7.31	3.81	-	0.83	0.50
32	process residue (gelatin by-products) Hominy Feedsee Corn	5-14-503	91	2,360	3,029	88.0	0.0		-	0.50	Trace			
33	Livers meal Meat	5-00-389	92	2,860		65.6	15.0		1.4	0.56	1.25		- terros	
44	meal rendered	5-00-385 5-00-388	92 93	2,195 2,150	2,495	54.4 50.4	7.1 10.0	0.28 0.36	2.7 2.8	8.27 10.30	4.10 5.10		0.60 1.45	0.91 0.69
34 35	with bone, meal rendered Millet Pearl Pennisetum glaucum			aranji s				Vene little				THEFT		1000

Entry Num- ber	Iron (mg/ kg)	Magne- sium (%)	Manga- nese (mg/ kg)	So- dium (%)	Sul- fur (%)	Copper (mg/ kg)	Sele- nium (mg/ kg)	Zinc (mg/ kg)	Biotin (mg/ kg)	Cho- line (mg/ kg)	Fola- cin (mg/ kg)	Níacin (mg/ kg)	Panto- thenic Acid (mg/ kg)	Pyri- doxine (mg/ kg)	Ribo- flavin (mg/ kg)	Thia- min (mg/ kg)	Vita- min B ₁₂ (µg/ kg)	Vita min E (mg kg)
01 02	480 390		30 42	0.09	0.17 0.43	10 11	0.34 0.29	24 25	0.30 0.33	1,401 1,419		38 40	25.0 34.0	6.5 8.0	13.6 15.2	3.4 5.8	4 4	125 144
03	28	0.24	65	1.14	0.02	5		15	0.07	923	0.2	26	8.3	4.3	1.4	2.9		41
04 05	78 110	0.14 0.12	18 16	0.04 0.02	0.15 0.15	10 8	0.10 0.10	30 15	0.15 0.15	990 1,034	0.07 0.05	55 48	8.0 7.0	3.0 2.9	1.8 1.6	1.9 4.0	*****	20 20
)6	70	0.13	8	0.08	_	4	-	42	0.09	1.7		22	3.0	-	1.6	5.5		1
)7)8	2,020 3,000	0.16 0.40	5 6	0.32 0.33	0.32 0.32	10 8	0.01	4 306	0.08	695 280	0.1 0.4	29 13	3.0 5.0	4.4 4.4	2.6 1.3	0.4 0.5	44 44	_
9	250	0.16	38	0.26	0.31	21	0.70	98	0.96	1,723	7.1	29	8.0	0.7	1.4	0.5		25
0	44	0.09	34	0.05	0.14	10		9		440		19	12.0	Single Area	5.5	4.0		Salen
ĺ	159	0.64	54	-		10	1.00	71	0.90	6,700	2.3	160	9.5		3.7	5.2		
2 3	18 17	0.01 0.01	4 4	0.01 0.01		4 4		33 32	0.05 0.04	205 208	0.5 0.5	1 1	3.0 2.7	0.4 0.4	1,5 1,5	0.5 0.5		
4	8	0.12	2	0.51	0.32	12	0.12	39	0.33	1,393	0.62	11.5	36.4	4.1	19.1	3.7	51	9
5		0.31	54	0.04			_			1,089	0.30	23.8	6.5	4.4	3.5			
5 7	300 280	0.25 0.19	22 24	0.09 0.48	0.43 0.30		0,45 0,39	55 80	0.49 0.78	1,180 2,637	0.9 0,9	37 71	11.7 11.0	4.4 2.2	5.2 8.6	1.7 2.9		40
	560 400 460 45 67	0.64 0.15 0.29 0.12 0.24	74 4 24 7 15	0.26 0.02 0.15 0.02 0.08	0.37 0.43 0.22 0.08 0.03	26 48 3	0.33 1.00 0.10 0.03 0.10	85 33 70 18 3	1.10 0.15 0.33 0.06 0.13	4.842 330 1,518 620 1,155	1.1 0.2 0.3 0.4 0.3	116 55 66 24 47	21.0 3.0 17.0 4.0 8.2	10.0 6.2 15.0 7.0 11.0	17.0 2.2 2.4 1.0 2.1	6.9 0.3 2.0 3.5 8.1	3 = = = =	55 24 15 22
3	160	0.52	23	0.04	0.40	19	0.25	64	0.60	2,753	1.0	38	10.0	5.3	5.1	6.4	**********	39
1	110	0.40	20	0.04	0.31	18		70	0.55	2,933	2.7	40	7.0	3.0	4.0	3.3		15
5			_		_	****	*******	-		2,685	0.9	46	14.5	_	4.7		_	_
	160 300	0.02 0.30	14 50	2.62 0.3	0.12 0.40	45	2.00	38 76	0.18 0.26	3,519 5,507	0.02 0.06	169 271	35.0 55.0	12.2 23.8	14.6 7.7	5.5 7.4	347 401	
	220	0.24	10	0.65	0.54	9	1.36	103	0.23	4,408	0.2	100	15.0	4.0	7.1	0.1	352	4
	140		5	0.61	0.69	6	1.93	132	0.31	5,306	0.3	93	17.0	4.0	9.9	0.1	403	22
	440	0.16	33	0.65	0.45	11 2	2.10	147	0.20	3,056	0.3	55	9.0	4.0	4.9	0.5	104	7
	181		12	0.78	0.48	6 1	1.62	90	0.08	3,099	0.3	59	9.9	5.9	9.1	1.7	90	9
		0.05			*****		-		-		-	-			_			
	ware.	 n =0			ääte			S (30)	ON SERVICE		5.5	204	29.0		46.3	0.2	498 –	
	490	0.58 1.12	14		0.50	2 ().42).25	93	0.17 0.14	2,077 1,996	0.3 0.3	57 46	5.0 4.1	3.0 12.8	5.5 4.4	0.2 0.8	68 70	1 1
	25	0.16	31	0.04	0.13	Territory and the second second		13		793		53	7.8		1.6	6.7		

Entry Num- ber	Feed Name Description	Interna- tional Feed Number ^a	Dry Mat- ter (%)	ME _n (kcal/ kg)	TME _n (keal/ kg)	Pro- tein (%)	Ether Ex- tract (%)	Lino- leic Acid (%)	Crude Fiber (%)	Cal- cium (%)	Total Phos- phorus (%)	Non- phytate Phos- phorus (%)	Potas- sium (%)	Chlo- rine (%)
37	grain	4-03-120	90	2,898	residentes residentes	11.6	3.5	Comments of	6.1	0.03	0.30	0.14	0.43	
38	Oats Avena sativa grain	4-03-309	89	2,550	2,625	11.4	4.2	1.47	10.8	0.06	0.27	0.05	0.45	0.11
39	grain, Pacific coast	4-07-999	91	2,610		9.0	5.0		11.0	0.08	0.30		0.37	0.12
40	bulls	1-03-281	92	400	THE STATE OF	4.6	1.4		28.7	0.13	0.10	11 (11 (11 (11 (11 (11 (11 (11 (11 (11	0.53	0.10
41	Pea Pisum spp. seeds	5-03-600	90	2,570	2,654	23.8	1.3		5.5	0.11	0.42		1.02	0.06
NEW YORK	Peanut Arachis hypogaea							N. K.			lovenski mredinen			
42	kernels, meal mechanically extracted (peanut meal) (expeller)	5-03-649	90	2,500		42.0	7.3	1.43	12.0	0.16	0.56		1.15	0.03
43	kernels, meal solvent extracted	5-03-650	92	2,200	2,462	50.7	1.2	0.24	10.0	0.20	0.63	0.13	1.15	0.03
MARK	(peanut meal)							RECEIPE						
44	Poultry	E 02 700	02	0.0=0	2.100	60.0	120	0.54	1.5	2.00	1.70		0 ==	0 = 4
44	by-product, meal rendered (viscera with feet and heads)	5-03-798	93	2,950	3,120	60.0	13.0	2.54	1.5	3.00	1.70		0.55	0.54
45	feathers, meal hydrolyzed	5-03-795	93	2,360	3,276	81.0	7.0	-	1.0	0.33	0.55	_	0.30	0.28
	Rice Oryza sativa	1.00.000												
46 47	bran with germ (rice bran) grain, polished and broken	4-03-928 4-03-932	91 89	2,980 2,990	3,085 3,536	12.9 8.7	13.0	3.57	11.4 9.8	$0.07 \\ 0.08$	0.08	0.22	1.73 0.13	$0.07 \\ 0.08$
* '	(brewer's rice)	4-00-302	00	2,000	0,000	0.1	0.7		3.0	0.00	0.00	0.03	0.13	0.00
48	polishings	4-03-943	90	3,090		12.2	11.0	3.58	4.1	0.05	1.31	0.14	1.06	0.11
49	Rye Secale cereale	4-04-047	88	0.606	0.021	10.1	1 =		0.0	0.06	0.20	0.06	0.46	0.02
40	grain Safflower Carthamus tinctorius	4-04-041	00	2,626	2,931	12.1	1.5		2.2	0.06	0.32	0.06	0.46	0.03
50	seeds, meal solvent extracted	5-04-110	92	1,193		23.4	1.4		30.0	0.34	0.75		0.76	_
51	seeds without hulls, meal solvent extracted	5-07-959	92	1,921		43.0	1.3		13.5	0.35	1.29	0.39	1.10	0.16
	Sesame Sesamum indicum													
52	seeds, meal mechanically	5-04-220	93	2,210	1,978	43.8	6.5	1.90	7.0	1.99	1.37	0.34	1.20	0.06
	extracted (expeller)													
53	Sorghum Sorghum bicolor grain, 8-10% protein	4-20-893	87	3,288	3,376	8.8	2.9	1.13	2.3	0.04	0.30		0.35	0.09
54	grain, more than 10% protein	4-20-894	88	3,212		11.0	2.6	0.82	2.3	0.04	0.32		0.33	0.09
POLICE S	Soybean Glycine max				THUM	HISTORY	SHUMBER CHIZMING				laddinia i			Secretaria Ministers
55	flour by-product (soybean	4-04-594	89	720		13.3	1.6		33.0	0.37	0.19		1.50	0.02
56	mill feed)	5-08-038	02	2 500		041	0.4		n o	0.00	0.00	0.20	0.10	0.02
30	protein concentrate, more than 70% protein	J-00-056	93	3,500		84.1	0.4		0.2	0.02	0.80	0.32	0.18	0.02
57	seeds, heat processed	5-04-597	90	3,300	2,990	37.0	18.0	8.46	5.5	0.25	0.58		1.61	0.03
58 59	seeds, meal solvent extracted	5-04-604	89	2,230		44.0	0.8	0.40	7.0	0.29	0.65	0.27	2.00	0.05
98	seeds without hulls, meal solvent extracted	5-04-612	90	2,440	2,485	48.5	1.0	0.40	3.9	0.27	0.62	0.22	1.98	0.05
THE STATE	Sunflower, common													
PARTIC	Helianthus annuus													
60 61	seeds, meal solvent extracted seeds without hulls, meal	5-09-340 5-04-739	90 93	1,543 2,320	2,060	32.0 45.4	1.1 2.9	0.60 1.59	24.0 12.2	0.21 0.37	0.93 1.00	0.14 0.16	0.96 1.00	0.10
TEN S	solvent extracted	5-01-105	20	2,320	2,000		2.5	51.55		0.01	1.00	0.10	1.00	0.10
	Triticale Triticale hexaploide													
62	grain	4-20-362	90	3,163	3,144	14.0	1.5		4.0	0.05	0.30	0.10	0.36	
63	Wheat Triticum aestivum bran	4-05-190	89	1,300	1 705	157	20	3.70	110	0.14	1 15	0.20	1.10	0.00
64	flour by-product, less than 4%	4-05-190	88	2,568	1,725	15.7 15.3	3.0	1.70	11.0 2.6	$0.14 \\ 0.04$	1.15 0.49	0.20	0.51	$0.06 \\ 0.14$
	fiber (wheat red dog)			2.0004000000										
65	flour by-product, less than	4-05-205	88	2,000	2,708	15.0	3.0	1.87	7.5	0.12	0.85	0.30	0.99	0.03
66	9.5% fiber (wheat middlings) flour by-product, less than	4-05-201	88	2,162	2,061	16.5	4.6	Table 1	6.8	0.09	0.81		0.93	0.07
00	7% fiber (wheat shorts)	1-00-201	00	2,102	2,001	10.0	4.0		0.0	0.03	10.01		0.50	0.01
67	grain, hard red winter	4-05-268	87	2,900	3,167	14.1	2.5	0.59	3.0	0.05	0.37	0.13	0.45	0.05
68	grain, soft white winter Whey Bos taurus	4-05-337	89	3,120		11.5	2.5		3.0	0.05	0.31		0.42	0.05
69	dehydrated	4-01-182	93	1,900	693	13.0	0.8	0.01	0.2	0.97	0.76		1.05	1.5
70	low lactose, dehydrated (dried	4-01-186	91	2,090		16.0	1.0	0.01	0.3	1.95	0.98		3.0	1.03
	whey product)													
	Yeast, Brewer's Saccharomyces cerevisiae													
71	dehydrated	7-05-527	93	1,990	2,634	44.4	1.0	MANAGE .	2.7	0.12	1.40	_	1.70	0.12
	Yeast, Torula torulopsis utilis				,									
72	dehydrated	7-05-534	93	2,160	****	47.2	2.5	0.05	2.4	0.58	1.67		1.70	0.12

NOTE: Dash indicates that no data were available.

"First digit is class of feed: 1, dry forages and roughages; 2, pasture, range plants, and forages fed green; 3, silages; 4, energy feeds; 5, protein supplements; 6, minerals; 7, vitamins; 8, additives; the other five digits are the International Feed Number.

Entry Num- ber	Iron (mg/ kg)	Magne- sium (%)	Manga- nese (mg/ kg)	So- dium (%)	Sul- fur (%)	Copper (mg/ kg)	Sele- nium (mg/ kg)	Zine (mg/ kg)	Biotin (mg/ kg)	Cho- line (mg/ kg)	Fola- cin (mg/ kg)	Niacin (mg/ kg)	Panto- thenic Acid (mg/ kg)	Pyri- doxine (mg/ kg)	Ribo- flavin (mg/ kg)	Thia- min (mg/ kg)	Vita- min B ₁₂ (µg/ kg)	Vita- min E (mg/ kg)
37	71	0.16								440		23	11.0		3.8	7.3		
38 39 40	85 73 100	0.16 0.17 0.08	43 38 14	0.08 0.06 0.04	0.21 0.20 0.14	_8 	0.30 0.07	38 0.1	0.27 0.22 —	946 959 284	0.3 0.3 1.0	12 14 7	7.8 13.0 3.0	1.0 1.3 2.2	1.1 1.1 1.5	6.0 0.6 0.6		20
41	50	0.13		0,04				30	0.18	642	0.4	34	10.0	1.0	2.3	4.6		3
42	156	0.33	25	0.06	0.29	15	0.28	30	0.33	1,655	0.4	166	47.0	10.0	5.2	7.1		3
43	142	0.04	29	0.07	0.30	15		20	0.39	2,396	0.4	170	53.0	10.0	11.0	5.7		3
44	440	0.22	11	0.40	0.51	14	0.75	120	0.30	5,952	1.0	40	12.3	4.4	11.0	1.0	310	2
45	76	0.20	10	0.69	1.50	7	0.84	54	0.04	891	0.2	27	10.0	3.0	2.1	0.1	78	_
46 47	190	0.95 0.11	250 18	$0.07 \\ 0.07$	$0.18 \\ 0.06$	13	$0.40 \\ 0.27$	30 17	0.42	1,135 800	2.2 0.2	293 30	23.0 8.0	14.0 28.0	2.5 0.7	22.5 1.4		60 14
48	160	0.65	12	0.10	0.17	3		26	0.61	1,237	0.2	520	47.0		1.8	19.8		90
49	60	0.12	58	0.02	0.15	7	0.38	31	0.06	419	0.6	19	8.0	2.6	1.6	3.6		15
50 51	495 484	0.35 1.02	18 39	0.05 0.04	0.13 0.20	10 9	_	41 33	1.43 1.67	820 3,248	0.5 1.6	11 22	33.9 39.1	11.3	2.3 2.4	4.5		1
52	93	0.77	48	0.04	0.43	_		100	0.34	1,536		30	6.0	12.5	3.6	2.8		
53 54	45 	0.15 0.12	15	0.01 0.01	0.08 0.11	10	0.20	15	0.26	668	0.2	41	12.4	5.2	1.3	3.0		<u>7</u>
55		0.12	29	0.25	0.06				0.22	640	0.3	24	13.0	2.2	3.5	2.2		
56	130	0.01	1	0.07	0.71	7	0.10	23	0.3	2	2.5	6	4.2	5.4	1.2	0.2		
57 58 59	80 120 170	0.28 0.27 0.30	30 29 43	0.03 0.01 0.02	0.22 0.43 0.44	16 22 15	0.11 0.10 0.10	25 40 55	0.27 0.32 0.32	2,860 2,794 2,731	4.2 1.3 1.3	22 29 22	11.0 16.0 15.0	10.8 6.0 5.0	2.6 2.9 2.9	11.0 4.5 3.2		40 2 3
60 61	140 30	0.68 0.75	34 23	0.2 0.2	0.30 —	35 4		100 98	1.45	3,791 2,894		264 220	29.9 24.0	11.1 16.0	3.0 4.7	3.0 3.1		
62	44		43		0.15	8		32		462					0.4			
63 64	170 46	0.52 0.16	113 55	$0.05 \\ 0.04$	$0.22 \\ 0.24$	14 6	0.85 0.30	100 65	0.48 0.11	1,232 1,534	1.2 0.8	186 42	31.0 13.3	7.0 4.6	4.6 2.2	8.0 22.8	*****	14 33
65	50	0.16	118	0.12	0.26	18	0.80	100	0.37	1,439	0.8	98	13.0	9.0	2,2	16.5		40
66	73	0.25	117	0.02	0.20	12	0.43	109		1,813	1.7	107	22.3	7.2	4.2	19.1		54
67 68	60 40	0.17 0.10	32 24	0.04 0.06	0.12 0.12	6 7	0.20 0.06	34 28	$0.11 \\ 0.11$	1,090 1,002	0.4 0.4	48 57	9.9 11.0	3.4 4.0	1.4 1.2	4.5 4.3		13 13
69 70	130 238	0.13 0.25	6 8	1.3 1.50	1.04 1.05	46 7	0.08 0.10	3 7	0.34 0.64	1,369 4,392	0.08 1.4	10 19	44.0 69.0	4.0 4.0	27.1 45.8	4.1 5.7	23 23	0.2
71	120	0.23	5	0.07	0.38	33	1.00	39	1.05	3,984	9.9	448	109.0	42.8	37.0	91.8	1	2
72	90	0.13	13	0.07	0.34	14	1.00	99	1.39	2,881	22.4	500	73.0	36.3	47.7	6.2	4	

TABLE 9-2 Amino Acid Composition of Some Feeds Commonly Used for Poultry (data on as-fed basis)

Entr Num	-	Interna- tional Feed	Dry Mat- ter	Pro- tein	Argi- nine			His- ti- dine	Iso- leu- cine	Leu-	Ly- sine	Me- thi- onine	Cys- tine	Phenyl ala- nine		- Thre- onine		Valin
ber	Feed Name Description	Number	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
Alfal 01	fa <i>Medicago sativa</i> meal dehydrated, 17%	1-00-023	88.0	17.0	0.69	0.82	0.72	0.57	0.67	1.19	0.73	0.24	0.19	0.81	0.81	0.69	0.23	0.84
02	protein meal dehydrated, 20% protein	1-00-024	92.0	20.0	0.92	0.97	0.89	0.34	0.88	1.30	0.87	0.31	0.25	0.85	0.59	0.76	0.33	
03	Bakery waste dehydrated (dried	4-00-466	92.0	9.8	0.47	0.82	0.65	0.13	0.45	0.73	0.31	0.17	0.17	0.40	0.41	0.49	0.10	0.42
	bakery product) Barley <i>Hordeum vulgare</i>								*****	0.10	0.01	0.11	0.17	0.40	0.41	0.49	0.10	0.42
)4)5	grain grain, Pacific coast Broadbean V <i>icia faba</i>	4-00-549 4-07-939		9.0	0.52 0.48	0.44 0.36	0.46 0.32	0.27 0.21	0.37 0.40		0.40	0.18 0.13	0.24 0.18	0.56 0.48	$0.35 \\ 0.31$	$0.37 \\ 0.30$	0.14 0.12	
6	seeds Blood	5-09-262	87.0	23.6	2.12	1.02	1.15	0.82	0.95	1.76	1.50	0.18	.28	1.00	0.80	0.85	0.20	1.07
97 98	meal, vat dried	5-00-380		81.1	3.63	4.59	3.14	3.52		10.53	7.05	0.55	0.52	5.66	2.07	3.15	1.29	7.28
-	meal, spray or ring dried Brewer's Grains dehydrated	5-00-381 5-02-141	93.0 92.0	88.9 25.3	3.62	3.95	4.25 0.80	5.33 0.57	0.98	2.48	7.88	1.09	1.03	5.85	2.63	3.92	1.35	7.53
	Buckwheat, Common Fagopyrum sagittatum			20.0	1.20	1.00	0.00	0.01	1.44	2.40	0.90	0.57	0.39	1.45	1.19	0.98	0.34	1.66
0	grain	4-00-994	88.0	10.8	1.02	0.71	0.41	0.26	0.37	0.56	0.61	0.20	0.20	0.44	0.21	0.46	0.19	0.54
	Canola Brassica napus- Brassica campestris seeds, meal prepressed	5-06-145	88.0	24.0	0.00	100		000					The section of the se					
Tings Tings Tings	solvent extracted, low erucic acid, low glucosinolates Casein	- w-110	00.U	34.8	2.08	1.82	1.53	0.93	1.37	2.47	1.94	0.71	0.87	1.44	1.09	1.53	0.44	1.70
2 3	dehydrated precipitated dehydrated Cattle	5-01-162 5-20-837	93.0 92.0	87.2 85.0	3.61 3.42	1.79 1.81	5.81 5.52	2.78 2.52	4.82 4.77	9.00 8.62	7,99 7.31	2.65 2.80	0.21 0.15	4.96 4.81	5.37 5.17	4.29 4.00	1.05 0.98	6.46 5.82
4	skim milk, dehydrated Coconut Cocos nucifena	5-01-175	93.0	36.1	1.21	0.73	2.05	1.03	1.83	3.59	2.80	0.90	0.29	1.75	1.83	1.59	0.50	2.25
5	kernels with coats, meal solvent extracted (copra meal)	5-01-573	92.6	19.2	1.97	0.82	0.79	0.36	0.63	1.18	0.50	0.28	0.28	0.88	0.44	0.58	0.12	0.91
(Corn, Dent Yellow Zea mays indentata																	
6	distillers' grains, dehydrated	5-28-235	94.0	27.9	0.97	0.49	0.70	0.62	0.99	3.01	0.78	0.40	0.24	0.94	0.84	0.49	0.20	1.18
7	distillers' grains with solubles, dehydrated	5-28-236	93.0	27.2	0.98	0.57	1.61	0.66	1.00	2.20	0.75	0.60	0.40	1.20	0.74	0.92	0.19	1.30
)	distillers' solubles, dehydrated gluten, meal, 60% protein	5-28-237 5-28-242	92.0 88.0	28.5 60.2	1.05	1.10		0.70	2.45	2.11	1.03	0.50	0.40	1.30		1.00		1.39
)	gluten with bran (corn gluten feed)	5-28-243	90.0	22.0	1.01	0.99	0.80		0.65	1.89	0.63	0.45	1.10 0.51	3.56 0.77	3.07 0.58	2.00 0.89		2.78 0.05
2	grain grits by-product (hominy feed)	4-02-935 4-03-011	88.0 90.0	8.5 10.0	0.38 0.47	0.33 0.40		0.23 0.20	0.29 0.40	1.00 0.84	0.26 0.40	0.18 0.13	0.18 0.13	0.38 0.35	0.30 0.49	0.29 0.40		0.40 0.49
C	Cotton Gossypium spp. seeds, meal mechanically extracted, 41% protein (expeller)	5-01-617	91.4	41.0	4.35	1.69	1.68	1.07	1.31	2.23	1.59	0.55	0.59	2.20	1.09	1.30	0.50	1.84
	seeds, meal direct solvent extracted, 41%	5-07-872	90.4	41.4	4.66	1.69	1.78	1.10	1.33	2.41	1.76	0.51	0.62	2.23	1.14	1.34	0.52	1.82
	protein seeds, meal prepressed solvent extracted, 41% protein	5-07-873	89.9	Make.				S W	1.33	2.43	171		1-18	2.22	1.13	1.32	0.47	1.88
, r	ish solubles, condensed solubles, dehydrated	5-01-969 5-01-971	51.0	31.5 63.6			0.83			1.86			0.30		0.40		0.31	
	ish, Anchovy Engraulis ringen	2-01-911	<i>34.</i> U	03.0	2.10	J.09	2.02	2.18	1.95	3.16	3.28	1.00	0.66	1.48	0.78	1.35	0.51	2.22

Entr	v	Interna- tional	Dry Mat-	Pro-	A must	Gly-	Ser-	His- ti-	Iso-	1	F	Me-	C	Phenyl		T.	Tryp-	
Nun		Feed	ter	tein	Argi- nine	cine	ine	dine	leu- cine	Leu-	Ly- sine	thi- onine	Cys- tine	ala- nine	Tyro- sine	Thre- onine	to- phan	Valine
ber	Feed Name Description	Number ^a	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
28	meal mechanically extracted Fish, Herring Clupea	5-01-985	90.0	65.0	3.81	3.68	2.51	1.59	3.06	4.98	5.07	1.95	0.65	2.75	2.22	2.82	0.78	3.46
29	harengus meal mechanically extracted	5-02-000	92.0	72.0	1.21	4.30	2.75	1.74	3.23	5.46	5.47	2.16	0.72	2.82	2.25	3.07	0.83	3.90
	Fish, Menhaden Brevoortia tyrannus	5 02 000	00.1		2.00		2.07										12112	122
30	meal mechanically extracted Fish, White Gadidae (family)-Lophiidae (family)-Roidae (family)	5-02-009	92.1	61.3	3.68	4.46	2.37	1.42	2.28	4.16	4.51	1.63	0.57	2.21	1.80	2.46	0.49	2.77
31	(family)-Rajidae (family) meal mechanically extracted	5-02-025	91.0	62.2	4.02	4.42	3.06	1.34	2.72	4.36	4.53	1.68	0.75	2.28	1.83	2.57	0.67	3.02
32	Gelatin process residue (gelatin by-products)	5-14-503	91.0	88.0	7.40	20.00	2.80	0.85	1.40	3.10	3.70	0.68	0.09	1.70	0.26	1.30	0.09	1.80
	Hominy Feed—see Com Livers meal	5-00-389	92.0	65.6	4.14	5.57	2.49	1 47	3.09	5.28	4.80	1.22	0.89	2.89	1.69	2.48	0.59	4.13
M	Meat															2.10	0.00	4.20
34 35	meal rendered with bone, meal rendered Millet, Pearl Peninstum glaucum	5-00-385 5-00-388	92.0 93.4	54.4 51.6	3.73 3.28	6.30 6.65	1.60 2.20	1.30 0.96	1.60 1.54	the restrict of a section	3.00 2.61	0.75 0.69	0.66 0.69	1.70 1.81	0.84 1.20	1.74 1.74	0.36 0.27	2.30 2.36
36	grain Millet, Proso <i>Panicum</i> <i>miliaceum</i>	4-03-118	90.0	15.7	0.74	0.47	0.74	0.31	0.37	1,14	0.45	0.25	0.24	0.56	0.35	0.48	0.08	0.49
177 7 200	grain Oats Avena sativa	4-03-120	87.5	9.1	0.35	0.31	0.40	0.22	0.35	1.14	0.21	0.16	0.17	0.47	0.34	0.29	0.08	0.44
38 39 40	grain grain, Pacific coast hulls	4-03-309 4-07-999 1-03-281	89.0 91.0	11.4 9.0	0.79 0.60 0.14	0.50 0.40 0.14	0.30	April 18 - 1 19 A	0.52 0.40 0.14	0.30	0.40	0.18 0.13	0.22 0.17 0.06	0.59 0.44 0.13	0.53 0.20 0.14	0.43	2 - 4 - 2 - 1	0.68 0.51 0.20
and some	Pea Pisum spp.		election of	CATEGORA NO		Was A	elector.		CLICENCE PO	The said			0.00	Tionso !!!	9.17	0.10	0.01	0.20
41	seeds Peanut <i>Arachis hypogaea</i>	5-03-600	88.8	23.8	2.23	1.00	1.08	0.59	0.97	1.65	1.68	0.24	0.33	1.10	0.73	0.84	0.18	1.10
42	kernels, meal mechanically extracted (peanut meal) (expeller)	5-03-649	90.0	40.0	4.35	2.18	1.83	.87	1.27	2.42	1.26	0.45	0.52	1.97	1.47	1.01	0.39	1.53
43	kernels, meal solvent extracted (peanut meal) Poultry	5-03-650	91.9	49.0	5.33	2.67	2.25	1.07	1.55	2.97	1.54	0.54	0.64	2.41	1.80	1.24	0.48	1.87
44	by-product, meal rendered (viscera with feet and heads)	5-03-798	94.2	59.5	3.94	6.17	2.71	1.07	2.16	3.99	3.10	0.99	0.98	2.29	1.68	2.17	0.37	2.87
45	feathers, meal hydrolyzed Rice Oryza sativa	5-03-795	91.0	82.9	5.57	6.13	8.52	0.95	3.91	6.94	2.28	0.57	4.34	3.94	2.48	3.81	0.55	5,93
46 47	bran with germ (rice bran) grain, polished and broken (brewer's rice)		89.1 89.2		0.96 0.74				$0.45 \\ 0.37$		0.59 0.43			0.60 0.48	0.42 0.33	0.48 0.36	0.12 0.10	
48	polishings	4-03-943	90.0	12.2	0.78	0.71	1.36	0.24	0.41	0.80	0.57	0.22	0.10	0.46	0.63	0.40	0.13	0.76
49	Rye Secale cereale grain Safflower Carthamus tinctorius	4-04-047	88.0	12.1	0.53	0.49	0.52	0.26	0.47	0.70	0.42	0.17	0.19	0.56	0.26	0.36	0.11	0.56
50	seeds, meal solvent extracted	5-04-110	92,0	27.0	2.21	1.53	0.99	0.61	1.02	1.74	0.90	0.42	0.45	1.10	0.71	0.85	0.37	1.42
51	seeds without hulls, meal solvent extracted Sesame Sesamum indicum	5-07-959	92.0	43.0	3.65	2.32		1.07	1.56	2.46	1.27	0.68	0.70	1.75	1.07	1.30	0.59	2.33

Entr Num ber		Interna- tional Feed Number ^a	Dry Mat- ter (%)	Pro- tein (%)	Argi- nine (%)	Gly- cine (%)	Ser- ine (%)	His- ti- dine (%)	Iso- leu- cine (%)	Leu- cine (%)	Ly- sine (%)	Methionine	Cys- tine (%)	Phenyl ala- nine (%)	Tyro- sine (%)	Thre		
52	seeds, meal mechanically extracted	5-04-220	90.0	41.0	4.68	2,04	1.72	0.99	1.51	2.68	Selver Co.	1.22	0.72	1.93	1.48	1.40	0.62	seleganoss vera
	Sorghum Sorghum bicolor	11713 Lauris 2414 40525	TERMINAN.	admining.	(XISTERIAL)	medana	HORST ISS	ALIANIES.	31503302517	THE HOLD	STANTAGE !		BENEFIT		1050 [4]			
53	grain, 8-10% protein	4-20-893	87.5	9.1	0.35	0.31	0.40	0.22	0.35	1.14	0.21	0.16	0.17	0.47	0.04	0.00	0.00	0.44
54	grain, more than 10% protein	4-20-894		10.0		0.32			0.43	1.37	0.22	0.15	0.17	0.47 0.52	0.34 0.17	0.29 0.33	0.08	
55	Soybean Glycine max flour by-product	4-04-594	89.0	13.3	0.94	0.40	******	0.18	0.40	0.57	0.48	0.10	0.21	0.37	0.23	0.30	0.10	0.37
56	(Soybean mill feed) protein concentrate, more than 70% protein	5-08-038	93.0	84.1	6.70	3.30	5.30	2.10	4.60	6.60	5.50	0.81	0.49	4.30	3.10	3.30	0.81	
57	seeds, heat processed	5-04-597	88.0	35.5	2.59	1 55	1.07	0.00	1.50	0 ===	0.00							
58	seeds, meal solvent extracted	5-04-604		44.0		1.55 1.90	1.87 2.29	0.99 1.17	1.56 1.96	2.75 3.39	2.25 2.69	0.53 0.62	0.54 0.66	1.78 2.16	1.34 1.91	1.41 1.72	$0.51 \\ 0.74$	
59	seeds without hulls, meal solvent extracted	5-04-612	88.4	47.5	3.48	2.05	2.48	1.28	2.12	3.74	2.96	0.67	0.72	2.34	1.95	1.87	0.74	2.22
	Sunflower, common Helianthus annuus																	
60	seeds, meal solvent extracted	5-09-340	90.0	23.3	2.30		1.00	0.55	1.00	1.60	1.00	0.50	0.50	1.15		1.05	0.45	1.60
61	seeds without hulls, meal solvent extracted	5-04-739	89.8	36.8	2.85	2.03	1.49	0.87	1.43	2.22	1.24	0.80	0.64	1.66	0.91	1.29	0.41	1.74
	Triticale Triticale hexaploide																	
62	grain Wheat Triticum aestivum	4-20-362	88.0	11.8	0.57	0.48	0.52	0.26	0.39	0.76	0.39	0.26	0.26	0.49	0.32	0.36	0.14	0.51
63	bran	4-05-190	88.0	15.4	1.02	0.81	0.67	0.46	0.47	0.96	0.61	0.23	0.32	0.61	0.46	0.50	0.23	0.70
64	flour by-product, less than 4% fiber (wheat red dog)	4-05-203	88.0	15.3	0.96	0.74	0.75	0.41	0.55	Series bereiter	0.59	0.23	0.37	0.66	0.46	0.50	100	0.72
65	flour by-product, less than 9.5% fiber (wheat	4-05-205	88.0	16.0	1.15	0.63	0.75	0.37	0.58	1.07	0.69	0.21	0.32	0.64	0.45	0.49	0.20	0.71
	middlings)																	
66	flour by-product, less than 7% fiber (wheat shorts)	4-05-201	88.0	16.5	1.18	0.96	0.77	0.45	0.58	1.09	0.79	0.27	0.36	0.67	0.47	0.60	0.21	0.83
37	grain, hard red winter	4-05-268	88.1	100	0.00													
68	grain, soft white winter	4-05-337	89.0	Charles the Contraction	0.60	0.59	0.59	0.31	0.44	0.89	C. C. C. C. C. C. C. C.		0.30	0.60	0.43	0.39	0.16	0.57
PERMIT	Whey Bos taurus		- Hilliam	10000	A NATA	0.40	U.30	0.20	7.42	0.59	0.31	0.15	0.22	0.45	0.39	0.32	0.12	0.44
59	dehydrated	4-01-182	93.0	12.0	0.34	0.30	0.32	0.18	0.82	1.10	0.07	0.10	0.00	0.00				
70	low lactose, dehydrated (dried whey product)	4-01-186	91.0		0.67	1.04	0.76	0.25	0.90				0.30 0.57	0.33 0.50	0.25 0.35	0.89 0.85	0.19 0.23	0.68 0.83
**	Yeast, Brewer's Saccharomyces cerevisiae																	
71	dehydrated Yeast, Torula <i>Torulopsis</i>	7-05-527	93.0	44.4	2.19	2.09	_	1.07	2.14	3.19	3.23	0.70	0.50	1.81	1.49	2.06	0.49	2.32
72	utilis dehydrated FE: Dash indicates that no data we	7-05-534	93.0	47.2	2.60	2.60	2.76	1.40	2.90	3.50	3.80	0.80	0.60	3.00	2.10	2.60	0.50	2.90

NOTE: Dash indicates that no data were available.

influenced by the tannin content of the grain. Development of high-tannin or "bird-resistant" varieties has allowed increased production of sorghum in areas where bird predation had previously limited yields; however, the presence of tannins in these cultivars may reduce their nutritional value. Tannins cause a binding and precipitation of dietary proteins and digestive enzymes (Butler et al., 1984) and may reduce both the amino acid (Armstrong et al., 1974) and the energy digestibility

TABLE 9-3 Ranges in Weights per Unit of Volume for Selected Feedstuffs at Standard Moisture

Feedstuffs	Pounds per Bushel	Kilograms per Hectoliter	Moisture (%)
Barley	36–48	45–62	16.0
Corn	46–56	59–72	15.5
Oats	22–40	28-52	16.0
Sorghum (milo)	51–57	66–74	15.5
Soybeans	49–56	63–72	13.0
Wheat	45–63	58–81	15.5

^a First digit is class of feed: 1, dry forages and roughages; 2, pasture, range plants, and forages fed green; 3, silages; 4, energy feeds; 5, protein supplements; 6, minerals; 7, vitamins; 8, additives; the other five digits are the International Feed Number.

(Gous et al., 1982) of the diet. The ME of grain sorghums can be predicted from their tannin content by the following equation (Gous et al., 1982):

$$ME_n$$
 (kcal/kg) = 3,152 - 358 (% tannic acid).

Although wheat was once considered too expensive for use in animal feeds, increased production in recent years has resulted in more extensive use in poultry diets. In general, wheat has about 90 percent of the *ME* value of corn. The protein and amino acid composition varies widely and is influenced by genetic and environmental factors. Most wheat varieties have been developed for various baking properties, although some breeders have developed varieties designed primarily for animal feeds (Bowyer and Waldroup, 1987). The nutrient sources in wheat are easily digested (McNab and Shannon, 1974). Feeding trials with broilers, layers, and turkeys indicate that wheat can be effectively used to provide a major portion of the energy in these diets (Waldroup et al., 1967; Lillie and Denton, 1968; Petersen, 1969). But because wheat has no carotenoid pigments, adjustment is made when skin or yolk pigment must be maintained.

One vitamin that must be considered with wheat feeding is biotin. Although the total biotin content in wheat exceeds that in corn, the biological availability in wheat is low (Frigg, 1976). A condition known as fatty liver and kidney syndrome (FLKS) has frequently been observed in all species of poultry when wheat is used extensively. Biotin supplementation should be considered when wheat provides more than 50 percent of the cereal grain.

Notwithstanding differences in bushel weight, the protein content of grains (dry matter basis) often varies a great deal from batch to batch. This variation may be the result of genetic constitution, soil fertility, time of harvest, and other factors. The protein concentration of grains can be determined readily for feed formulation purposes. It should be recognized, however, that the amino acid composition of protein in a specific grain does not remain constant as protein concentration changes. In some instances, the concentrations of essential amino acids in protein increase, but, in other instances, they decrease. For example, there is a marked inverse relationship between the protein content of wheat or sorghum grain and the lysine concentration in the protein. As protein content increases, lysine in the protein decreases. This relationship is most prominent within cultivars of wheat and sorghum grains and is the result of a shift among the major proteins within these grains, whereby the proportion of prolamine (low in lysine) increases at the expense of other proteins high in lysine. Certain other amino acids (such as arginine, methionine, and cystine) may be affected similarly. An inverse relationship between protein content and concentration of certain essential amino acids in the protein also has been reported for cultivars of barley, corn, oats, and rice. The alterations in amino acid composition with increasing protein concentration generally are less with these grains than with wheat and milo.

Recently, much research has been focused on the selection of cultivars of grains in which the concentrations of both protein and selected amino acids within the protein may be increased. Examples include high-lysine corn and high-protein barley. The quantities of these grains available for feeding to poultry are limited at the present time.

PROTEIN SUPPLEMENTS

A number of the feedstuffs used to supply supplementary protein to poultry diets may contain naturally occurring toxic or potentially toxic compounds. In many instances, the nutritive value of the protein supplement can be markedly influenced by the method used in processing the protein supplement.

Cottonseed Meal

Cottonseed meal, for example, may contain gossypol pigments. Free gossypol forms complexes with iron in the feed, intestinal tract, blood, and egg yolk, leading to possible iron deficiency or to discoloration of the yolk. Under extreme heat during processing, the gossypol may also form complexes with lysine, severely reducing the digestibility. The amount of gossypol present in cottonseed meal is variable and depends on the cultivar and the manufacturing procedures. In general, meals produced by the prepress solvent method are lowest in free gossypol, have greater lysine digestibility, and are the preferred meal for poultry (Phelps, 1966). Gossypol adversely affects the bird, with younger birds being less tolerant than older birds. Hens consuming gossypol may lay eggs with olive-discolored yolks, with the incidence related to the amount of free gossypol consumed. The discoloration may be evident in the newly laid egg, but it more often becomes apparent after storage. Addition of soluble iron salts to bind the free gossypol may enable the use of cottonseed meals, where this is economically feasible (Waldroup, 1981). The presence of cyclopropenoid fatty acids and gossypol in cottonseed meals and oil may also cause a pinkish color in the egg whites.

Rapeseed Meals

Rapeseed meals manufactured from many varieties of rapeseed contain goitrogenic, or progoitrogenic, compounds

(glucosinolates) at sufficiently high concentrations to reduce growth rate and egg production when fed to poultry. Canadian plant geneticists have been successful in developing rapeseed cultivars, called canola, that contain negligible quantities of glucosinolates in the seed. Meals manufactured from these cultivars are called canola meal.

Inclusion of rapeseed meals in the diet of brown-egg layers sometimes results in the production of eggs with a "fishy" or off-flavor taint. This taint is due to the presence of excess amounts of trimethylamine (TMA) in the yolk. Deposition of TMA in yolks by certain strains of chickens is due to the presence of an autosomal semidominant gene that has variable expression depending upon various environmental factors including the inclusion rate of rapeseed meal. Although some brown-egg strains carry this trait, white-egg strains do not. This genetic defect reduces the synthesis of TMA oxidase enzyme, leading to increased quantities of TMA in the metabolic pool. Rapeseed contains variable levels of sinapine, a potent inhibitor of TMA oxidase. Low-glucosinolate cultivars have less drastic effects on egg taint but do not completely correct the situation. Therefore care should be taken in feeding rapeseed or canola meals to hens that produce brown-shelled eggs.

Soybean Meal

Soybeans contain compounds that inhibit the activity of the proteolytic enzyme trypsin (Read and Haas, 1938). They also contain other antinutrients, including hemagglutinins or lectins, which contribute to growth depression (Ham et al., 1945; Chernick et al., 1948; Coates et al., 1970; Liener, 1980). Ingestion of the antitryptic substances induces enlargement of the pancreas.

The trypsin inhibitor is inactivated by heat treatment of soybean meal. The heat treatment must be carefully controlled because overheating can result in deterioration of protein quality. On the basis of the assumption that the urease enzyme in raw soybeans is denatured at approximately the same rate as the trypsin inhibitor, and because it is easier to determine urease activity than trypsin inhibitor, urease assays (Caskey and Knapp, 1944) have generally been used by the feed industry in monitoring soybean meal quality. However, some studies indicate that there is not a direct relationship between the activities of the two enzymes (Albrecht et al., 1966) and that the rates of destruction of urease and the trypsin inhibitor are not equal under different processing conditions (McNaughton and Reece, 1980).

The feed industry in the United States has long used a maximum urease rise of 0.2 pH units as the standard for processing soybean meal for all types of livestock feeds. However, studies show that meals with a urease value up to 0.50 pH units are acceptable in poultry feeds (Glista and Scott, 1950; Wright, 1968; De Schrijver, 1977; Waldroup et al., 1985a). Damage to the protein from overheating the soybean meal is more serious when dietary lysine concentrations are marginal, and heat damage may be monitored by measuring the solubility of the protein, either by the Kjeldahl or by the dye-binding method (Dale and Araba, 1987; Kratzer et al., 1990).

High level usage of soybean meal in poultry diets has been linked to the incidence of foot pad dermatitis (Jensen et al., 1970). The exact cause of this is not known. Soybean meal contains relatively high levels of potassium, which may increase litter moisture and thus result in sticky litter. In addition, the carbohydrate fraction of soybean meal is poorly digestible (Parsons et al., 1980; Pierson et al., 1980) and may serve as a substrate for increased bacterial activity in the litter.

Animal Protein Sources

Animal protein sources—meat meals, fish meals, blood meal, and feather meal—are subject to variation as a result of manufacturing conditions and the nature of the raw material from which they are processed. Excessive and/or prolonged heating during drying will lower digestibility and cause some loss of essential amino acids. Proteins of hide, scales, hair, feathers, and bone are not easily digested and contain high concentrations of keratin and/or collagenous proteins. The latter will result in relatively low concentrations of tryptophan in the product. The use of certain lots of fish meal may result in the development of a condition known as gizzard erosion (Janssen, 1971), a disease manifested primarily by ulcerations of the lining of the gizzard. A substance known as gizzerosine has been isolated from samples of fish meal known to induce gizzard erosion and has been shown to possess the same gizzard-erosion-producing properties (Okazaki et al., 1983). To date, however, the exact level of gizzerosine necessary to induce gizzard erosion cannot be stated, since other factors (notably excess levels of copper sulfate) may precipitate or exacerbate the condition.

Fish meal may result in the development of off-flavors in poultry meat (Fry et al., 1965) or eggs (Holdas and May, 1966; Koehler and Bearse, 1975). The quantity of fish meal required to produce off-flavors is influenced primarily by the oil content of the meal, length of time fed, degree of rancidity of the oil, and holding time and temperature of the egg or carcass. Thus it is not possible to state a universal level of fish meal that will not result in the development of off-flavors.

ESTIMATING THE AMINO ACID COMPOSITION OF FEEDSTUFFS

Many factors influence the amino acid composition of grains and protein supplements. For accurate and economical feed formulation, it is desirable to know the amino acid composition of the actual ingredient to be used in the diet. However, it is generally not feasible to analyze all samples of feed ingredients prior to their use in feeds. Therefore research has been conducted at several laboratories using regression analysis to estimate the amino acid composition of selected feed ingredients from their proximate composition (Ward, 1989). An equation for estimating the amino acid content of feedstuffs related to changes in protein content is presented in Table 9-4 and an equation for estimating amino acid content from other proximate components is shown in Table 9-5. These equations represent different approaches that provide similar answers. No attempts have been made to compare the results obtained from using both sets of equations on a common set of samples.

Knowledge of the availability of amino acids in feedstuffs is important for consistent formulation of diets that meet the birds' amino acid requirements. The amounts of amino acids that are available to the animal are often much lower than the quantity contained in feedstuffs. Many factors affect the availability of amino acids. Undenatured proteins vary markedly in their digestibility. For example, feathers and most connective

TABLE 9-4 Estimation of Amino Acids from Protein Content of Feed Ingredients

Ingredients	Percentage Dry Matter	Percentage Crude Protein	Regression Factors	Methionine	Methionine + Cystine	Lysine	Threonine	Tryptophan	Arginine
Alfalfa meal.	88	16.3	a	-0.079	-0.052	0.013	-0.041	0.002	-0.119
Medicago sativa			ь	0.0191	0.0282	0.0410	0.0436	0.0138	0.0474
Corn.	88	8.5	a	0.015	0.073	0.057	0.014	0.041	0.091
Zea mays			b	0.0192	0.0345	0.0224	0.0336	0.0026	0.0353
Corn gluten feed	88	18.8	a	0.101	-0.281	-0.055	-0.024		-1.394
8			b	0.0106	0.0527	0.0302	0.0358		0.1142
Milo.	88	9.0	a	0.038	0.084	0.094	0.029	0.004	0.089
Sorghum vulgare			b	0.0135	0.0276	0.0121	0.0296	0.0103	0.0286
Canola meal,	88	34.8	a	0.177	0.140	1.133	0.250	0.081	.510
Brassica campestris			b	0.0157	0.0419	0.0231	0.0377	0.0105	0.0499
Rice bran	88	12.6	a	-0.044	-0.001	0.011	0.051		0.40
Auto ormi			b	0.0241	0.0423	0.0466	0.0366	_	0.1112
Soybean meal,	88	45.8	a	0.127	0.157	-0.252	0.203	-0.041	-0.543
Soya hispida	00	2010	b	0.0111	0.0255	0.0665	- 0.0344	0.0144	0.0844
Sunflower meal.	88	33.0	a	-0.107	-0.048	0.259	-0.051	-0.055	-0.559
Helianthus annuus	00	33.0	b	0.0255	0.0419	0.0265	0.0380	0.0134	0.0965
The state of the s	88	11.8	a	0.024	0.069	0.140	0.047		0.046
Triticale	30	11.0	b	0.0147	0.0332	0.0209	0.0264		0.0447
	88	12.9		-0.009	0.042	0.094	0.026	0.307	0.022
Wheat,	80	12.9	b	0.0163	0.0343	0.0194	0.0264	0.0087	0.0445
Triticum	88	15.4	ALTERNATION OF THE PARTY OF THE	-0.087	-0.034	0.070	-0.206		0.020
Wheat bran	•	10.4	a b	0.0208	0.0738	0.0353	0.0340		0.0649
	CC	25.4	Achteria money bringing	-0.074	-0.009	0.306	0.335	0.101	-1.918
Field beans,	88		a b	0.0106	0.0205	0.0518	0.0220	0.0045	0.1653
Vicia faba	88	37.4	All the Bridge Street Street	0.153	0.0203	0.0518	0.0220		0.466
Cottonseed meal,		3/4	a b	0.0127	0.0323	0.0364	0.0291		0.1157
Gossypium herbaceum			O	0.0121		0.0304	0.0231		
Fish meal	91	63.8	a	-0.909	-10.059	-2.706	-10.083	0.492	-0.456
			Ъ	0.0420	0.0540	0.1181	0.0588	0.0184	0.0652
Meat and bone meal	91	47.9	a	-0.416	-0.960	-0.867	-0.822	-0.405	0.773
Meat and bolle meat	91	41.0	b	0.0215	0.0423	0.0671	0.0483	0.0139	0.0539
Etald mone	88	21.1	a	0.157	0.371	-0.213	0.431	0.065	-1.224
Field peas,	00	21.1	b	0.0021	0.0063	0.0800		0.0058	0.1453
Pisum arcense	91	58.4	a	-0.743	0.0000	-3.221	1.158		-1.263
Poultry by-product	91	90.4	b	0.0291	*****	0.1057	0.0184		0.0879
meal	01	56.7		0.374	-0.187	0.222	0.323	-	-0.175
Poultry by-product	91	30.7	a b	0.0039	0.0549	0.0311	0.0391		0.0668
meal, feather rich	00	10.7		0.0039	0.051	0.109	0.0331	0.015	0.033
Barley,	88	10.7	a		0.0328	0.105		0.0104	0.0438
Hordeum vulgare	00	01.0	Ь	0.0141	0.0328	0.0236	-0.188	0.096	0.223
Lupine seeds,	88	31.8	a	0.064		0.411		0.0049	0.223
Lupinus spp.			Ь	0.0090	0.0163	0.0334	0.0596	0.0049	0.0347

NOTE: To estimate amino acid content, fit the equation y = a + bx, where x is the level of crude protein in the sample, a is the intercept, and b is the regression coefficient. Dash indicates that no coefficients were available.

Source: The Amino Acid Composition of Feedstuffs, 1990. Allendale, N.J.: DeGussa Corporation.

TABLE 9-5 Estimation of Amino Acid Composition of Feed Ingredients from Proximate Components

Ingredients	Regression Factor	Methionine	Methionine + Cystine	Lysine	Threonine	Tryptophan	Arginine
Lupin beans	Intercept	0.21996	0.95037	1.4019	0.25777	0.04185	0.7692
	Protein	_a	-	0.018	0.02099	0.010	0.11352
	Moisture	-0.00306	-0.01326	-0.03354	-0.01034	_	-0.05846
	Fat	0.0076	- 0.01262	- 0.0142	0.04113	_	_
	Fiber	-0.00219	-0.01262	-0.0142	_	_	- 0.17105
C1	Ash	-	-	- 0.2752	-	-	-0.17185
⁄Iilo	Intercept	0.0557	0.0859	0.2753	0.0593	0.142	0.2664
	Protein	0.0126	0.0282	0.0097	0.0238	0.014	0.0163
	Moisture	_	_	-	_	0.0116	0.0092
	Fat	_	-	-0.0392	-	-0.07	- 0.0220
	Fiber	_	0.0142	-0.0227	-0.014	-	-0.0238
	Ash	-	-0.0237	0.0353	0.0318	-0.0637	0.0741
leat and bone	Intercept	0.7048	-1.1187	4.7627	-0.0022	-1.7233	5.4562
neal	Protein	0.0098	0.0458	-	0.0384	0.0229	-
	Moisture	-0.0299	0.0372	-0.09	_	0.0562	-0.0916
	Fat	0.012	_	_	_	0.0266	-0.0565
	Fiber	0.0555	_	-	-	0.1311	-
	Ash	-0.0224	_	-0.0629	-0.0099	_	-0.0246
oultry by-product	Intercept	-9.1947	8.587	-12.066	7.8878	0.8287	0.1536
	Protein	0.1019	-0.0311	0.149	_	_	0.0627
	Moisture	0.1013	-0.0403		-	-0.0159	0.0423
	Fat	0.1438	-0.149	0.2488	-0.2065	_	-
	Fiber	_	-	_	0.244	-0.055	_
	Ash	0.0801	-0.1338	0.1535	0.1618	-0.0079	_
oultry by-	Intercept	0.9628	7.3812	11.8668	1.6665	0.0981	2.4219
roduct (crude	Protein	-0.0162	-0.0361	-0.0936	0.0137	_	0.0306
rotein = $54-62\%$)	Moisture	-0.0675	-0.1187	_	-0.042	_	_
,	Fat	0.0681	-0.1102	_	_	0.0257	
	Fiber	0.0623	_	_	_	_	-0.0601
	Ash	_	-0.0761	-0.1299	-0.0212	0.0172	
ield peas	Intercept	0.12772	0.18461	0.1614	0.39919	0.09402	-0.91679
iera peas	Protein	0.01941	0.04412	0.03032	-0.01403	0.12596	0.51075
	Moisture	-0.00895	-	-	-	-0.02906	0.06947
	Fat	-	-0.05672	-0.11144	0.06006	-	-
	Fiber	-0.01017	-0.01301	0.02799	0.01807	_	_
	Ash	0.09637	-	0.12756	-0.10471	0.24338	-0.21985
ice bran (full-fat)	Intercept	0.0315	0.1517	-0.1305	0.0202	0.0594	-0.0312
ice brail (full-fat)	Protein	0.0135	0.0274	0.0313	0.0202	0.0042	0.0433
	Moisture	-	-	-	0.0024	-	- -
	Fat	_	-0.0033	_	0.0024 -	_	_
	Fiber		-0.0033	_	0.0045	_	
		0.0019					-
ovihoon ma1	Ash	-0.0018	-0.0039	0.0061	0.001	0.0051	1.0221
oybean meal	Intercept	0.1754	0.1902	-0.113	1.5584	-0.201	1.0221
crude protein	Protein	0.0079	0.0179	0.0579	0.0159	0.0222	0.0678
44–48%)	Moisture	_	_	_	-0.0289	_	_
	Fat	_	_	_	-0.0366	_	_
	Fiber	-	-	-	-0.0277	-	- 0.1122
	Ash	0.0221	0.0624	0.0665	_	-0.0241	-0.1132
unflower meal	Intercept	-0.0452	0.04425	1.1555	0.31712	-0.35379	-0.52833
	Protein	0.01905	0.03874	0.0157	0.02928	0.02035	0.09468
	Moisture	0.01612	0.00023	0.00358			
	Fat	_	_	_	-0.04026	0.00528	_
	Fiber	_	_	-0.01197	_	0.0001	_
	Ash	_	_	-0.03554	_	_	_
heat	Intercept	0.196	0.0074	0.3902	0.0717	0.0582	0.381
	Protein	0.0098	0.0582	0.0137	0.0336	0.0047	0.0221
	Moisture	-0.0086	-0.0054	-0.0195	-0.0068	_	-0.0176
	Fat	-	0.0435	0.0812	0.0545	-0.0142	0.0154
	Fiber	-0.0412	-0.0195	0.0163	0.0628	-	-
	Ash	-0.0032	-0.0193	-0.0144	-0.0173	_	-0.0016
akery by-product	Intercept	0.0315	0.1517	-0.1305	0.0202	0.0594	-0.0010
akery by-product	Protein	0.0315	0.1317	0.0313	0.0202	0.0042	0.0433
	Moisture	0.0313 -	0.0274		0.0246		
			-0.0033	_		_	-
	Fat	_		- 0.0045	_	_	_
	Fiber	0.0019	-0.0046	0.0045		_ 0.0051	_
	Ash	-0.0018	-0.0039	0.0061	0.001	0.0051	_

Ingredients	Regression Factor	Methionine	Methionine + Cystine	Lysine	Threonine	Tryptophan	Arginine
Barley	Intercept	0.03751	-0.0319	0.05149	0.05491	0.00596	-0.019
•	Protein	0.01311	0.02881	0.01975	0.02713	0.01053	0.0339
	Moisture	_	_	0.01235	_	_	0.01762
	Fat	_	0.02886	_	_	_	_
	Fiber	_	0.01549	_	_	_	_
	Ash	_	_	_	_	_	_
Corn	Intercept	0.11324	0.05313	-0.10041	-0.05593	0.26305	-0.03611
	Protein	0.01123	0.02982	0.04573	0.02275	_	0.05484
	Moisture	_	_	_	0.00678	-0.01334	_
	Fat	_	_	_	0.01593	_	_
	Fiber	_	_	_	0.00963	_	_
	Ash	_	_	_	_	_	_
Corn gluten meal	Intercept	0.47972	-0.05128	-1.68796	-1.42473	-3.55835	-1.03918
	Protein	0.02256	0.05079	0.04201	0.05376	0.06078	0.04928
	Moisture	-0.01619	-0.02883	0.01719	_	_	0.00518
	Fat	-0.00898	-0.00663	-0.00561	0.00337	-0.00604	-0.00384
	Fiber	-0.05844	_	0.12073	0.12052	0.22955	0.04866
	Ash	0.00788	0.00546	_	-0.00359	0.01117	-0.0058
Fish meal	Intercept	8.8912	5.0029	2.2017	4.4545	-0.3998	3.6336
	Protein	0.02597	_	0.055	_	0.0124	0.02564
	Moisture	_	-0.0651	0.06728	-0.0358	_	-0.0331
	Fat	_	-0.0702	_	-0.03662	0.0241	_
	Fiber	-0.3727	_	-0.7517	-0.182	-0.1369	-0.2596
	Ash	-0.0272	-0.0754	-0.0566	-0.0612	0.009	-0.0482

NOTE: To estimate amino acid, insert values shown for specific amino acid into the following equation: $y = \text{intercept} + b_1(\% \text{ protein}) + b_2(\% \text{ moisture}) + b_3(\% \text{ fat}) + b_4(\% \text{ fiber}) + b_5(\% \text{ ash})$, where the b, etc., represent the regression coefficients listed in each column. Dash indicates that no coefficients were available.

Sources: This information is drawn from three reports published in 1986 by Monsanto: Amino Acids in Feed Ingredients and Their Predictability. Monsanto Nutrition Update, vols. 4:2, 4:3, and 4:4. St. Louis, Mo.: Monsanto Company.

tissues contain high concentrations of cystine and disulfide bonding, which increase the stability of the protein and resistance to digestive enzymes. Antinutritional factors such as tannins in sorghum and trypsin inhibitors in soybeans reduce the availability of amino acids. Much of the latter adverse effect is due to increases in endogenous amino acid losses. The negative effects of undenatured protein structure and antinutritional factors can usually be reduced or totally eliminated by heat processing. Although some processing is needed to increase the availability of amino acids in many feedstuffs, adverse processing conditions such as excessive pressure and heat can reduce availability. These factors are particularly critical for animal protein meals since substantial processing or cooking is required during manufacturing. Lysine and cystine are two of the amino acids most affected by processing conditions.

True digestibility coefficients for amino acids in 30 feedstuffs are shown in Table 9-6. The values were determined by the precision-fed cockerel assay described by Sibbald (1986) or a modification thereof. The three primary sources of the digestibility values used to compile the data of Table 9-6 were Sibbald (1986), Green (1987), and Parsons (1990a), with data from other published reports also included. The assay was originally developed for determination of true *ME* (Sibbald, 1976) and later extended to determination of amino acid digestibility (Likuski and Dorrell, 1978; Sibbald, 1979). The basic procedure consists of subjecting adult male birds to fasting for 24 to 48 hours, followed by crop-intubation of 30 to 50 g of the test feedstuff and quantitative collection of excreta for 48 hours. Additional cockerels are either subjected to fasting or given a nitrogen-free diet during the assay period to estimate endogenous amino acid excretion. A large number of data have been generated by using this assay during the last 10 years, and the results seem to be reasonably consistent among different laboratories.

A large portion of the data used to derive the coefficients in Table 9-6 were determined with cecectomized birds; however, data from studies with conventional birds were also included. Cecectomy removes the majority of the hindgut area in poultry and eliminates most of the potentially confounding effects of the hindgut microflora on amino acid excretion. The surgical procedure is simple, and several laboratories are currently using the technique. Digestibility coefficients determined with cecectomized birds are often lower than those determined with conventional birds.

Determination of amino acid digestibility by analysis of the ideal contents has also been used to a limited extent. The two primary approaches used in these studies

have been (1) removal of the ideal contents immediately following slaughter (Summers and Robblee, 1985) and (2) collection of intestinal digesta via a cannula placed in the terminal ileum (Thomas and Crissey, 1983; Raharjo and Farrell, 1984).

Entr	у	Interna- tional	Dry Mat-	Pro-	Armi	Cly-	Ser-	His- ti-	Iso-	Υ	Υ	16.01		Phenyl-			Tryp	
Num		Feed	ter	tein	Argi- nine	cine	ine	dine	léu- cine	Leu- cine	Ly- sine	Methi-		ala-	Tyro			
ber	Feed Name Description	Number ^a	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	onine (%)	tine (%)	nine (%)	sine (%)	onine (%)	phan (%)	Valin (%)
52	seeds, meal mechanically	5-04-220	90.0	41.0	4.68	2.04	1.72	0.99	1.51	2.68	0.91	1 22	0.72	1.93	1.48	1.40	0.62	Chalmas and
1680	extracted													ENNE				
	Sorghum Sorghum bicolor									,		en and the control	1274-1-10-4	54 4 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	retractives	MACHINE ACTOR	17970(11)	111111111111111111111111111111111111111
53	grain, 8-10% protein	4-20-893	87.5	9.1	0.35	0.31	0.40	0.22	0.35	1.14	0.21	0.16	0.17	0.47	0.34	0.29	0.08	0.44
54	grain, more than 10%	4-20-894	88.0	10.0	0.35	0.32	0.45		0.43	1.37	0.22		0.11	0.52	0.17	0.23	0.09	0.54
	protein																	
55	Soybean Glycine max	4.04.504			0.0.													
50	flour by-product (Soybean mill feed)	4-04-594	89.0	13.3	0.94	0.40	******	0.18	0.40	0.57	0.48	0.10	0.21	0.37	0.23	0.30	0.10	0.37
56	protein concentrate.	5-08-038	93.0	84.1	6.70	3.30	5.30	2.10	4.00	0.00								
	more than 70% protein		30.0	O12.1	0.70	3.30	5.50	2.10	4.60	6.60	5.50	0.81	0.49	4.30	3.10	3.30	0.81	4.40
57	seeds, heat processed	5-04-597	88.0	35.5	2.59	1.55	1.87	0.99	1.56	2.75	2.25	0.53	0.54	1.78	1.34	1.41	0 61	1.05
58	seeds, meal solvent	5-04-604	88.2	44.0	3.14	1.90	2.29	1.17	1.96	3.39	2.69	0.62	0.66	2.16	1.91	1.72	0.51 0.74	1.65 2.07
	extracted									-140	-100	0.02	0.00	2.10	1.01	1.14	0.14	2.07
59	seeds without hulls, meal solvent extracted	5-04-612	88.4	47.5	3.48	2.05	2.48	1.28	2.12	3.74	2.96	0.67	0.72	2.34	1.95	1.87	0.74	2.22
	Sunflower, common		arining		STANSON	MINE.		eta Brissan	25557150Y	10350000	lo EU Hide	NH morros	Michae	CEGRESION	-W447-3233	15,47,040,444,45,4	erentetterko	C1984Nares
	Helianthus annuus																	
60	seeds, meal solvent	5-09-340	90.0	23.3	2.30		1.00	0.55	1.00	1.60	1.00	0.50	0.50			19:00		
	extracted						1.00	0.5.5	1.00	1.60	1.00	0.50	0.50	1.15		1.05	0.45	1.60
61	seeds without hulls, meal solvent extracted	5-04-739	89.8	36.8	2.85	2.03	1.49	0.87	1.43	2.22	1.24	0.80	0.64	1.66	0.91	1.29	0.41	1.74
WHEE	Triticale Triticale																	
	hexaploide																	
62	grain	4-20-362	88.0	11.8	0.57	0.48	0.52	0.26	0.39	0.76	0.39	0.26	0.26	0.49	0.32	0.36	0.14	A Ex
	Wheat Triticum aestivum												0.20		0.02	0.00	0.14	0.51
63	bran	4-05-190	88.0	15.4	1.02	0.81	0.67	0.46	0.47	0.96	0.61	0.23	0.32	0.61	0.46	0.50	0.23	0.70
64	flour by-product, less	4-05-203	88.0	15.3	0.96	0.74	0.75	0.41	0.55	1.06	0.59	0.23	0.37	0.66	0.46	0.50	0.10	time rue to
	than 4% fiber (wheat																	
65	red dog)																	
رن	flour by-product, less than 9.5% fiber (wheat	4-05-205	88.0	16.0	1.15	0.63	0.75	0.37	0.58	1.07	0.69	0.21	0.32	0.64	0.45	0.49	0.20	0.71
	middlings)										Mus							
66	flour by-product, less	4-05-201	88.0	16.5	1.18	0.96	A											
	than 7% fiber (wheat	2.00.201	30.0	10.5	1,10	0.90	0.77	0.45	0.58	1.09	0.79	0.27	0.36	0.67	0.47	0.60	0.21	0.83
Mary 3	shorts)																	
67	grain, hard red winter	4-05-268	88.1	13.3	0.60	0.59	0.59	0.31	0.44	0.89	0.37	0.21	0.30	0.60	0.40	0.00	0.70	
68	grain, soft white winter	4-05-337	89.0	L'investmention.		0.49	0.55	0.20	0.42	0.59	0.31	And the Party of t	0.22	0.45	0.43	0.39	0.16	0.57
	Whey Bos taurus	: <45153111 (live	- AND THE STREET	[[[]]	estantin		NAME OF	SHIPPER SO	North Head	of the same	iner-	- MINISTER	O.C.	Market	0.55	0.52	U.LZ	0.44
69	dehydrated	4-01-182	93.0	12.0	0.34	0.30	0.32	0.18	0.82	1.19	0.97	0.19	0.30	0.33	0.25	0.00	0.10	0.00
70	low lactose, dehydrated	4-01-186	91.0		0.67	1.04	0.76	0.25	0.90	1.35	1.47		0.57	0.50	0.25	0.89	0.19	0.68
	(dried whey product)								0100	1.00	*. *.	0.01	0.01	0.00	0.00	0.00	0.40	0.00
	Yeast, Brewer's																	
	Saccharomyces cerevisiae																	
71	dehydrated	7-05-527	93.0	44.4	2.19	2.09	-	1.07	2.14	3.19	3.23	0.70	0.50	1.81	1.49	2.06	0.49	2.32
	Yeast, Torula Torulopsis																	
72	<i>utilis</i> dehydrated	7-05-534	02.0	177.0	2.00	2.00	A 77.											
	TE: Dash indicates that no data we		93.0	47.2	2.60	2.60	2.76	1.40	2.90	3.50	3.80	0.80	0.60	3.00	2.10	2.60	0.50	2.90

It is generally accepted that digestible amino acid values are more indicative of relative nutritional value among feedstuffs than are total amino acid concentration values. However, the application of digestibility values in practical feed formulation is sometimes confusing because the amino acid requirements listed in the tables herein are expressed as total amino acid concentration in the diet. There is little or no published research on the digestible amino acid requirements of poultry species. Therefore a review of 28 published studies on the lysine and methionine plus cystine requirements of broilers, turkeys, and laying hens was recently conducted to calculate digestible amino acid requirements indirectly (Parsons, 1990b). First, the amino acid digestibility coefficients in Table 9-6 were used to calculate the digestible amino acid content of the basal diet feed ingredients used in the requirement studies. The digestible amino acid content of the basal diet was then added to the amount of supplemental crystalline amino acid (100 percent available) needed to meet the requirement; this sum was considered to be the digestible amino acid requirement. The results of these calculations for the 28 studies were consistent and indicated that the calculated digestible amino acid requirements were 8 to 10 percent lower than the determined total amino acid requirements.

Amino Acid Supplements

Individual amino acids are frequently included as ingredients in diets of poultry. DL-methionine and L-lysine are most commonly used in commercial diets and other amino acids may be used in semipurified and purified diets. The protein equivalents and estimated ME_ps of 20 amino acids are presented in Table 9-7. This information should be useful in formulating poultry diets.

First digit is class of feed: 1, dry forages and roughages; 2, pasture, range plants, and forages fed green; 3, silages; 4, energy feeds; 5, protein supplements; 6, minerals; 7, vitamins; 8, additives; the other five digits are the International Feed Number.

TABLE 9-7 Nitrogen Concentration, Crude Protein Equivalents, and Nitrogen-Corrected Metabolizable Energy Values for Amino Acids

	•	, , ,	23
Amino Acid	Nitrogen (%)	Crude Protein Equivalent (g/100 g) of Amino Acid	Metabolizable Energy (kcal/kg) ^a
Alanine	15.72	98.25	3,060
Arginine	32.16	201.00	2,940
Asparagine	21.20	132.50	1,760
Aspartic acid	10.52	65.75	2,020
Cystine	11.66	72.88	2,060
Glutamic acid	9.52	59.50	2,880
Glutamine	19.17	119.81	2,630
Glycine	18.66	116.62	1,570
Histidine	27.08	169.25	2,410
Isoleucine	10.68	66.75	5,650
Leucine	10.67	66.69	5,640
Lysine	19.16	119.75	4,600
Methionine	9.39	58.69	3,680
Phenylalanine	8.48	53.00	6,030
Proline	12.17	76.06	3,980
Serine	13.33	83.31	2,210
Threonine	11.76	73.50	3,150
Tryptophan	13.72	85.75	5,460
Tyrosine	7.73	48.31	5,240
Valine	11.96	74.75	4,990

^a Assuming 100 percent digestibility and conversion of nitrogen to uric acid (including urea in the case of arginine).

TABLE 9-8 Average Fatty Acid Composition of Some Feeds Commonly Used for Poultry (data on as-fed basis)

Entry Num-		Interna- tional Feed	Dry Matter	Ether Extract	Selecte	Selected Fatty Acids, Percentage of Feed						
ber	Feed Name Description	Number	(%)	(%)	C _{12:0}	C _{14:0}	C _{16:0}	C _{16:1}	C _{18:0}	C _{18:1}	C _{18:2}	C _{18:3}
01	Alfalfa, meal dehydrated, 17% protein	1-00-023	92	2.0	0.01	0.01	0.57	0.05	0.08	0.13	0.37	0.78
02	Barley, grain	5-00-549	89	1.08	0.01		0.49	0.02	0.03	0.37	0.78	0.08
03	Corn, dent yellow, distillers' solubles, dehydrated	5-28-237	92	9.0	nteres		1.80	0.07	0.09	2.25	4.77	0.02
04	Corn, dent yellow, grain	4-02-935	89	3.8	******	-	0.62		0.10	1.17	1.82	0.09
05	Corn, dent yellow, grits by- product (hominy feed)	4-03-011	90	6.9	*******		0.97	_	0.14	1.94	3.75	0.10
06	Corn, dent yellow, gluten, meal	5-28-241	90	2.5		Particular.	0.50		0.06	0.61	1.16	nemer .
07	Cotton, seeds, meal solvent extracted, 41% protein	5-01-621	93	3.9		0.02	1.22		0.02	0.53	2.46	0.03
08	Fish, menhaden, meal mechanically extracted	5-02-009	92	9.4	0.01	1.15	3.61	1.58	0.57	1.96	0.14	0.08
09	Meat with bone, meal rendered	5-00-388	93	8.6		0.22	2.36	0.44	1.42	3.74	0.31	THAT!
10	Oats, grain	4-03-309	89	4.2	95 07 1 V	0.05	0.93	0.04	0.05	1.60	1.47	0.09
П	Peanut, kernels, meal mechanically extracted (expeller)	5-03-649	90	7.3			1,52	0.08	0.23	3.32	1.43	0.03
12	Poultry, feathers, meal hydrolyzed	5-03-795	93	3.3	0.01	0.06	0.99	0.19	0.48	0.98	0.43	
13	Sorghum, milo, grain	4-04-444	89	2.8		-	0.56	0.15	0.03	0.89	1.13	0.06
14	Soybean, seeds without hulls, meal solvent extracted	5-04-612	90	1.0		-	0.24	0.01	0.05	0.16	0.47	0.07
15	Wheat, grain	5-05-211	87	1.9	-		0.46	0.08	0.03	0.44	0.81	0.11
16	Wheat, middlings	4-05-205	88	3.0	*****		0.61			0.58	1.70	0.12

NOTE: Dash indicates that no data were available for these values. SOURCE: Fatty acid composition data obtained from Edwards (1964).

CHARACTERISTICS OF DIETARY FATS

As discussed in Chapter 1, dietary fats vary appreciably in composition and in their contributions to nutrition of poultry. The fatty acid composition of some ingredients commonly used in poultry diets is presented in Table 9-8. Selected characteristics of supplemental fats (including combined moisture, insolubles, and unsaponifiables content), fatty acid composition, and experimentally determined ME_n values are shown in Table 9-9. This information provides an overview of the different fats that have been evaluated experimentally and some of the conditions under which they were evaluated. For comparative purposes, ME_n values of specific carbohydrates are also listed in Table 9-9.

MACROMINERAL SUPPLEMENTS

Concentrated sources of calcium, phosphorus, sodium, potassium, and magnesium are often used to achieve desired dietary concentrations of specific macrominerals. These mineral sources contain other elements of potential nutritional importance, including chlorine, fluorine, sulfur,

 $\begin{array}{ll} TABLE \ 9-9 & Characteristics \ and \ Metabolizable \ Energy \ of \ Various \ Sources \ of \ Fats \ and \ Selected \ Carbohydrates \ Occurring \ in \ Feed \end{array}$

MIU	Fatty Acids	Selec	ted Fatty	Acids, Per	rcentage o	of Total Fa	tty Acids	N-1	Energy Conten	t "As Fed"	
(%)	(% free)	16:0	16:1	18:0	18:1	18:2	18:3	Nature of Sample	kcal ME/kg	Methodology ^b	Data Reference
								Animal Tallows		· · · · · · · · · · · · · · · · · · ·	
2.2	4.8	26.9 35.4	3.3 2.7		41.5 24.5			Commercial Beef	6,020-7,690 7,268-7,780	ME _n chicks 10-20% ME _n poults 10%	Sibbald et al., 1961 Whitehead and Fisher,
1.7	9.6	22.9 25.7 26.2 25.2	2.8 4.2 2.4 4.4	22.7 25.1 19.7	40.9 37.0 39.6 39.3	2.5 3.2 8.9	0.3 0.5	Commercial Beef Commercial Commercial	7,601 7,920 8,460-10,640 8,083-8,387	ME _n chicks 3-10% TME 15% ME _n -TME regression ME _n -TME chick, 7%	1975 Guirguis, 1976 Sibbald, 1978b Muztar et al., 1981 Lessire et al., 1982
0.3 0.5 2.9 4.0 3.6 4.1 3.5 3.0	4.3 2.4 19.1 15.5 16.5 6.0 1.6 10.2	26.1 25.8 25.5 22.0 22.5 19.9 22.0 21.2	5.1 3.7 4.0 3.6 3.0 1.5 2.7 5.9	13.1 16.0 14.0 15.8 15.5	37.4 42.1 40.0 49.6 47.9 47.2 47.6 45.4	4.6 4.9 8.4 7.0 12.7 8.7 9.6	<0.1 1.7 1.6 1.7 1.9 1.2	D E	6,683-6,916 6,808-8,551 6,633-9,353 6,258 6,709 6,060 7,628 7,148	ME_n poults 2-8 weeks ME_n chicks 2-6% ME_n chicks 9%	Sell et al., 1986b Wiseman et al., 1986 Huyghebaert et al., 1988
5.9	65.1 Reservation	36.2	0.9	9.6	44.1	8.2	site and entering	Soap stocks	4,900	Section Control of the Control of	ATTACAN PERSON NEEDS TO STORE STREET
0.9	2.6	19.0		10.7	0.0			nal-Vegetable Blends			
0.8 0.7 1.5	13.6 13.8 49.2	19.8 19.4 24.7	1.7 1.6 1.5 2.3	10.7 10.3 10.3 9,6	34.3 34.4 34.8 34.6	29.9 29.5 21.9	6.3 6.4 0.5	Tallow-crude soy Tallow-refined soy Tallow-soap stocks	8,110-8,820 7,660 7,830 8,490	ME _n chicks 10% ME _n chicks 10%	Sibbald et al., 1961 Sibbald et al., 1962
		25.9 21.1 16.8 20.8 20.9 29.5	4.1 2.1 2.2 2.1 2.1 2.1	13.4 16.2 10.3 11.1 10.4 13.7	42.7 41.3 47.6 31.7 32.2 37.3	10.3 12.1 27.8 30.5	0.6 4.6 3.3 0.4	Commercial-feed grade Commercial-edible Tallow-crude canola Tallow-crude soy Tallow-refined com	8,710 9,700 9,570	TME 15%	Sibbald and Kramer, 1977
3.6 0.9 0.8 1.7		17.2 15.9 21.0 17.7 16.0 23.9	1.3 1.6 1.4 1.0 3.1 0.5	95 13.5 6.0 12.5 12.2 6.9	51.1 50.2 25.4 34.5 32.4 34.1	13.7 9.9 38.6 31.2	3.2	Tallow-soap stocks Lard-crude canola Tallow-crude canola Commercial Beef A-crude soy Beef B-crude soy Animal soap stock-soy;	8,850 10,000 9,140 7,114-8,924 7,571 7,788 5,834	ME _n poults 2-8 weeks ME _n chicks 9%	Sell et al., 1986b Huyghebaert et al., 1988
STATES.			Carried Annual Control		THEFT			soap stock Canola Oil			
****	_	4.9	0.4	1.9	61.0	18.8	7.7	Crude oil	9,210	TME 15%	Sibbald and Kramer, 1977
independent in		9.9	0.4	4.8	52.4	22.4	7.5	Soap stock	7,780-8,930	ME_n - TME regression	Muztar et al., 1981
		8.2	0.4	3.0	5.7	1.8		Coconut Oil 24 oils, MCFA = 57%			Weihrauch et al., 1977
		12.8		2.9	13.7	23.1		Undefined, MCFA° = 34%	8,812	ME _n chicks 9%	Veen et al., 1974
								Corn Oil			
		12.2 8-19	0.5 <0.5	0.7	24.7	60.5 34-62	1.4	Refined	9,639-10,811	ME _n poults 10%	Whitehead and Fisher, 1975
*****		12.4	0.1	1.9	26.9	57.0	<2.0 0.7	Commercial range Refined	9,870	TME 15%	Spencer et al., 1976 Sibbald and Kramer, 1977
messes in	ingrate abo	mistres		SHEERINGER	Sharman	estration of	rensanazaro	Refined	9,660-9,210	TME 15%	Dale and Fuller, 1981
								Cottonseed Oil			
8.2 6.5	78 67	30.1 25.8	0.2 0.4	4.1 2.2	29.8 19.8	29.5 47.1	3.0 3.0	Soap stock A B			Waldroup and Tollett, 1972
9.0	70	25.4	0.4	2.9	19.3	47.8	3.3	C			
14.1 32.1	83 21	23.4 23.7	0.3 0.3	1.8 2.6	21.3 20.3	47.3 49.1	5.1 3.0	D E			
		17-29	0.5-1.5	1.0-4.0		33-58	0.1-2.1	Commercial range Fish Oil			Spencer et al., 1976
_	******	_						Menhaden	8,450	ME_n chicks 4-12%	Cuppett and Soares, 1972
	1	18.6 19-24	5.8 11-18	4.8 2-3	18.5 10-23	24.1	1.3 0.4-1.7	Hydrogenated Menhaden range	6,800	ME_n chicks 9%	Veen et al., 1974
		0-19	6-12	0.7-2.1	9-26	0.1-2.9		Menhaden range Herring range		WARANA P	Stansby, 1981
								_			

MIU	Fatty Acids	Selec	ted Fatty	Acids, Pe	rcentage o	of Total Fa	tty Acids	Noton of	Energy Conten	t "As Fed"	
(%)	(% free)	16:0	16:1	18:0	18:1	18:2	18:3	Nature of Sample	kcal ME/kg	Methodology ^b	Data Reference
VENETIS:		17	13	3	10	1		Raw anchovy			De Koning et al., 1986
		28.7	2.1	19.6	40.9	8.7		Lard Edible	9,114-9,854	ME, poults 10%	Whitehead and Fishe
		24.4	3.4	14.2			The Control of the Co	Edible	9,060	TME 15%	1975 Sibbald, 1978
		20-32 28.9	1.7-5.0 2.2	5-24 16.9	35-62 38.0	3-16 9.7	<1.5 0.2	Commercial range Edible	9,390	TME 15%	Spencer et al., 1976 Sibbald and Kramer,
0.2 1.1	0.1 0.2	26.6 22.4	3.1 2.1	15.8 17.7		9.1 8.0	<0.1 2.1	Edible Edible A	9,926-10,236 7,337	ME _n chicks 2-6% ME _n chicks 9%	1977 Wiseman et al., 1986 Huyghebaert et al.,
0.7	0.1	21.2	5,3	17.0	44.8	9.3	11	CONTRACTOR OF STREET	7,356		1988
_	~~	27.3	0.5	6.1	58.5	11.4	1.3	Palm Oil E. guineenis			Ct 1070
-	100	46.4	0.2	5.0				Fatty acid composite	7,710	TME 15%	Clegg, 1973 Sibbald and Kramer, 1977
1.8	0.2	40.7	0.3	5.2		11.4		Refined oil	5,800	ME_n chicks 9%	Huyghebaert et al., 1988
L.8	1.0	38.0	1.5	5.5	44.3	9.0		Used in cooking Peanut Oil	5,302		en in Color eine en en en en en en
		6-16	<1.0	1.3-6.5	36-72	13-45	<1.0	Commercial range			Spencer et al. 1976
				-1-2-1-2-1-	***************************************	a the factor of	****************	Poultry Fat	SENSON RECORD AND ARREST AND ARREST		
5.2 0.7 3.9	18.0 0.7 0.5	21.6 18.1	4.8 5.9	7.2 4.6	42.3 46.2	23.0 23.3		Commercial Commercial A B	10,186 8,625-8,916 9,360	ME _n chicks 14% ME _n -TME chick 7% TME 7%	Cullen et al., 1962 Lessire et al., 1982
								Safflower Oil			
COLD III		2-10	<0.5	1-10	7-42	55-81	<1.0	Commercial range			Spencer et al., 1976
1.4	0.6	11.3	0.3	3.9	27.2	49.8	7.5	Soybean Oil Crude	8,650-8,020	ME _n chicks 10-20%	Sibbald et al., 1961
0.3 1.3	0.7 12.2	11.3 21.0	0.1	4.9 4.5	28.2 17.1	50.2 45.9	5.6 1.8	Crude Dried gums	8,370 6,440	MEn chicks 20%	Sibbald et al., 1962
0.8	13.5	20.1 7-12	0.8 <0.5	4.4	17.0	40.6	0.9	Lecithins			
-		12.2	0.1	2.0-5.5 3.2	26.0	48-58 51.6	4-10 6.3	Commercial range Crude	9,510	TME 15%	Spencer et al., 1976 Sibbald and Kramer, 1977
2.0 1.8	1.3 0.1	10.6 11.6	<0.1	3.9 3.9	25.1 19.8	52.1 57.9	7.0 6.8	Refined Refined	9,687-10,212 8,375	ME_n chicks 2-6% ME_n chick 9%	Wiseman et al., 1986 Huyghebaert et al.,
3.6	1.5 72.3	9.8 7.9	_	3.7 4.1	24.3	55.0	7.2	Crude	8,795	_	1988
1.0	1.1	28.5	-	5.0	24.0 35.8	56.9 28.0	7.1 2.7	Soap stocks Used in cooking	6,111 6,309		
								Sunflower Oil			
		3-10 6.7 2-4 -	<1.0 0.1	1-10 4.3 3-5	14-65 27.4 80-87	20-75 57.1 4-9	<0.7 3.7	Commercial range Refined High 18:1 cultivars	9,659	— ME _n , chick 2-8% —	Spencer et al., 1976 Guirguis, 1976 Purdy, 1986
4111-700	en utom raterox	23-47 - 2015C	orestas come	areas in the	Sami-tadescope		SEPSONS SEP	Carbohydrates	renderezendisissa.		
-			-	-	_			Starch	4,070	ME_n	Naber and Touchburn 1969
-			_					Sucrose	3,900	?	Janssen et al., 1972
_				_	_	-		Glucose Glucose	3,730	TME	Sibbald, 1977
				******				Glucose Fructose	2,831-3,327 2,809-3,305	ME_n hen 0-9% fat	Mateos and Sell, 1980
-	****			_	*******	******		Glucose:fructose (50:50)	2,798-3,209		
			_			N/MARAN.		Maltose	2,868-3,326	TANTON	
						NAME AND ADDRESS OF THE PARTY O		Starch Sucrose	2,918-3,396 2,512-3,063	AMAZONI.	

NOTE: Dash indicates that no data were available.

^a Moisture, ether insolubles, and unsaponifiable matter contents as a percentage of the fat.

^b ME_n is apparent metabolizable energy corrected for nitrogen retention; TME is true metabolizable energy using the rooster unless otherwise stated, and level(s) of fat used in the test diet. Some ME values are not corrected for nitrogen retention, particularly those prior to 1970.

^c Medium-chain fatty acid contributions (8:0 + 10:0 + 12:0).

TABLE 9-10 Element Concentrations in Common Mineral Sources (data on as-fed basis)

Entry Number	Feed Name Description	Inter- national Feed No.	Cal- cium (%)	Phos- phorus (%)	Sodium (%)	Potas- sium (%)	Magne- sium (%)	Chlo- rine (%)	Fluo- rine (%)	Sulfur (%)	Iron (mg/kg)	Cop- per (mg/kg)	Mangan- ese (mg/kg)	Zine (mg/kg)
01	Bone meal, steamed	6-00-400	29.8	12.5	0.04	0.2	0.3			2.4		16	30	100
02	Calcium carbonate, CaCO ₃	6-01-069	38.0	0.0	0.02	0.06	0.05		0.00		300	24	300	2
03	Calcium phosphate, dibasic from													
	defluorinated phosphoric acid	6-01-080	22.0	18.7	0.06	0.1	0.6	0.013	0.18	1.11	10,000	10	300	100
04	Calcium phosphate, mono-dibasic	6-26-137	16.0	21.0	0.06	0.07	0.6		0.15	1.2	9,000	15	300	200
05	Calcium sulfate, dihydrate, CaSO ₄ •2H ₂ O	6-01-090	22.6	_	_		NEASO.			18.1	*******			
06	Limestone, ground	6-02-632	38.0	-	0.05	0.1	2.1	0.03	< 0.0025		2,000	-		
07	Magnesium oxide, MgO	6-02-756	3.0	0.03	0.015	0.02	55.0	0.02	0.02	0.04	6,000	10		10
08	Meat with bone, meal rendered	5-00-388	10.3	5.1	0.7	1.3	11	0.7		0.5	490	2	14	93
09	Oyster, shells, ground	6-03-481	38.0	0.1	0.2	0.1	0.3	0.01			500		400	
11	Phosphate, defluorinated	6-01-780	32.0	18.0	4.9	0.1	0.4		0.18		8.000	20	250	60
10	Phosphate, rock curacao, ground	6-05-586	34.0	14.0	0.2		0.8		0.53		3,500			
12	Phosphate, rock, soft	6-03-947	17.0	9.0	0.10	0.30	0.35	0.007	1.25	0.31	15,000	64	39	90
13	Potassium chloride, KCl	6-03-755	0.05		1.0	50.5	0.34	47.3		0.45	600	7	7	9
14	Potassium and magnesium sulfate	6-06-177	0.06		0.76	18.5	11.6	1.25	0.001	22.3	100	2	20	9
15	Potassium sulfate, K2SO4	6-08-098	0.15		0.09	41.0	0.6	1.5		17.9	And bearing a property		10	
16	Sodium carbonate, Na ₂ CO ₃	6-12-316			43.39									
17	Sodium bicarbonate, NaHCO ₃	6-04-272		Israero I astronom	27.0	A051150111010	121111111111111111111111111111111111111	in materials	127727575771	Military (SALE CONTRACTOR	Stiff Child	No every life	HE WAY
18	Sodium chloride, NaCl (common salt)	6-04-152	0.3	_	39.0		0.005	60.0		0.2	50		*****	
19	Sodium phosphate, dibasic, from													
	furnaced phosphoric acid, Na ₂ HPO ₄	6-04-286		20.8	31.0		*****						-	
20	Sodium phosphate, monobasic,													
	NaH ₂ PO ₄ ·H ₂ O	6-04-288		21.8	16.2						*****		*****	-
21	Sodium sulfate, decahydrate,													
	Na ₂ SO ₄ •10H ₂ O	6-04-291			13.8		*****	****		9.7		*****		
22	Phosphoric acid, H ₃ PO ₄	6-03-707	0.08	23.7	0.05	0.02	0.45		0.19	1.1	12,000	10	400	100

NOTE: The mineral supplements used as feed supplements are not chemically pure compounds, and the composition may vary substantially among sources. The supplier's analysis should be used if it is available. Dashes indicate that no data were available.

iron, copper, manganese, and zinc. The concentration of these elements contained in selected macromineral supplements is shown in Table 9-10.

MYCOTOXINS

Mycotoxins are toxic compounds produced by fungi. Most mycotoxins cause health problems for animals by entry through the feed, although they may also be water- or air-borne. Given the appropriate conditions, fungi will grow on grain and oilseeds prior to harvest. Wet conditions and warm temperatures favor the growth of fungi (Diener et el., 1987). Stresses such as drought, insect infestation, and plant disease often make the crop susceptible to fungal growth. Some fungi will then produce mycotoxins, which remain with the grain and oilseeds after harvest.

Mycotoxins in feed ingredients are difficult to economically remove or destroy. One method for detoxification of one class of mycotoxins—aflatoxins—is ammoniation of ingredients. Ammoniation was effective in destroying aflatoxin in peanut meal and cottonseed meal (Gardner et al., 1971) and in corn (Hughes et al., 1979). A second procedure for reducing the effect of aflatoxins is the use of dietary adsorbents. Including sodium calcium aluminosilicate in the diet at a level of 0.5 percent is effective in reducing the effect of aflatoxins on the growth of chickens (Kubena et al., 1990).

Conditions that are favorable for fungal growth and mycotoxin production may also occur while ingredients are in storage. The best way to prevent this problem is to keep the moisture level of ingredients low enough to inhibit fungal growth. In some instances, antifungal additives may be used to prevent fungal growth in feed or ingredients.

Several classes of mycotoxins are known to cause economic losses in poultry. The first to be identified was aflatoxins. These are produced by some strains of the fungi *Aspergillus flavus*, *A. paraciticus*, and *A. nomius*. Aflatoxins have been labeled B_1 , B_2 , G_1 , and G_2 . Conditions appropriate for the production of aflatoxin are more commonly encountered in the southeastern or central part of the United States or where the leaf canopy maintains high moisture content at the plant level.

Aflatoxins can produce a variety of effects. Broilers show decreased growth and increased kilogram feed:gain ratios when fed 2.5 mg of aflatoxin per kilogram but not when fed 1.25 mg/kg (Smith and

Hamilton, 1970). When hens were fed diets with approximately 90 mg of aflatoxin per kilogram, egg production decreased quickly and a high rate of mortality ensued (Hamilton, 1971). At a level of 1.5 mg/kg feed, aflatoxins caused fatty livers, necrosis, and bile duct hyperplasia (Carnaghan et al., 1966). Hematological responses such as lowered serum protein, reduced hemoglobin, and lower levels of serum triglycerides, phospholipids, and cholesterol result from moderate aflatoxin doses (Tung et al., 1972).

Fusarium moniliforme is a fungus that may grow on grains. It is found to produce a thiaminase causing thiamin deficiency in chicks (Fritz et al., 1973). Mortality is increased if additional thiamin is not supplied in contaminated diets. Corn shown to contain F. moniliforme causes substantial mortality when fed to ducklings (Jeschke et al., 1987).

Tricothecenes constitute another group of fungal compounds that may decrease the performance of poultry. These compounds may be produced by several genera of fungi but are most commonly metabolites of *Fusarium*. Laboratory studies have shown that T-2 toxin at levels up to 20 mg/kg of diet may decrease weight gain and egg production (Wyatt et al., 1973b, 1975). Oral lesions and digestive disturbances are caused by toxic concentrations of T-2.

Other tricothecenes produced by *Fusarium* are deoxynivalenol (DON), nivalenol, and diacetylnivalenol. These toxins appear to be more toxic to swine, in which they may cause vomiting and feed refusal (Morehouse, 1985), than to poultry. Adverse effects of *Fusarium* toxins on turkey reproduction have been reported (Allen et al., 1983).

Mycotoxins such as ochratoxin A and zearalenone have also been identified and may cause deleterious effects on poultry. A review of their effects was done by the Council for Agricultural Science and Technology (1989).

10

Standard Reference Diets for Chicks

Many laboratories that use Leghorn- or meat-type chicks for studies in animal behavior, biochemistry, microbiology, nutrition, pathology, physiology, and toxicology need nutritionally complete standard reference diets. The use of standard reference diets that are well defined facilitates more valid comparison of information obtained from experiments conducted within and among laboratories. The diets shown in Table 10-1 have been used successfully in various laboratories and are presented as guides to those requiring such formulations. The isolated soybean protein, casein, and chemically defined diets contain some mineral and vitamin supplements not normally needed in practical diets.

Dextrose (glucose·H₂O) rather than starch should be used in diets consisting primarily of purified intact proteins (such as isolated soy protein and casein) to obtain improved performance. Diets containing substantial quantities of dextrose and crystalline amino acids should be stored under refrigeration to minimize Maillard or Browning reactions. These chemically defined diets are intended for short-term use (1 to 3 weeks) and will not support maximum growth over an extended period of time

TABLE 10-1 Formulas for Reference Diets for Chicks

Ingredient	Practical Diet ^a	Soy Isolate Diet ^b	Chemically Casein Diet ^c	Chemically Defined Diet I ^d	Defined Diet II
Ground yellow corn (8.8% protein)(g/kg)	580	****			
Soybean meal (48.5% protein)(g/kg)	350		*******	7000000	*******
Isolated soybean protein (g/kg)		250			******
Casein (g/kg)		***************************************	200		
DL-Methionine (g/kg)	2.5	6	5		
L-Arginine (g/kg)		******	10		_
Glycine (g/kg)	******	4	20		
Crystalline amino acids (g/kg)		_		204.8^{f}	286g
Corn oil (g/kg)	30	40	30	50-150	150
Starch (g/kg)	6.5-1 kg			558-1 kg	205
Dextrose (g/kg)		6.08-1 kg	678-1 kg	300 - 1 Kg	200
Sucrose (g/kg)				154	-
Cellulose (g/kg)	******	30		30	30
Sawdust (g/kg)				30	100
Choline chloride (100%) (g/kg)			Parameter Commence of the Comm	MCERCHERONA CONTRACTOR AND A	State and and an ending transport and and
Thiamin HCl (mg/kg)	0.75	2	2	2	1.625
Riboflavin (mg/kg)	1.8 3.6	15	20	20	1.6
Calaine and A. A. A. A.		15	10	10	5
Calcium pantothenate (mg/kg) Niacin (mg/kg)	10 25	20 50	30	30	15
Pyridoxine HCl (mg/kg)	3	7.8	50	50	35
Folacin (mg/kg)	0.55		6	6	6_
Biotin (mg/kg)	0.15	6 0.6	4 0.6	4	15
Vitamin B ₁₂ (mg/kg)	0.13	0.02	0.04	0.6 0.04	0.1
Inositol (mg/kg)			100		0.03
Para-aminobenzoie acid (mg/kg)			2	100	100
Ascorbic acid (mg/kg)			250	250	2
Vitamin A (IU/kg)	1,500	4,500	5,200	5,200	1,880
Vitamin D ₃ (ICU/kg)	400	450	600	600	375
Vitamin E (TU/kg)	10	50	20	20	31.3
Vitamin K (mg/kg)	0.55	1.5	2	2	and the state of t
Antioxidant (mg/kg) ^h	125	100	2	12-5	1.3
Iodized salt (g/kg)	5	100	menta.	12-0	
NaCl (g/kg)	9	6		- 0.0	2.75
CaCO ₃ (g/kg)	10	14.8	8.8	8.8	2.75
CaHPO ₄ •2H ₂ O (g/kg)	20		3	3	15
Carro4.2rgO (g/kg)	20	20.7			30
Ca ₃ (PO ₄) ₂ (g/kg)	Name of the last o		28	28	******
MgSO ₄ • 7H ₂ O (g/kg)		6	3.5	3.5	
MgCO ₃ (g/kg)		10			2.38
KH ₂ PO ₄ (g/kg)		10	9	9	
K ₂ CO ₃ (g/kg)		*******	_	moreon.	5.25
NaHCO ₃ (g/kg)	_	******		******	5
Al(OH) ₃ (g/kg)	****				5
KCl (g/kg)	ACTUAL CONTRACTOR TO ACTUAL TO THE	1	CONTRACTOR OF COMMENT OF COMMENT	10.1707.	
MnSO ₄ ·H ₂ O (mg/kg)	170	350	650	650	
MnCO ₃ (mg/kg)					91.5
ZnSO ₄ ·H ₂ O (mg/kg)	110				
ZnCO3 (mg/kg) ZnO (mg/kg)		150	100	100	
2nO (mg/ kg) Fe ₂ (SO ₄) ₃ • 7H ₂ O		-			25
	500	500			250
Ferric citrate (mg/kg) CuSO ₄ +5H ₂ O (mg/kg)	560 16		500	500	
CusO ₄ •5H ₂ O (mg/kg) Na ₂ SeO ₃ (mg/kg)	0.2	30	20	20	15.5
KI (mar/kg)	2	0.2	0.2	0.2	0.23
KI (mg/kg) KIO ₃ (mg/kg)			40	40	
CoCl ₂ (mg/kg)		2,			0.6
CoSO ₄ · 7H ₂ O (mg/kg)		1.7			
					1
H ₃ BO ₃ (mg/kg) Na ₂ MoO ₄ • 2H ₂ O (mg/kg)			9	9	9
Nanvigita Allachimo/kol		8.3	9	9	2.5

NOTE: Dash indicates a zero value for the ingredient.

National Research Council (1977).

Scott et al., 1982.

Halpin and Baker, 1986.

Baker et al., 1979. The vitamin mix shown in the table differs slightly from the one in the cited reference because of modification in recent years.

Blair et al., 1977.

Int. 5 g L-arginine + HCl, 4.5 g L-histidine HCl • H₂O, 11.4 g L-lysine HCl, 4.5 g L-tyrosine, 1.5 g L-tyryptophan, 5 g L-phenylalanine, 3.5 g DL-methionine, 3.5 g L-cystine, 6.5 g L-threonine, 10 g L-leucine, 6 g L-valine, 6 g glycine, 4 g L-proline, 120 g L-glutamic acid.

Solution of the council of the counc

Appendixes

TABLE A-1 Documentation of Nutrient Requirements of Starting and Growing Leghorn—Type Chickens

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
Protein, %				
20	0-14	Growth	White Leghorn	Grau and Kamei, 1950
21.1	0-42	Growth	White Leghorn and	Edwards et al., 1956
21.1	0 12	Growin	Rhode Island Red	Edwards of un., 1930
14–20	84–140	Growth	White Leghorn	McNaughton et al., 1977b
15–18	0–42	Growth	White Leghorn	McNaughton et al., 1977b
12	0–56	Growth	White Leghorn	Leeson and Summers, 1979
16	56–84	Growth	White Leghorn	Leeson and Summers, 1979
19	84–104	Growth	White Leghorn	Leeson and Summers, 1979
14 and 21	56-140	Growth	White Leghorn	Douglas and Harms, 1982
12 or 13.6	0-42	Growth	Commercial brown-egg	Maurice et al., 1982
16 or 13.6	42–140	Growth	layers Commercial brown-egg	Maurice et al., 1982
10	0.20	0 1 6 1 61	layers	Ti 1 1002
18	0–28	Growth of muscle fiber	White Leghorn	Timson et al., 1983
18	0-42	Growth	White Leghorn	Keshavarz, 1984
12	42–140	Growth	White Leghorn	Keshavarz, 1984
16.5	140–504	Laying	White Leghorn	Keshavarz, 1984
22	0–28	Growth	White Leghorn	Leeson and Summers,
				1984
18 Isoleucine, %	0–140	Growth	White Leghorn	Chi, 1985
0.5 Leucine, %	8–18	Growth	White Leghorn	Mori and Okumura, 1984
1.2 Lysine, %	8–18	Growth	White Leghorn	Mori and Okumura, 1984
0.9–1.1	0-42	Growth	White Leghorn	Edwards et al., 1956
0.94	1–21	Growth, feed efficiency	White Leghorn	Chung et al., 1973
0.70	35-49	Growth, feed efficiency	White Leghorn	Chung et al., 1973
<0.5	56–98	Growth	White Leghorn	Berg, 1976
< 0.45	98–147	Growth	White Leghorn	Berg, 1976
0.68	0-504	Growth, egg production	White Leghorn	Keshavarz, 1984
Methionine, %	0-304	Growth, egg production	Winte Legiloin	Resilavaiz, 1704
0.8	0-14	Growth	White Leghorn	Grau and Kamei, 1950
Methionine and cystine, % 0.8	0–14	Growth	White Leghorn	Grau and Kamei, 1950
				,
0.59	0-504	Growth, laying	White Leghorn	Keshavarz, 1984
0.45	0–42	Growth	White Leghorn	Chi, 1985
Threonine, % 0.72	7–21	Growth, feed efficiency	White Leghorn	Davis and Austic, 1982
Valine, %				
0.8	8-18	Growth	White Leghorn	Mori and Okumura, 1984
Requirements for	Various	Growth	Primarily White	Almquist, 1952
essential amino acids			Leghorn	
described in review papers				
Requirements for	Various	Growth	White Leghorn	Waldroup et al., 1980
essential amino acids				
described in review papers				
Requirements for	Various	Growth, egg production	White Leghorn	Harms, 1984
essential amino acids described in review papers				
Calcium				
0.78	0–153	Growth	White Leghorn	Hamilton and Cipera, 1981
3.19	154–439	Egg production	White Leghorn	Hamilton and Cipera, 1981
0.89	35-126	Growth	White Leghorn	Classen and Scott, 1982
2.08	12–154	Growth, subsequent egg	White Leghorn	Classen and Scott, 1982
3.50	177–225	production Egg production	White Leghorn	Classen and Scott, 1982
2.0–3.5	At 133 to 4th egg	Growth, bone	White Leghorn	Leeson et al., 1986
0.8	98–140	development Growth, subsequent egg	White Leghorn	Keshavarz, 1987
2.5	00 140	production	XX71.54 X . 1	W 1 1007
3.5	98–140	Egg production	White Leghorn	Keshavarz, 1987
3.55	140–420	Egg production	White Leghorn	Keshavarz, 1987
4.0	>112	Egg production	White Leghorn	Leeson and Summers, 1987b
Nonphytate phosphorus, %				17070
0.4–0.6	7–28	Growth	White Leghorn	Gillis et al., 1949
0.25-0.30	0-140	Growth	Brown-egg layers	Carew and Foss, 1980
0.31	112–140	Growth	White Leghorn	Douglas and Harms, 1986
			<u>~</u>	

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
Potassium, % 0.20–0.24	0–28	Growth, bone calcification	White Leghorn	Gillis, 1948
Sodium, %		curenticution		
0.10-0.30	0–28	Growth	White Leghorn	Burns et al., 1953
0.13	0-21	Growth	White Rock	Hurwitz et al., 1973
0.15	0–140	Growth	White Leghorn	Manning and McGinnis, 1980
Chlorine, %				1900
0.13	0-14	Growth, feed efficiency	Broiler Strain	Nam and McGinnis, 1981
Sodium chloride, %	0.140		****	
0.25	0–140	Growth, sexual maturity	White Leghorn	Leeson and Summers, 1980
Magnesium, mg/kg				1700
300	0-28	Deficiency, neuropathy	White Leghorn	Bird, 1949
250	0–28	Growth	Broiler strain	Gardiner et al., 1960
594	0–21	Growth	White Rock	Nugara and Edwards,
Manganese, mg/kg				1963
50	0-140	Growth, perosis	New Hampshire	Gallup and Norris, 1939a
20	0–28	Growth	White Leghorn	Watson et al., 1971
Zinc, mg/kg	0. 42		WII: D 1	OID II 4 1 1050
35	0–42	Growth, feathering, bone development	White Rock	O'Dell et al., 1958
20	0-42	Growth	White Rock	Edwards et al., 1959
20	To 1st egg	Growth, feed efficiency	White Leghorn	Rahman et al., 1961
78	0–7	Growth, feathering	White Leghorn	Sunde, 1972
52	7–21	Growth, feathering	White Leghorn	Sunde, 1972
Iron, mg/kg	0.76		D	*****
40	0–56	Growth	Rhode Island Red	Hill and Matrone, 1961
4	0–56 0–21	Growth	Rhode Island Red	Hill and Matrone, 1961
56 75–80	0-28	Growth, feed efficiency Growth	Broiler strain New Hampshire	Waddell and Sell, 1964 Davis et al., 1968
Copper, mg/kg	0-26	Growth	New Hampshire	Davis et al., 1908
4	0-56	Growth	Rhode Island Red	Hill and Matrone, 1961
Iodine, mg/kg	0.56		*****	a
0.300	0–56	Growth, thyoid histology	White Leghorn and Broiler strains	Creek et al., 1957
0.400	0-56	Growth, thyoid histology	White Leghorn and	Creek et al., 1957
0.100		Growin, injera meterogy	Broiler strains	Creek et al., 1907
0.075	0–35	Growth	Broiler strain	Rogler and Parker, 1978
Selenium, mg/kg	0.24	Crowth	Dlymanth Daals	Thomason and Scott
0.01 to 0.05, depending on dietary concentration	0–24	Growth	Plymouth Rock	Thompson and Scott, 1969
of Vitamin E				1707
0.01 to 0.05, depending	0-14	Growth	Plymouth Rock	Gries and Scott, 1972c
on dietary concentration				
of Vitamin E				
Vitamin A, IU/kg	0.56	Crowth absorpes of	White Lagham	Depart at al. 1027
800–1600	0–56	Growth, absence of deficiency signs	White Leghorn	Record et al., 1937
1,200-2,000	70–84	Curative feeding	White Leghorn	Record et al., 1937
2,650	0–189	Growth	White Leghorn	Taylor and Russell, 1947
1,760–7,000	0-56	Growth	White Leghorn	Thornton and Whittet,
4.400	0 112	Constant E	W/L:4- I1	1962
4,400	0–113	Growth, E. acervulina resistance	White Leghorn	Coles et al., 1970
Vitamin D ₃ IU/kg		TOTOMITO		
180	0-84	Growth, bone	Brown-egg layers	Baird and Greene, 1935
		development	*	
132	0–21	Growth, bone	Broiler strain	McNaughton et al., 1977a
198	0–21	development	Broiler strain	McNaughton et al., 1977a
170	0-21	Growth, bone development	Dionei sualii	wichaughton et al., 1977a
500	Adults	Egg production, shell	Various strains	Ameenuddin et al., 1985
		quality		

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
Vitamin E, IU/kg 60	Various	To prevent exudative diathesis, encephalomalacia,	Various strains	Machlin and Gordon, 1962
30–50 Vitamin V. ma/ka	0–35	muscular degeneration Growth	White Rock	Combs and Scott, 1974
Vitamin K, mg/kg 0.524–0.528 0.515	0–28 0–84	Growth Growth	White Rock White Rock	Nelson and Norris, 1960 Nelson and Norris,
0.524-0.528	0–28	Growth	White Rock	1961a Nelson and Norris, 1961b
Riboflavin, mg/kg				17010
3.5 decreasing to 1.0	0-7	Growth	White Leghorn	Heuser et al., 1938
3.5 decreasing to 1.0	49–56 0–56	Growth prevention of appled	White Leghorn	Heuser et al., 1938
3	0-30	Growth, prevention of curled toe paralysis	White Leghorn	Bethke and Record, 1942
2.3	0–42	Growth, prevention of curled toe paralysis	White Leghorn	Bootwalla and Harms, 1990
Pantothenic acid, mg/kg				
6 6.6	0–42 0–150	Growth Growth, egg quality,	White Leghorn New Hampshire	Bauernfeind et al., 1942 Balloun and Phillips,
4.8	0–42	hatchability Growth	White Leghorn	1957b Bootwalla and Harms, 1991
Niacin, mg/kg				1,,,1
28	0-56	Growth	Barred Plymouth Rock	Childs et al., 1952
1.8	42–77	Growth	White Leghorn	Sunde, 1955
17.5–20	0–28	Growth	White Leghorn	Patterson et al., 1956
Vitamin B ₁₂ , mg/kg 4.4	0–77	Growth	White Leghorn	Davis and Briggs, 1951
27	0-77	Growth	White Leghorn	Ott, 1951
2.5	0-42	Growth	White Leghorn	Miller et al., 1956
10	0–21	Growth	White Leghorn	Patel and McGinnis, 1980
Choline, mg/kg				
2,000	0–147 0–126	Growth, egg production	White Leghorn	Nesheim et al., 1971
1,000 Biotin, μg/kg	0-120	Growth	White Leghorn	Tsiagbe et al., 1982
260	0–18	Growth, feed efficiency	Broiler strain	Anderson and Warnick, 1970
Folic Acid, mg/kg	0.25	a	****	N. 1 170' 100"
0.80	0-35	Growth, feed efficiency	White Leghorn	March and Biely, 1955
0.30 0.33 to 1.45, depending	0–28 0–35	Growth Growth	Broiler strain New Hampshire	Young et al., 1955 March and Biely, 1956
on protein level	0-33	Glowin	New Hampshire	March and Biery, 1930
0.30	0–18	Growth	Broiler strain	Creek and Vasaitis, 1963
Thiamine, mg/kg 0.6–0.8	0–35	Growth	White Leghorn	Arnold and Elvehjem,
0.88	0.28	Growth	White Leghorn	1938 Thornton 1060
0.88	0–28 0–28	Growth Gain, feed efficiency	White Leghorn	Thornton, 1960 Thornton and Shutze, 1960
Pyridoxine, mg/kg				
2.8–3.0	0–28	Growth	White Leghorn	Briggs et al., 1942
5.7	0–56	Growth	White Plymouth Rock	Fuller and Kifer, 1959
5	0–21	Growth	Broiler strain	Kazemi and Kratzer, 1980

TABLE A-2 Documentation of Nutrient Requirements of Leghorn—Type Chickens in Egg Production

rotein, gibrid daily 24-60 Egg yield White Leghorn John Leghorn Not specified Egg yield White Leghorn Saw, 1969 Not specified Egg yield White Leghorn Saw, 1969 Not specified Egg yield White Leghorn Saw, 1969 Sous et al., 1982 Sous et al., 1982 Sous et al., 1982 Sous et al., 1983 Sous et al., 1982 Sous et al., 1983 Sous et al., 1985 Sous et al., 1988 Sous et al., 1986 Sous et al., 1988 Sous et al., 1986 Sous et al., 1988 Sous	Nutrient and Estimated Requirement	Age Period (Weeks)	Response Criteria	Breed	References
24-72 Egg yield White Leghorn Constitute Consti	Protein, g/bird daily 4.9	24–60	Egg yield	White Leghorn	
20-72 Egg yield White Leghorn Proudfoot et al., 1988 Proudfoot et al., 1982 Proudfoot et al., 1983 Proudfoot et al., 1985 Proudfoot et al., 1987 Proudfoot et al., 1987 Proudfoot et al., 1987 Proudfoot et al., 1988 Proudfoo		24.52		****	
rignine, mg-bird daily olocucine, mg-bird daily olocucine, mg-bird daily Not specified Sign Not specified Si					
00 on closucine, mg/bird daily Not specified Egg yield White Leghorn Adkins et al., 1962 75 Sun, mg/bird daily Not specified Egg yield White Leghorn Bray, 1969 80 Sun, mg/bird daily 22–42 Egg yield White Leghorn Nathanael and Sell, 1987 80 24–72 Egg yield White Leghorn Latshaw, 1981 80 20 7-72 Egg yield White Leghorn Latshaw, 1981 80 20 7-72 Egg yield White Leghorn Latshaw, 1981 80 20 7-72 Egg yield White Leghorn Red and Weber, 1973 80 20 7-72 Egg yield White Leghorn Red and Weber, 1973 80 20 7-76 Egg yield White Leghorn Wethil and Morris, 1975 80 20 7-76 Egg yield Rhode Island Red O'hani et al., 1989 80 30 20 7-76 Egg yield Rhode Island Red O'hani et al., 1989 80 40 8 22-54 Egg production White Leghorn Wethil and Morris, 1971 80 10 9 22-54 Egg production White Leghorn Menge, 1970 White Leghorn 8		20-72	Egg yieid	wnite Legnorn	Proudfoot et al., 1988
Not specified Egg yield White Leghorn Gous et al., 1987 ysine, mg/bird daily 22-42 Egg yield White Leghorn Handward and Sell, 1980 24-72 Egg yield White Leghorn Proudfoot et al., 1987 to this property of the self-self-self-self-self-self-self-self-	00	Not specified	Egg yield	White Leghorn	Adkins et al., 1962
So					
ysine, mg/bird daily 22-42					
22-42 Egg yield White Leghorn Nathanael and Sell, 1980 24-72 Egg yield White Leghorn Latshaw, 1981 20-72 Egg yield White Leghorn Proudfoot et al., 1988 24-72 Egg yield White Leghorn Reid and Weber, 1973 24-72 Egg yield White Leghorn Reid and Weber, 1973 24-72 Egg yield White Leghorn Reid and Weber, 1973 24-72 Egg yield White Leghorn Reid and Weber, 1973 24-72 Egg yield White Leghorn Reid and Weber, 1973 24-72 Egg yield White Leghorn Adkins et al., 1988 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg yield Rhode Island Red Obtain et al., 1989 20-76 Egg weight White Leghorn Menge, 1970 White Leghorn Menge, 1970 Egg weight White Leghorn Menge, 1970 Egg weight White Leghorn White Leghorn White Leghorn White Leghorn White Leghorn White Leghorn Scheideler and Sell, 1980 20-72 Egg production shell strength Egg production White Leghorn Scheideler and Sell, 1980 21-32 Egg production White Leghorn Scheideler and Sell, 1980 21-32 Egg production White Leghorn Schiedeler and Sell, 1987 21-32 Egg production White Leghorn Schiedeler and Sell, 1987 21-32 Egg production White Leghorn Schiedeler and Sell, 1987 21-32 Egg production White Leghorn Schiedeler and Sell, 1987 21-32 Egg production White Leghorn Schiedeler and Sell, 1987 21-32 Egg production White Leghorn Schiedeler and Sell, 1987 21-32 Egg production White Leghorn Schiedeler and Sell, 1987 21-32 Egg production White Leghorn Schiedeler and Sell, 1987 21-32 Egg production White Leghorn Schiedeler and Sell, 1987 21-33 Egg production, 25 Egg product		Not specified	Egg yield	White Leghorn	Gous et al., 1987
1980 24-72 Egg yield White Leghorn Latshaw, 1981 1988 20-72 Egg yield White Leghorn Proudfoot et al., 1988 20-72 Egg yield White Leghorn Reid and Weber, 1973 20-76 Egg yield White Leghorn Adkins et al., 1958 20-76 Egg yield White Leghorn Adkins et al., 1958 20-76 Egg yield White Leghorn Wethli and Morris, 1978 20-76 Egg yield White Leghorn Wethli and Morris, 1978 20-76 Egg yield White Leghorn Wethli and Morris, 1978 20-76 Egg yield Rhode Island Red Othani et al., 1989 20-76 Egg yield Rhode Island Red Othani et al., 1989 20-76 Egg yield White Leghorn Wethli and Morris, 1978 20-76 Egg yield White Leghorn Wethli and Morris, 1978 20-76 Egg yield White Leghorn Menge, 1970 20-72 Egg weight White Leghorn Menge, 1970 20-72 Egg production, shell strength		22 42		****	V 1 1 10 H
20	90			White Leghorn	1980
tethionine + cystine, mg/bird daily 00 20 76	50	24–72	Egg yield	White Leghorn	Latshaw, 1981
20			Egg yield	White Leghorn	Proudfoot et al., 1988
24-72 Egg yield White Leghorn Latshaw, 1981 reroonine, mg/bird daily ryptophan, mg/kg ryptophan, mg/k					
reconine, mg/bird daily 00 00 00 00 00 00 00 00 00 00 00 00 00		20 from onset of lay			
Not specified Egg yield White Leghorn Adkins et al., 1958 yptophan, mg/bird daily 20-76 Egg yield White Leghorn Wethia and Morris, 1978 daine, % 4 Not specified Egg yield Rhode Island Red Ohtan et al., 1988 yield Silver Egg yield Rhode Island Red Ohtan et al., 1988 yield Silver Egg yield Rhode Island Red Ohtan et al., 1986 yield Silver Egg yield Rhode Island Red Ohtan et al., 1986 yield Rhode Island Red Ohtan et al., 1987 yield Rhode Island Red Ohtan et al., 1987 yield Rhode Island Red Ohtan et al., 1988 yield Rhode Island Red Ohtan et al., 1987 yield Rhode Island Red Ohtan et al., 1988 yield Rhode Island Red Ohtan et al., 1986 yield Rhode Island Red Ohtan Rhode Island Red Ohtan Rhode Island Red Ohtan Rhode Island Red Ohtan Rhode Island	30	24–72	Egg yield	White Leghorn	Latshaw, 1981
ysptophan, mg/bird daily 20-76	reonine, mg/bird daily				
ryptophan, mg/bird daily 20-76 20-76 Egg yield Rhode Island Red Ohtani et al., 1989 30-76 Egg yield Rhode Island Red Ohtani et al., 1989 30-76 Egg yield Rhode Island Red Ohtani et al., 1989 30-76 Egg yield Crossbreds Hurwitz and Bornstein, 1978 1978 Crossbreds Hurwitz and Bornstein, 1978 1978 Crossbreds Hurwitz and Bornstein, 1978 Menge, 1970 Menge, 1970 Menge, 1970 Menge, 1970 Menge, 1970 Menge, 1970 Menge, 1970 Mite Leghorn Mite Leghorn Mite Leghorn Mite Leghorn Scheideler and Sell, 1983 22-8 Egg production, shell Strength Strength Mite Leghorn Miles et al., 1983 Mite Leghorn Miles et al., 1983 Mite Leghorn Miles et al., 1983 Mite Leghorn Miles et al., 1987 Mite Leghorn Mite Leghorn Miles et al., 1987 Mite Leghorn Mite Le	00	Not specified	Egg yield	White Leghorn	Adkins et al., 1958
20-76 Egg yield White Leghorn Wethil and Morris, 1978 aline, % 4 Not specified Egg yield Crossbreds Hurwitz and Bornstein, 1978 noleic acid, % 0 22-54 Egg production 0 22-54 Egg weight White Leghorn Menge, 1970 0 22-54 Egg weight White Leghorn Menge, 1970 0 22-54 Egg weight White Leghorn Menge, 1970 10 22-54 Egg weight White Leghorn Menge, 1970 10 22-54 Hatch White Leghorn Menge, 1970 10 22-54 Hatch White Leghorn Menge, 1970 11 Egg weight White Leghorn Menge, 1970 12 48-55 Egg production, shell White Leghorn Menge, 1970 13 24-72 Egg production White Leghorn Attendat Leeson, 1983 15 24-72 Egg production White Leghorn Scheideler and Sell, 1986 18 54-58 Egg production, shell White Leghorn Miles et al., 1983 19 28-36 Egg production White Leghorn Miles et al., 1983 10 21-32 Egg production White Leghorn Said and Sullivan, 1985 10 35-51 Egg production White Leghorn Sell et al., 1987 150 52-72 Egg production White Leghorn Sell et al., 1987 150 52-72 Egg production White Leghorn Sell et al., 1987 150 52-72 Egg production White Leghorn Sell et al., 1987 150 52-73 Egg production, feed white Leghorn Sell et al., 1987 160 12 Egg production, feed weight, shell thickness 160 20-48 Egg production, feed conversion White Leghorn Sell et al., 1987 160 21-45 Egg yield Medium weight brownegg layers 160 21-45 Egg production, feed weight, shell thickness 160 Not specified Egg production, Egg weight White Leghorn White Leghorn Sell et al., 1987 160 Not specified Egg production, Egg weight White Leghorn Cox and Sell, 1967 17 Egg production, Egg weight White Leghorn Haip and Norris, 1968 181 Aligham A	yptophan, mg/bird daily	-		-	-
29	55	20-76	Egg yield	White Leghorn	Wethli and Morris, 1978
aline, % 4 Not specified Egg yield Crossbreds Hurwitz and Bornstein, 1978 inoleic acid, % 0 22-54 Egg production White Leghorn Menge, 1970 0 22-54 Egg weight White Leghorn Menge, 1970 9 20-72 Egg weight White Leghorn Menge, 1970 alcium, g/bird daily 12 48-55 Egg production, shell White Leghorn Atteh and Leeson, 1983 15 24-72 Egg production, shell White Leghorn Scheideler and Sell, 1986 2.8 54-58 Egg production, shell White Leghorn Austic and Keshavarz, 1988 outphytate Phosphorus, mg/bird daily 15 28-36 Egg production White Leghorn Miles et al., 1983 160 21-32 Egg production White Leghorn Said and Sullivan, 1985 161 28-36 Egg production White Leghorn Sell et al., 1987 162 21-32 Egg production White Leghorn Sell et al., 1987 163 33-51 Egg production White Leghorn Sell et al., 1987 164 196 12 Egg production White Leghorn Sell et al., 1987 165 20-272 Egg production White Leghorn Sell et al., 1987 165 25-272 Egg production White Leghorn Sell et al., 1987 166 12 Egg production White Leghorn Sell et al., 1987 167 168 Egg production White Leghorn Sell et al., 1987 168 169 179 Egg production White Leghorn Sell et al., 1987 170 12 Egg production, egg White Leghorn Leach, 1974 180 20-48 Egg production, egg White Leghorn Reid, 1977 180 20-48 Egg production, egg White Leghorn Sell et al., 1987 180 21-45 Egg production, egg White Leghorn Sell et al., 1987 180 21-45 Egg production, egg White Leghorn Cox and Sell, 1967 180 25-31 Egg production, egg White Leghorn Haij and Sell, 1969 180 21-33 Egg production, hatchability Sell et al., 1968 180 22-72 Egg production, hatchability White Leghorn Longstaff and Hill, 1971 180 22 Egg production, egg White Leghorn Longstaff and Hill, 1971 180 20-27 Egg production, egg White Leghorn Sell et al., 1986 180 20-72 Egg production White Leghorn Sell et al., 1986 180 20-72 Egg production White Leghorn Sell et al., 1986 180 20-72 Egg production White Leghorn Sell et al., 1986 180 20-72 Egg production White Leghorn Sell et al., 1986 180 20-72 Egg production White Leghorn Sell et al., 1986		20-76			
Not specified Egg yield Crossbreds Hurwitz and Bornstein, 1978	aline, %		55 7		,
inoleic acid, % 0 22–54 Egg production 0 22–54 Egg weight White Leghorn Menge, 1970 0 22–54 Hatch 0 9 22–54 Hatch 0 9 20–72 Egg weight White Leghorn Menge, 1970 Mette Leghorn Menge, 1970 Menge, 1970 Menge, 1983 Mester and Sell, 1983 Said and Sullivan, 1985 Said and Sullivan, 1985 Said and Sullivan, 1985 Said and Sullivan, 1987 Said and Sullivan, 1987 Said and Sullivan, 1987 Said and Sullivan, 1987 Melie Leghorn Medium weight brown- egg layers Medium weight brown- egg layers Sauveur and Mongin, 1972 Sauveur and Mongin, 1978 Sauveur and Mongin, 197		Not specified	Egg vield	Crossbreds	Hurwitz and Bornstein
incleic acid, % 22–54 22–54 30 22–54 4 Egg weight White Leghorn Menge, 1970 Melie Leghorn Miles et al., 1983 Said and Sullivan, 1985 Sell et al., 1987 Sell et al., 1987 Melie Leghorn Menge, 1970 Melie Leghorn Miles et al., 1983 Said and Sullivan, 1985 Sell et al., 1987 Melie Leghorn Menge, 1970 Melie Leghorn Miles et al., 1983 Sell et al., 1987 Melie Leghorn Melie			30 J		
10	inoleic acid. %				
0 22–54 Egg weight White Leghorn Menge, 1970 9 22–54 Hatch White Leghorn Menge, 1970 9 20–72 Egg weight White Leghorn White Leghorn White Leghorn White Leghorn White Leghorn 12		22-54	Egg production	White Leghorn	Menge, 1970
0 22–54 Haïch Egg weight White Leghorn Weight Leghorn Whitehead, 1981 12 48–55 Egg production, shell strength 15 24–72 Egg production White Leghorn Scheideler and Sell, 1986 188 Egg production White Leghorn Scheideler and Sell, 1986 2.8 54–58 Egg production, shell white Leghorn Austic and Keshavarz, 1988 onphytate Phosphorus, mg/bird daily 15 28–36 Egg production White Leghorn Said and Sullivan, 1985 160 21–32 Egg production White Leghorn Said and Sullivan, 1985 160 35–51 Egg production White Leghorn Sell et al., 1987 150 52–72 Egg production White Leghorn Sell et al., 1987 150 52–72 Egg production White Leghorn Sell et al., 1987 150 52–72 Egg production White Leghorn Sell et al., 1987 150 52–72 Egg production White Leghorn Sell et al., 1987 150 52–72 Egg production White Leghorn Sell et al., 1987 150 52–72 Egg production, egg weight, shell thickness 150 52–72 Egg production, egg weight, shell thickness 150 62 21–45 Egg production, feed conversion Egg yield Medium weight brownegg layers 150 52–31 Egg production White Leghorn Sauveur and Mongin, 1978 150 52–31 Egg production White Leghorn Cox and Sell, 1967 150 Not specified Egg production White Leghorn Edwards and Nugara, 1968 150 190 Not specified Egg production, hatchability Egg production, hatchability Shell quality White Leghorn Cox and Balloun, 1969 161 22 Egg production, hatchability White Leghorn Cox and Balloun, 1969 170 17–23 Shell quality White Leghorn Cox and Balloun, 1969 171 17–23 Shell quality White Leghorn Stahl et al., 1986 172 17–23 Shell quality White Leghorn Stahl et al., 1986 173 17–24 Egg production White Leghorn Stahl et al., 1986 174 17–25 Egg production White Leghorn Stahl et al., 1986 175 175 175 175 175 175 175 175 175 175					
20-72 Egg weight White Leghorn Whitehead, 1981 alcium, g/bird daily 12 48-55 Egg production, shell strength 15 24-72 Egg production White Leghorn Scheideler and Sell, 1986 2.8 54-58 Egg production, shell white Leghorn Scheideler and Sell, 1986 2.8 54-58 Egg production, shell white Leghorn Miles et al., 1983 3-51 Egg production White Leghorn Said and Sullivan, 1985 3-50 35-51 Egg production White Leghorn Sell et al., 1987 3-51 Egg production White Leghorn Sell et al., 1987 3-51 Egg production White Leghorn Sell et al., 1987 3-51 Egg production White Leghorn Sell et al., 1987 3-52 Egg production White Leghorn Sell et al., 1987 3-51 Egg production White Leghorn Sell et al., 1987 3-52 Egg production White Leghorn Sell et al., 1987 3-53 Egg production White Leghorn Sell et al., 1987 3-54 Egg production, egg weight, shell thickness 3-55 Egg production, egg weight, shell thickness 3-60 21-45 Egg production, Egg weight Medium weight brownegg layers 3-60 21-45 Egg production White Leghorn Sauveur and Mongin, 1978 3-60 21-45 Egg production White Leghorn Sauveur and Mongin, 1978 3-60 25-31 Egg production White Leghorn Cox and Sell, 1967 3-60 Not specified Egg production, Egg White Leghorn Edwards and Nugara, 1968 3-7 Egg production, White Leghorn Edwards and Nugara, 1968 3-8 Egg production, New Hampshire Gallup and Norris, 1939 3-8 Egg production, egg White Leghorn Cox and Balloun, 1969 3-8 Egg production, egg White Leghorn Cox and Balloun, 1969 3-8 Egg production, egg White Leghorn Cox and Balloun, 1969 3-8 Egg production, egg Weight, shell quality White Leghorn Stahl et al., 1986 3-8 Egg production White Leghorn Stahl et al., 1986 3-8 Egg production of White Leghorn Stahl et al., 1986 3-9 Egg production White Leghorn Stahl et al., 1986 3-9 Egg production of White Leghorn Stahl et al., 1986					
alcium, g/bird daily 12 48–55 Egg production, shell strength 15 24–72 Egg production, shell strength 16 24–72 Egg production, shell strength 17 28–36 Egg production, shell strength 18 28–36 Egg production, shell strength 19 28 19 28–36 Egg production 19 28–36 Egg production 19 21–32 Egg production 19 21–32 Egg production 19 21–32 Egg production 19 21–32 Egg production 19 21 Egg production 19 20–48 Egg production 19 20–48 Egg production, shell strength 19 20–48 Egg production 10 21–45 Egg production 10 21–45 Egg production 10 21–45 Egg production 10 25–31 Egg production 10 Not specified 10 Egg production 10 Not specified 10 Egg production 10 Not specified 10 Egg production 10 Not specified 10 Egg production 10 Not specified 10 Not specified 10 Not specified 10 Not specified 11 Egg production 12 Egg production 13 Egg production 15 Not specified 16 Egg production 16 Egg production 17 Not specified 18 Egg production 19 Not specified 19 On Not specified 19 On Not specified 10 Not specified 11 Not specified 12 Egg production 12 Egg production 13 Not specified 19 Not specified 19 Not specified 19 Stablet al., 1986 19 Not specified 19 Stablet al., 1986					
12 48–55 Egg production, shell strength 15 24–72 Egg production 18 54–58 Egg production 28 54–58 Egg production, shell strength 28 54–58 Egg production, shell strength 29 7 17–23 Shell quality 29 18 54–78 Egg production 29 19 18 1988 20 19 1988 21–32 Egg production 25 2–72 Egg production 26 21–31 Egg production 27 21–32 Egg production 28 28–36 Egg production 35 2–72 Egg production 36 21–37 Egg production 37 2–72 Egg production 38 21–31 Egg production 38 21–31 Egg production 39 25–31 Egg production 39 30–38 Egg production 40 Not specified 40 Not specified 41 1,969 42 Egg production 42 Egg production 43 45 45 45 45 45 45 45 45 45 45 45 45 45		20 12	255 "VISIII	The Degitorii	77 mconoud, 1701
Egg production White Leghorn Scheideler and Sell, 1986		48–55		White Leghorn	Atteh and Leeson, 1983
2.8 54–58 Egg production, shell strength White Leghorn Austic and Keshavarz, 1988 onphytate Phosphorus, mg/bird daily 15 28–36 Egg production White Leghorn Said and Sullivan, 1985 50 21–32 Egg production White Leghorn Sell et al., 1987 150 35–51 Egg production White Leghorn Sell et al., 1987 150 52–72 Egg production White Leghorn Sell et al., 1987 150 150 52–72 Egg production egg weight, shell thickness odium, mg/bird daily 10 12 Egg production, feed conversion 20 20–48 Egg production, feed conversion 21 Egg yield Medium weight brownegg layers 1986 Miles et al., 1983 Miles et al., 1983 Sell et al., 1987 Sell et al., 1987 Sell et al., 1987 Sell et al., 1987 Miles Leghorn Sell et al., 1987 Miles Leghorn Reid, 1974 Miles Leghorn Reid, 1974 Medium weight brownegg layers Sauveur and Mongin, 1978 Miles Leghorn Vogt, 1977 Inc, mg/kg 1988 Seg production, legg White Leghorn Reid, 1977 Miles Leghorn Vogt, 1977 Seg production, egg White Leghorn Cox and Sell, 1967 White Leghorn Haij and Sell, 1969 Miles et al., 1983 Miles Leghorn Miles Leghorn Reid, 1974 Miles Leghorn Vogt, 1977 Sauveur and Mongin, 1978 Miles Leghorn Vogt, 1977 Miles Leghorn Cox and Sell, 1967 White Leghorn Haij and Sell, 1969 Miles Leghorn Haij and Sell, 1969 Miles Leghorn Cox and Balloun, 1969 Miles Leghorn Cox and Balloun, 1969 Miles Leghorn Miles Leghorn Cox and Balloun, 1969 Miles Leghorn Sell et al., 1986 Miles et al., 1983 Miles Leghorn Sell et al., 1986	1.5	24 72		W/l-:4- Il	C-1: d-1 d C-11
2.8 54–58 Egg production, shell strength White Leghorn Austic and Keshavarz, 1988 onphytate Phosphorus, mg/bird daily 15 28–36 Egg production White Leghorn Miles et al., 1983 160 21–32 Egg production White Leghorn Said and Sullivan, 1985 150 35–51 Egg production White Leghorn Sell et al., 1987 150 52–72 Egg production White Leghorn Sell et al., 1987 150 12 Egg production, egg White Leghorn Sell et al., 1987 160 12 Egg production, egg White Leghorn Leach, 1974 170 12 Egg production, egg White Leghorn Reid, 1977 180 21–45 Egg production, feed conversion Egg yield Medium weight brownegg layers 1978 1978 1978 1980 198	15	24-72	Egg production	wnite Legnorn	
strength 1988 onphytate Phosphorus, mg/bird daily 15 28-36 Egg production White Leghorn Said and Sullivan, 1985 50 21-32 Egg production White Leghorn Sell et al., 1987 150 52-72 Egg production White Leghorn Sell et al., 1987 150 52-72 Egg production White Leghorn Sell et al., 1987 150 52-72 Egg production White Leghorn Sell et al., 1987 150 52-72 Egg production, egg White Leghorn Sell et al., 1987 160 12 Egg production, egg White Leghorn Leach, 1974 160 12 Egg production, feed white Leghorn Reid, 1977 160 20-48 Egg production, feed conversion Egg layers 160 21-45 Egg production, egg layers 160 21-45 Egg production White Leghorn Sauveur and Mongin, 1978 160 25-31 Egg production White Leghorn Vogt, 1977 160 Not specified Egg production, egg White Leghorn Cox and Sell, 1967 170 Not specified Egg production White Leghorn Edwards and Nugara, 1968 170 Not specified Egg production, white Leghorn Hajj and Sell, 1969 171 Authorite, mg/kg 172 Egg production, egg White Leghorn Edwards and Nugara, 1968 172 Egg production, egg White Leghorn Hajj and Sell, 1969 173 Egg production, New Hampshire Gallup and Norris, 1939b 174 17-23 Shell quality White Leghorn Cox and Balloun, 1969 175 Egg production, egg White Leghorn Stahl et al., 1986 176 Not specified Feather condition of White Leghorn Stahl et al., 1986 177 Not specified Feather condition of White Leghorn Stahl et al., 1986 177 Not specified Feather condition of White Leghorn Stahl et al., 1986	2.0	EA EQ	E1 (' 1 "	W/Lian I	
onphytate Phosphorus, mg/bird daily 15 28-36 Egg production White Leghorn Said and Sullivan, 1985 150 21-32 Egg production White Leghorn Sell et al., 1987 150 35-51 Egg production White Leghorn Sell et al., 1987 150 52-72 Egg production White Leghorn Sell et al., 1987 150 totassium, % 10 12 Egg production, egg weight, shell thickness 150 20-48 Egg production, feed conversion Conversion Egg layers 150 21-45 Egg production Multic Leghorn Reid, 1977 150 21-45 Egg production Egg weight Sell thickness 150 25-31 Egg production White Leghorn Sauveur and Mongin, 1978 150 25-31 Egg production White Leghorn Vogt, 1977 150 25-31 Egg production, egg White Leghorn Cox and Sell, 1967 150 White Leghorn White Leghorn Edwards and Nugara, 1968 151 30-38 Egg production, Multic Leghorn Edwards and Nugara, 1968 152 Agg production, New Hampshire Gallup and Norris, 1939b 153 Agg Production, egg White Leghorn Cox and Balloun, 1969 154 Egg production, egg White Leghorn Cox and Balloun, 1969 155 Agg Production, New Hampshire Gallup and Norris, 1939b 156 Shell quality White Leghorn Longstaff and Hill, 1971 157 Egg production of White Leghorn Stahl et al., 1986 158 Shell quality White Leghorn Stahl et al., 1986 159 Stahl et al., 1986 150 Stahl et al., 1986	2.8	54–58		White Leghorn	
15 28–36 Egg production White Leghorn Miles et al., 1983 Said and Sullivan, 1985 So 21–32 Egg production White Leghorn Sell et al., 1987 Sol 35–51 Egg production White Leghorn Sell et al., 1987 otassium, % Sol 27–2 Egg production White Leghorn Sell et al., 1987 otassium, % Sol 27–2 Egg production White Leghorn Sell et al., 1987 otassium, % Sol 27–2 Egg production, egg weight, shell thickness odium, mg/bird daily 40–150 20–48 Egg production, feed conversion Egg yield Medium weight brownegg layers 1978 hlorine, mg/bird daily 32 Not specified Egg production White Leghorn Vogt, 1977 dagnesium, mg/kg 50 25–31 Egg production White Leghorn Cox and Sell, 1967 weight Egg production White Leghorn Edwards and Nugara, 1968 Sol 30–38 Egg production, white Leghorn Edwards and Nugara, 1968 Sol 30–38 Egg production, hatchability Sol 22 Egg production, hatchability Shell quality Shell quality Shell quality Shell quality White Leghorn Cox and Balloun, 1969 weight, shell quality White Leghorn Stahl et al., 1986 on, mg/kg	. 1 DI . 1	4:11:1	strengtn		1988
Egg production White Leghorn Said and Sullivan, 1985			English days	W/l-i4- I1	Mil4 -1 1002
Solution Sell et al., 1987 Sell et al., 1988 Sell et al., 1987 Sell et al., 1986 Stahl et al., 1986 St					
150 52–72 Egg production White Leghorn Sell et al., 1987 botassium, % 10 12 Egg production, egg weight, shell thickness weight, shell thickness bodium, mg/bird daily 40–150 20–48 Egg production, feed conversion Egg yield White Leghorn Reid, 1977 conversion Medium weight brownegg layers 1978 blorine, mg/bird daily Not specified Egg production White Leghorn Vogt, 1977 lagnesium, mg/kg 25–31 Egg production White Leghorn Cox and Sell, 1967 weight Egg production White Leghorn Edwards and Nugara, 1968 1968 1968 1979 lanagenese, mg/kg 1979 22 Egg production, hatchability White Leghorn Cox and Balloun, 1969 lanagenese, mg/kg 1970 22 Egg production, egg weight, shell quality Shell et al., 1986 on, mg/kg					
otassium, % 10 12 Egg production, egg weight, shell thickness odium, mg/bird daily 40–150 20–48 Egg production, feed conversion 30 21–45 Egg yield Medium weight brownegg layers Not specified Egg production 40–150 Egg production 40–150 Egg production 40–150 Egg production 40–150 Egg yield Medium weight brownegg layers Egg production 40–150 Egg pro					
10		52-72	Egg production	White Leghorn	Sell et al., 1987
weight, shell thickness weight, shell thickness weight, shell thickness White Leghorn Reid, 1977 conversion Reid, 1977 Reid, 1977 Reid, 1977 Sauveur and Mongin, 1978 Medium weight brownegg layers 1978 Sauveur and Mongin, 1978 White Leghorn Vogt, 1977 Leg production, egg weight White Leghorn Cox and Sell, 1967 White Leghorn Edwards and Nugara, 1968 Sauveur and Mongin, 1978 White Leghorn White Leghorn Edwards and Nugara, 1968 Egg production, White Leghorn Hajj and Sell, 1969 Medium weight brownegg White Leghorn Vogt, 1977 Log and Sell, 1967 White Leghorn Edwards and Nugara, 1968 Sauveur and Mongin, 1978 White Leghorn Cox and Sell, 1967 White Leghorn Hajj and Sell, 1969 Medium weight brownegg White Leghorn Edwards and Morgin, 1978 Egg production, New Hampshire Gallup and Norris, 1939b Cox and Balloun, 1969 White Leghorn Cox and Balloun, 1969 White Leghorn Longstaff and Hill, 1979 Inc, mg/kg Sauveur and Mongin, 1978 Segg production, egg White Leghorn Cox and Sell, 1967 White Leghorn Longstaff and Hill, 1979 Egg yield, hatchability White Leghorn Stahl et al., 1986 Peather condition of White Leghorn Stahl et al., 1986 Peather condition of White Leghorn Stahl et al., 1986 Peather condition of White Leghorn Stahl et al., 1986		10		****	Y 1 105
bdium, mg/bird daily 40–150 20–48 Egg production, feed conversion Egg yield Medium weight brownegg layers Sauveur and Mongin, 1978 Horine, mg/bird daily S2 Not specified Egg production White Leghorn Vogt, 1977 Egg production, egg White Leghorn Cox and Sell, 1967 White Leghorn White Leghorn Fedwards and Nugara, 1968 S5 30–38 Egg production, White Leghorn Edwards and Nugara, 1968 Egg production, White Leghorn Edwards and Nugara, 1968 Egg production, White Leghorn Edwards and Nugara, 1968 Egg production, New Hampshire Egg production, New Hampshire Feglip production, egg White Leghorn Fellup and Norris, 1939b Thorine, mg/kg Egg production, egg White Leghorn Fellup and Norris, 1939b Egg production, egg White Leghorn Fellup and Hill, 1979 Egg yield, hatchability White Leghorn Edwards and Nugara, 1969 White Leghorn Fellup and Norris, 1939b Cox and Balloun, 1969 White Leghorn Edwards and Nugara, 1969 White Leghorn Fellup and Norris, 1939b Cox and Balloun, 1969 White Leghorn Egg yield, hatchability White Leghorn Egg yield, hatchability White Leghorn Stahl et al., 1986 Feather condition of White Leghorn Stahl et al., 1986 Foather condition of White Leghorn Feather condition of White Leghorn Feath	10	12		White Leghorn	Leach, 1974
Egg production, feed conversion Begg yield Conversion Egg yield Medium weight brownegg layers Medium weight brownegg layers Sauveur and Mongin, 1978 Sauveur and Mongin, 1978 Medium weight brownegg layers Sauveur and Mongin, 1978 White Leghorn Cox and Sell, 1967 White Leghorn White Leghorn Cox and Sell, 1967 White Leghorn White Leghorn Egg production, egg weight Egg production, White Leghorn Sauveur and Mongin, 1978 White Leghorn Cox and Sell, 1967 White Leghorn Edwards and Nugara, 1968 Egg production, White Leghorn Hajj and Sell, 1969 Medium weight brownegg layers Worth Leghorn Edwards and Nugara, 1968 Egg production, New Hampshire Gallup and Norris, 1939b Cox and Balloun, 1969 White Leghorn Cox and Balloun, 1969 Stahl et al., 1986 Peather condition of White Leghorn Stahl et al., 1986 Table 1, 1986 Table 22–72 Egg yield, hatchability White Leghorn Stahl et al., 1986 Table 22–72 Table 22–72 Table 30–72 Egg yield, hatchability White Leghorn Stahl et al., 1986 Table 22–73 Table 30–74 Table 30–75 Table 40–75 Table	4		weight, shell thickness		
conversion Egg yield Medium weight brownegg layers 1978 White Leghorn More Leghorn Medium weight brownegg layers 1978 White Leghorn Medium weight brownegg layers 1978 White Leghorn Medium weight brownegg layers 1978 White Leghorn Medium weight brownegg layers 1978 Medium weight brownegg layers More Leghorn Medium weight brownegg layers 1978 Medium weight brownegg layers More Leghorn More Leghorn More Manda Morris, 1969 More Leghorn Mo		• • • • •			
Both Signature of Sauveur and Mongin, egg layers Sauveur and Mongin, egg layers Sauveur and Mongin, 1978 Horine, mg/bird daily Not specified Egg production White Leghorn Vogt, 1977 Egg production, egg White Leghorn Cox and Sell, 1967 White Leghorn Edwards and Nugara, 1968 Solution White Leghorn Hajj and Sell, 1969 Egg production, White Leghorn Hajj and Sell, 1969 Idanagenese, mg/kg Egg production, New Hampshire Gallup and Norris, 1939b Egg production, egg White Leghorn Cox and Balloun, 1969 White Leghorn Cox and Balloun, 1969 White Leghorn Longstaff and Hill, 1979 Egg yield, hatchability White Leghorn Stahl et al., 1986 Feather condition of Peather condition of Progeny	10–150	20–48		White Leghorn	Reid, 1977
hlorine, mg/bird daily 32 Not specified Egg production White Leghorn Vogt, 1977 Magnesium, mg/kg 50 25–31 Egg production, egg White Leghorn Cox and Sell, 1967 Weight Egg production White Leghorn Edwards and Nugara, 1968 55 30–38 Egg production, White Leghorn Hajj and Sell, 1969 Managenese, mg/kg 13 21–33 Egg production, New Hampshire Gallup and Norris, 1939b 22 Egg production, egg White Leghorn Cox and Balloun, 1969 Weight, shell quality White Leghorn Longstaff and Hill, 1971 inc, mg/kg 8 22–72 Egg yield, hatchability White Leghorn Stahl et al., 1986 Feather condition of White Leghorn Stahl et al., 1986 on, mg/kg					_
Phlorine, mg/bird daily 32 Not specified Egg production White Leghorn Vogt, 1977 Magnesium, mg/kg 50 25–31 Egg production, egg White Leghorn Cox and Sell, 1967 Weight Egg production White Leghorn Edwards and Nugara, 1968 S5 30–38 Egg production, White Leghorn Hajj and Sell, 1969 Managenese, mg/kg 13 21–33 Egg production, hatchability Member Horizon, New Hampshire Gallup and Norris, 1939b Egg production, egg White Leghorn Cox and Balloun, 1969 Weight, shell quality White Leghorn Longstaff and Hill, 1973 Thorizon, mg/kg Mot specified Egg production, White Leghorn Cox and Balloun, 1969 Weight, shell quality White Leghorn Stahl et al., 1986 Feather condition of White Leghorn Stahl et al., 1986 Feather condition of White Leghorn Stahl et al., 1986 Fon, mg/kg	30	21–45	Egg yield		
Not specified Egg production White Leghorn Vogt, 1977 Egg production, egg White Leghorn Cox and Sell, 1967 Weight Egg production White Leghorn Edwards and Nugara, 1968 Solution 1968 Egg production White Leghorn Edwards and Nugara, 1968 Egg production, White Leghorn Hajj and Sell, 1969 Managenese, mg/kg Egg production, New Hampshire Gallup and Norris, 1939b Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Stahl et al., 1986 Not specified Feather condition of White Leghorn Stahl et al., 1986 Fon, mg/kg				egg layers	1978
Not specified Egg production White Leghorn Vogt, 1977 Egg production, egg White Leghorn Cox and Sell, 1967 Weight Egg production White Leghorn Edwards and Nugara, 1968 Solution 1968 Egg production White Leghorn Edwards and Nugara, 1968 Egg production, White Leghorn Hajj and Sell, 1969 Egg production, New Hampshire Gallup and Norris, 1939b Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Stahl et al., 1986 Not specified Feather condition of White Leghorn Stahl et al., 1986 On, mg/kg	hlorine, mg/bird daily				
Egg production, egg White Leghorn Cox and Sell, 1967 Not specified Egg production White Leghorn Edwards and Nugara, 1968 Egg production, White Leghorn Hajj and Sell, 1969 Egg production, White Leghorn Hajj and Sell, 1969 Egg production, New Hampshire Gallup and Norris, 1939b Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Stahl et al., 1986 Not specified Feather condition of White Leghorn Stahl et al., 1986 Progeny	32	Not specified	Egg production	White Leghorn	Vogt, 1977
Egg production, egg White Leghorn Cox and Sell, 1967 Not specified Egg production White Leghorn Edwards and Nugara, 1968 Egg production, White Leghorn Hajj and Sell, 1969 Egg production, White Leghorn Hajj and Sell, 1969 Egg production, New Hampshire Gallup and Norris, 1939b Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Cox and Balloun, 1969 Egg production, egg White Leghorn Stahl et al., 1986 Not specified Feather condition of White Leghorn Stahl et al., 1986 Progeny	lagnesium, mg/kg			-	
weight Not specified Egg production White Leghorn Edwards and Nugara, 1968 30–38 Egg production, White Leghorn Hajj and Sell, 1969 lanagenese, mg/kg 13 21–33 Egg production, New Hampshire Gallup and Norris, hatchability 22 Egg production, egg White Leghorn Cox and Balloun, 1969 weight, shell quality 7 17–23 Shell quality White Leghorn Longstaff and Hill, 1971 inc, mg/kg 8 22–72 Egg yield, hatchability White Leghorn Stahl et al., 1986 on, mg/kg		25-31	Egg production, egg	White Leghorn	Cox and Sell, 1967
Not specified Egg production White Leghorn Edwards and Nugara, 1968 Solution 1968 Egg production, White Leghorn Hajj and Sell, 1969 Managenese, mg/kg Solution 1969 Egg production, New Hampshire Gallup and Norris, 1939b Egg production, egg White Leghorn Cox and Balloun, 1969 weight, shell quality Tox 17–23 Shell quality White Leghorn Longstaff and Hill, 1972 inc, mg/kg Egg yield, hatchability White Leghorn Stahl et al., 1986 Feather condition of White Leghorn Stahl et al., 1986 Feather condition of progeny				<u> </u>	*
1968 1968 Hajj and Sell, 1969 Inangenese, mg/kg 13 21–33 Egg production, hatchability Egg production, hatchability Egg production, hatchability Egg production, egg White Leghorn Egg production, egg White Leghorn Tox and Balloun, 1969 Weight, shell quality Feather condition of White Leghorn Stahl et al., 1986 Stahl et al., 1986 Stahl et al., 1986 Feather condition of progeny	00	Not specified		White Leghorn	Edwards and Nugara,
Egg production, hatchability Mite Leghorn Hajj and Sell, 1969 Gallup and Norris, 1939b Cox and Balloun, 1969 weight, shell quality White Leghorn Hajj and Sell, 1969				S	
hatchability Sample Column Colum	55	30-38	Egg production,	White Leghorn	
lanagenese, mg/kg 13 21–33 Egg production, New Hampshire Gallup and Norris, 1939b 22 Egg production, egg White Leghorn Cox and Balloun, 1969 weight, shell quality 7 17–23 Shell quality White Leghorn Longstaff and Hill, 1971 inc, mg/kg 3 22–72 Egg yield, hatchability White Leghorn Stahl et al., 1986 Not specified Feather condition of White Leghorn Stahl et al., 1986 progeny				- 	33 ,
Egg production, New Hampshire Gallup and Norris, 1939b 22 Egg production, egg White Leghorn Cox and Balloun, 1969 weight, shell quality Toro, mg/kg 22-72 Egg yield, hatchability White Leghorn Stahl et al., 1986 Not specified Feather condition of progeny	anagenese, mg/kg		,		
hatchability 1939b 22 Egg production, egg White Leghorn Cox and Balloun, 1969 weight, shell quality Toc, mg/kg 3 22-72 Egg yield, hatchability White Leghorn Stahl et al., 1986 Not specified Feather condition of progeny Not, mg/kg		21-33	Egg production.	New Hampshire	Gallup and Norris.
Egg production, egg White Leghorn Cox and Balloun, 1969 weight, shell quality The production of White Leghorn Cox and Balloun, 1969 Weight, shell quality The production of White Leghorn Cox and Balloun, 1969 White Leghorn Cox and Balloun, 1960 White Leghorn Cox and Balloun, 1969 Wh				p	
weight, shell quality Shell quality White Leghorn Longstaff and Hill, 1972 Shell quality White Leghorn Stahl et al., 1986 Not specified Feather condition of White Leghorn On, mg/kg Weight, shell quality White Leghorn Stahl et al., 1986 Progeny)	22		White Leghorn	
7 17–23 Shell quality White Leghorn Longstaff and Hill, 1971 inc, mg/kg 8 22–72 Egg yield, hatchability White Leghorn Stahl et al., 1986 Not specified Feather condition of White Leghorn Stahl et al., 1986 on, mg/kg	-			mee Beginein	Jon und Dunoun, 1707
inc, mg/kg 3 22–72 Egg yield, hatchability White Leghorn Stahl et al., 1986 Not specified Feather condition of White Leghorn Stahl et al., 1986 progeny on, mg/kg	7	17–23		White Leghorn	Longstaff and Hill 1971
22–72 Egg yield, hatchability White Leghorn Stahl et al., 1986 Not specified Feather condition of White Leghorn Stahl et al., 1986 progeny on, mg/kg		11 20	Short quanty	The Degioni	201150mii unu 11111, 19/1
Not specified Feather condition of White Leghorn Stahl et al., 1986 progeny on, mg/kg		22-72	Foo vield hatchability	White Leghorn	Stahl et al 1986
progeny on, mg/kg					
on, mg/kg	•	1 tot specifica		Winter Degilorii	Stain & al., 1700
	on ma/ka		progerry		
NOT ENGLISHED Hamptoerit White Laghern Manals and Assets 1001	on, mg/kg	N	II	White Leaham	Morck and Austic, 1981
Not specified Hematocrit White Leghorn Morck and Austic, 1981 Not specified Hatchability White Leghorn Morck and Austic, 1981	5				

Nutrient and Estimated	Age Period (Weeks)	Response Criteria	Droad	Dafaranaaa
Requirement	Age Period (Weeks)	Response Criteria	Breed	References
Copper, mg/kg				
>1	44–48	Shell quality	White Leghorn	Baumgartner et al., 1978
<2.5	44–48	Shell quality	White Leghorn	Baumgartner et al., 1978
Iodine, μg/kg		1	Č	,
35	4–45	Hatchability	White Leghorn	Rogler et al., 1959a
>75	4–45	Embryonic thyroid	White Leghorn	Rogler et al., 1959b
Selenium, mg/kg	22 56	E dustion	W/l-:4- T1	I -t-b
0.05 0.05	32–56 32–57	Egg production Egg production,	White Leghorn White Leghorn	Latshaw et al., 1977 Combs and Scott, 1979
0.03	32-37	hatchability	Willie Legilotti	Comos and Scott, 1979
Vitamin A, IU/kg		natenaemty		
3,520	26-70	Egg production, blood	White Leghorn	Hill et al., 1961
		spots, hatchability	•	
2,750	20–64	Egg production, fertility,	White Leghorn	Reid et al., 1965
***		hatchability		
Vitamin D ₃ , IU/kg	21 24	Egg production shall	White Leaham	Abdurahim at al. 1070
150	21–34	Egg production, shell quality, fertility,	White Leghorn	Abdurahim et al., 1979
		hatchability		
250	30–46	Egg production, shell	White Leghorn	Shen et al., 1981
		quality		
Vitamin E, IU/kg		•		
12	Not specified	Hatchability	White Leghorn	Jensen and McGinnis, 1960
41 in presence of oxidized	Not specified	Hatchability	White Leghorn	Olson et al., 1962
fat				
Vitamin K, mg/kg >1.0	Not specified	Hatchability	White Leghorn	Griminger, 1964
Riboflavin, mg/kg	Not specified	Hatchaomity	Willie Legilotti	Griffinger, 1904
2.5	30-45	Egg production	White Leghorn	Petersen et al., 1947a
3.6	30–45	Hatchability, chick quality	White Leghorn	Petersen et al., 1947b
Pantothenic acid, mg/kg		3, 1	C	
6.5	Not specified	Hatchability	White Leghorn	Gillis et al., 1948
7	Not specified	Hatchability	New Hampshire	Balloun and Phillips, 1957a
1.9 4.9	28-53 28-53	Egg production	White Leghorn	Beer et al., 1963
8.9	28–53 28–53	Hatchability Viability of progeny	White Leghorn White Leghorn	Beer et al., 1963 Beer et al., 1963
Niacin, mg/kg	20-33	viability of progery	Willie Legilotti	Beer et al., 1703
9	Not specified	Egg production,	White Leghorn	Ringrose et al., 1965
	•	hatchability	Č	,
11	Not specified	Egg production,	White Leghorn	Ringrose et al., 1965
	44 55	hatchability	****** * 1	0 1 1005
<21	41–57	Egg yield, hatchability	White Leghorn	Ouart et al., 1987
Vitamin B_{12} , $\mu g/kg$ 1.0	22–35	Hatchability	White Leghorn	Mariakulandai and
1:0	22-33	Hatchaomity	Willie Legilotti	McGinnis, 1953
1–2	Not specified	Hatchability	New Hampshire	Johnson, 1954
0.5-1.0	Not specified	Hatchability	White Leghorn	Chin et al., 1958
Choline, mg/kg				
1,050	50–66	Egg yield	White Leghorn	Miles et al., 1986
<1,480	45–57	Egg yield Egg yield	White Leghorn	Parsons and Leeper, 1984
1,000 Biotin, mg/kg	32–52	Egg yield	White Leghorn	Keshavarz and Austic, 1985
0.10	19–73	Egg production	White Leghorn	Whitehead, 1980
Folic acid, mg/kg	17 73	Egg production	winte Degilorii	Wintericad, 1900
0.5	44-55	Egg production,	White Leghorn	Sunde et al., 1950a,b
		hatchability	C	
0.2	Not specified	Hatchability	White Leghorn	Couch and German, 1950
Thiamin, mg/kg	Not aposified	Hatabability	White I!	Dolin et al. 1062
0.68 Pyridoxine, mg/kg	Not specified	Hatchability	White Leghorn	Polin et al., 1963
2.5	Not specified	Egg production,	White Leghorn	Cravens et al., 1946
2.3	110t specified	hatchability	William Degilorii	C1410115 Ct 41., 1770
2.3	Not specified	Egg production,	White Leghorn	Fuller et al., 1961
	•	hatchability	-	•
4.5	Not specified	Egg production,	White Leghorn	Fuller et al., 1961
		hatchability		

TABLE A-3 Documentation of Nutrient Requirements of Starting and Growing Market Broilers

Nutrient and	Age			
Estimated	Period	Response	12	
Requirement	(Days)	Criteria	Breed	References
rginine, %				
1.2	10-20	Growth	Not specified	Almquist, 1947
≤1.11	7-21	Growth, feed efficiency	New Hampshire × Columbian	Snyder et al., 1956
≤0.85	7-28	Growth, feed efficiency	Barred Plymouth Rock	Krautmann et al., 1957
1.08	7-14	Growth, feed efficiency	Not specified	Klain et al., 1960
0.92	7-21	Growth, feed efficiency	White Plymouth Rock ×	Lewis et al., 1963
1222117	14.2000	nitrogen balance (adjusted to 23% crude protein diet	Light Sussex	
1.10	7–14	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1965
0.78	7–14	Growth, feed efficiency	New Hampshire × Columbian	Allen and Baker, 1972
0.85	7-21	Growth, feed efficiency	Broiler strain	Hewitt and Lewis, 1972
≤0.76	14-28	Growth, feed efficiency	Not specified	Woodham and Deans, 1978
1.13, males	28-49	Growth, feed efficiency, feather loss	$Hubbard \times Hubbard$	Kessler and Thomas, 1976
0.98, females	28-49	Growth, feed efficiency, feather loss	$Hubbard \times Hubbard$	Kessler and Thomas, 1976
1.33	7-14	Computer model	Not specified	Hurwitz et al., 1978
1.19	14-21	Computer model	Not specified	Hurwitz et al., 1978
1.16	21-28	Computer model	Not specified	Hurwitz et al., 1978
1.10	28-35	Computer model	Not specified	Hurwitz et al., 1978
0.99	35-42	Computer model	Not specified	Hurwitz et al., 1978
0.96	42-49	Computer model	Not specified	Hurwitz et al., 1978
1.05	49-56	Computer model	Not specified	Hurwitz et al., 1978
1.4	1-28	Growth, feed efficiency	Broiler strain	Burton and Waldroup, 1979
1.25	8-29	Growth, feed efficiency	Vedette ISA	Alimentation Equilibree Commentri, 1981
0.91	2950	Growth, feed efficiency	Vedette ISA	Alimentation Equilibree Commentri, 1981
1.25 Sycine + serine, %	0–21	Growth, feed efficiency	Peterson × Arbor Acre	Cuca and Jensen, 1990
1.6	816	Growth, feed efficiency	T T	To the second
≤0.3	8–16	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1965
0.5-1.0	1-10	Growth, feed efficiency	New Hampshire × Columbian Cobb	Baker et al., 1968
≤1.8	1-23	Growth, feed efficiency	Not specified	Coon et al., 1974 Ngo and Coon, 1976
0.60	8–16	Growth, feed efficiency	New Hampshire × Columbian	Baker et al., 1979
listidine, %	41-65 655 mm 1313 134 136 136			
0.4	8-13 or 15	Growth, feed efficiency	New Hampshire × Columbian	Klain et al., 1960
0.3	8-16	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1965
≤0.34	14-28	Total protein efficiency	Ross	Woodham and Deans, 1975
0.33	8-16	Growth, feed efficiency	New Hampshire × Columbian	Baker et al., 1979
0.32	8-22	Growth	New Hampshire × Columbian	Han et al., 1991
soleucine, %			SCHOOL SECTION OF THE PROPERTY	
0.60	10-24	Growth	Not specified	Almquist, 1947
0.73	8-15	Growth	New Hampshire × Columbian	Klain et al., 1960
0.80	8-16	Growth	New Hampshire × Columbian	Dean and Scott, 1965
≤0.52	7-21	Growth, plasma amino acid levels	Not specified	D'Mello, 1974
0.48	14-28	Total protein efficiency	Ross	Woodham and Deans, 1975
0.60	8-16	Growth, feed efficiency	New Hampshire × Columbian	Baker et. al., 1979
0.81	7-21	Growth, feed efficiency	Ross × Arbor Acre	Farran and Thomas, 1990
eucine, %	#3 #95 T#CHEFF EX-FF SECTION #45 F6.14.	46-44-40-4-45-65-24-5-4-25-5-4-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
1.4	10 or 24	Growth	Not specified	Almquist, 1947
1.68	8-13 or 15	Growth, feed efficiency	New Hampshire × Columbian	Klain et. al., 1960
1.2	8-16	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1965
1.10	7-21	Growth, plasma amino acid levels	Not specified	D'Mello, 1974
≤1.05	14-28	Total protein efficiency	Ross	Woodham and Deans, 1975
1.00	8-16	Growth, feed efficiency	New Hampshire × Columbian	Baker et al., 1979
2.00	7-21	Growth, feed efficiency	Ross × Arbor Acre	Farran and Thomas, 1990
				Skiiniska teknala (* 1206)
1.16		AND THE PERSON OF THE PERSON O	Not specified	Almquist and Mecchi, 1942
1.16 ysine, %	2–14	Growth		
1.16 ysine, % 0.90	2-14 14-28	Growth Growth		
1.16 ysine, % 0.90 0.96	14-28	Growth	Not specified	Grau et al., 1946
1.16 ysine, % 0.90			Not specified Not specified Rhode Island Red ×	
1.16 ysine, % 0.90 0.96 0.90 1.00	14-28 10-20 0-42	Growth Growth Crowth	Not specified Not specified Rhode Island Red × White Leghorn	Grau et al., 1946 Ahrquist, 1947 Milligan et al., 1951
1.16 ysine, % 0.90 0.96 0.90 1.00	14-28 10-20 0-42 56-63	Growth Growth Crowth Growth, feed efficiency	Not specified Not specified Rhode Island Red × White Leghorn Rhode Island Red	Grau et al., 1946 Almquist, 1947 Milligan et al., 1951 Bird, 1953
1.16 ysine, % 0.90 0.96 0.90 1.00	14-28 10-20 0-42	Growth Growth Crowth	Not specified Not specified Rhode Island Red × White Leghorn Rhode Island Red Rhode Island Red	Grau et al., 1946 Ahrquist, 1947 Milligan et al., 1951
1.16 ysine, % 0.90 0.96 0.90 1.00	14-28 10-20 0-42 56-63	Growth Growth Crowth Growth, feed efficiency	Not specified Not specified Rhode Island Red × White Leghorn Rhode Island Red	Grau et al., 1946 Almquist, 1947 Milligan et al., 1951 Bird, 1953

Nutrient and	Age					
Estimated Requirement	Period (Days)	Response Criteria	Breed	References		
0.70	14-21	Growth, feed efficiency, plasma amino acids	New Hampshire × Columbian	Zimmerman and Scott, 1965		
0.67	21-28	Growth, feed efficiency, plasma amino acids	New Hampshire × Columbian	Zimmerman and Scott, 1965		
0.59	28-35	Growth, feed efficiency, plasma amino acids	New Hampshire × Columbian	Zimmerman and Scott, 1965		
0.92	35-56	Growth, feed efficiency	Broiler strain	Bornstein, 1970		
0.85	7-21	Growth, feed efficiency	Broiler strain	Hewitt and Lewis, 1972		
1.05	14-28	Growth, feed efficiency	New Hampshire × Columbian	Boomgaardt and Baker, 1973a		
1.06 0.92	14-21 42-56	Growth, feed efficiency	New Hampshire × Columbian	Boomgaardt and Baker, 1973b		
0.68	42-56 49-63	Growth, feed efficiency Growth, feed efficiency	New Hampshire × Columbian Broiler strain	Boomgaardt and Baker, 1973b		
1.12	7-14	Growth, feed efficiency	Not specified	Twining et al., 1973 Woodham and Deans, 1975		
0.64, females	49-63	Growth, feed efficiency	Vantress × Arbor Acre	Thomas et al., 1977		
0.69, males	49-63	Growth, feed efficiency	Vantress × Arbor Acre	Thomas et al., 1977		
1.18	7-14	Computer model	Not specified	Hurwitz et al., 1978		
1.00	14-21	Computer model	Not specified	Hurwitz et al., 1978		
0.95	21-28	Computer model	Not specified	Hurwitz et al., 1978		
0.87	28-35	Computer model	Not specified	Hurwitz et al., 1978		
0.78	35-42	Computer model	Not specified	Hurwitz et al., 1978		
0.76	42-49	Computer model	Not specified	Hurwitz et al., 1978		
0.84	49-56	Computer model	Not specified	Hurwitz et al., 1978		
1.10	14-28	Growth, feed efficiency	Broiler strain	McNaughton et al., 1978		
1.18	1-21	Growth, feed efficiency	Broiler strain	Attia and Latshaw, 1979		
1.10	1-28	Growth, feed efficiency	Broiler strain	Burton and Waldroup, 1979		
0.99	35-42	Growth, feed efficiency	Cornish × White Plymouth Rock	Holsheimer, 1981		
Methionine, %		WY				
0.50	10-20	Growth	Not specified	Almquist, 1947		
0.45	7-14	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1965		
0.18	7–14	Growth, feed efficiency	Not specified	Klain et al., 1960		
0.39	7-21	Growth, feed efficiency	Broiler strain	Hewitt and Lewis, 1972		
0.39	7-14	Computer model	Not specified	Hurwitz et al., 1978		
0.34	14-21	Computer model	Not specified	Hurwitz et al., 1978		
0.34	21-28	Computer model	Not specified	Hurwitz et al., 1978		
0.31	28-35	Computer model	Not specified	Hurwitz et al., 1978		
0.27	35-42	Computer model	Not specified	Hurwitz et al., 1978		
0.27	42-49	Computer model	Not specified	Hurwitz et al., 1978		
0.29	49-56	Computer model	Not specified	Hurwitz et al., 1978		
0.57 0.44	1-21 8-21	Growth, feed efficiency	Cobb	Waldroup et al., 1979		
0.46	1-14	Growth, feed efficiency	New Hampshire × Columbian	Robbins and Baker, 1980a		
0.36, males	35-56	Growth, feed efficiency, feathering	White Mountain × Hubbard White Mountain × Hubbard	Moran, 1981		
0.29, females	35-49	Growth, feed efficiency Growth, feed efficiency	White Mountain × Hubbard	Moran, 1981		
0.49	7-21	Growth, feed efficiency	Broiler strain	Moran, 1981 Thomas et al., 1985		
0.55	1-21	Growth, feed efficiency	Broiler strain	Tillman and Pesti, 1985		
Methionine + cystine				SECULE OF SECULE OF SECULE		
0.90	10-20	Growth	Not specified	Almquist, 1947		
0.80	7-14	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1960		
0.47	7-14	Growth, feed efficiency	New Hampshire × Columbian	Klain et al., 1960		
0.70	0-42	Feed efficiency	Vantress X New Hampshire	Nelson et al., 1960		
0.81	0-28	Feed efficiency	Vantress × New Hampshire	Nelson et al., 1960		
0.5	28-56	Growth	Hubbard	Adams et al., 1962		
>0.6-<0.7	28-56	Feed efficiency	Hubbard	Adams et al., 1963		
0.81	0-35	Growth, feed efficiency	Cornish × White Plymouth Rock	Bornstein and Lipstein, 1964		
0.90	0-35	Growth, feed efficiency	Cornish × White Plymouth Rock	Bornstein and Lipstein, 1964		
0.67	35-56	Growth, feed efficiency	Cornish × White Plymouth Rock	Bornstein and Lipstein, 1966		
0.60	7–14	Growth, feed efficiency	New Hampshire × Columbian	Graber et al., 1971		
0.63	35-42	Growth, feed efficiency	New Hampshire × Columbian	Graber et al., 1971		
0.65	4956	Growth, feed efficiency	New Hampshire × Columbian	Graber et al., 1971		
0.79	7–21	Growth, feed efficiency	Broiler strain	Hewitt and Lewis, 1972		
0.70	14-21	Growth, feed efficiency	New Hampshire × Columbian	Boomgaardt and Baker, 1973b		
0.51	42-56	Growth, feed efficiency	New Hampshire × Columbian	Boomgaardt and Baker, 1973b		
0.92	8-21	Growth, feed efficiency,	New Hampshire × Columbian	Boomgaardt and Baker, 1973c		
0.70		nitrogen retention				
0.58	14-28	Growth, feed efficiency	Not specified	Woodham and Deans, 1975		
0.93	0-28	Growth, feed efficiency	Cobb	Murillo et al., 1976		
0.61	35-49	Computer model	Not specified	Hurwitz et al., 1978		
0.84	7-14	Computer model	Not specified	Hurwitz et al., 1978		
0.78	14-21	Computer model	Not specified	Hurwitz et al., 1978		
0.79	21-28	Computer model	Not specified	Hurwitz et al., 1978		

Nutrient and	Age	n.		
Estimated Requirement	Period (Days)	Response Criteria	Breed	References
0.76	28-35	Computer model	Not specified	Hurwitz et al., 1978
0.68	35-42	Computer model	Not specified	Hurwitz et al., 1978
0.69	42-49	Computer model	Not specified	Hurwitz et al., 1978
0.39	49-56	Computer model	Not specified	Hurwitz et al., 1978
0.86	1-21	Growth, feed efficiency	Broiler strain	Attia and Latshaw, 1979
0.90	1-21	Growth, feed efficiency	Cobb	Waldroup et al., 1979
0.80	8-21	Growth, feed efficiency	New Hampshire × Columbian	Robbins and Baker, 1980a
0.52	8-21	Growth, feed efficiency	New Hampshire × Columbian	Robbins and Baker, 1990a
0.55	8-21	Growth, feed efficiency	Hubbard	Robbins and Baker, 1980b
0.57	8–16	Growth, feed efficiency	New Hampshire × Columbian	Willis and Baker, 1980
0.70	35-42	Growth, feed efficiency	Cornish × White Plymouth Rock	Holsheimer, 1981
0.87, males	1-14	Growth, feed efficiency, feathering	White Mountain × Hubbard White Mountain × Hubbard	Moran, 1981
0.92, females 0.81, males	1-14 35-52	Growth, feed efficiency, feathering Growth, feed efficiency, feathering	White Mountain × Hubbard	Moran, 1981 Moran, 1981
0.82	1-21	Growth, feed efficiency	Cobb	Wheeler and Latshaw, 1981
>0.70-<0.76	21-42	Growth, feed efficiency	Cobb	Wheeler and Latshaw, 1981
0.65	8–16	Growth, feed efficiency	New Hampshire × Columbian	Willis and Baker, 1981a
0.50	7-17	Growth, feed efficiency	New Hampshire × Columbian	Baker et al., 1983
0.87	7-24	Growth, feed efficiency	New Hampshire × Columbian	Baker et al., 1983
0.80	1-21	Growth, feed efficiency	Hubbard	Mitchell and Robbins, 1983
0.72	21-42	Growth, feed efficiency	Hubbard	Mitchell and Robbins, 1983
0.77	7-21	Growth, feed efficiency	Broiler strain	Thomas et al., 1985
0.78	21-42	Growth, feed efficiency, carcass fat	Peterson × Arbor Acres	Jensen et al., 1989
henylalanine +				
tyrosine, %				
1.6	10-20 or 40	Growth	Not specified	Almquist, 1947
≤1.0	4-10	Growth, feed efficiency	New Hampshire × Columbian	Fisher et al., 1957
1.30	8–13 or 15	Growth, feed efficiency	New Hampshire × Columbian	Klain et al., 1960
1.31	8-16	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1965
0.87	8-14	Growth, feed efficiency	New Hampshire × Columbian	Sasse and Baker, 1972
1.09-1.12	14-28	Total protein efficiency	Ross	Woodham and Deans, 1975
0.95	8–16	Growth, feed efficiency	New Hampshire × Columbian	Baker et al., 1979
hreonine, %		o	Charles and the children and the control of the con	
0.60	10-20	Crowth, feed efficiency	Not specified	Almquist, 1947
0.45 0.55-0.60	1-14 7-21	Crowth, feed efficiency	White Leghorn	Grau, 1947
0.58	7-14	Growth, feed efficiency Growth, feed efficiency	Barred Plymouth Rock Not specified	Krautmann et al., 1958 Klain et al., 1960
0.65	7-14	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1965
0.70	1–18	Growth, feed efficiency	New Hampshire × White Leghorn	
0.53	7–21	Growth, feed efficiency	Broiler strain	Hewitt and Lewis, 1972
0.52	14-28	Growth, feed efficiency	Not specified	Woodham and Deans, 1975
0.80	7-14	Computer model	Not specified	Hurwitz et al., 1978
0.71	14-21	Computer model	Not specified	Hurwitz et al., 1978
0.71	21-28	Computer model	Not specified	Hurwitz et al., 1978
0.67	28-35	Computer model	Not specified	Hurwitz et al., 1978
0.60	35-42	Computer model	Not specified	Hurwitz et al., 1978
0.60	42-49	Computer model	Not specified	Hurwitz et al., 1978
0.64	49-56	Computer model	Not specified	Hurwitz et al., 1978
0.73-0.75	1-21	Growth, feed efficiency	ISA JV 715	Uzu, 1986
0.68	22-42	Growth, feed efficiency	ISA JV 715	Uzu, 1986
0.85	3-14	Growth, feed efficiency	Peterson	Robbins, 1987
		(adjusted to 23% crude protein		
0.72, males	7-21	Growth, feed efficiency	Broiler strain	Thomas et al., 1987
0.67, females	7-21	Growth, feed efficiency	Broiler strain	Thomas et al., 1987
0.79 0.79	1–27 7–20	Crowth, feed efficiency	Hybro Vantress × Arbor Acres	Bertram et al., 1988
0.70-0.77	1-14	Growth, feed efficiency Growth, feed efficiency	Broiler strain	Smith and Waldroup, 1988a
safetial and a series of the same and a series of the seri	AND DESCRIPTION OF THE PERSON	Signatu, icea cuicatuoy	allogical primer primer and and a consideration	Austic and Rangel-Lugo, 19
yptophan, % 0.25	10_90	Growth	Not ensuified	Almonist 1047
0.18	10-20 10-24	Growth, feed efficiency	Not specified New Hampshire × White Leadhard	Almquist, 1947 Wilkening et al. 1947
0.143	10-24	Growth, feed efficiency	New Hampshire × White Leghorn	
0.17	7-14	Growth, feed efficiency	New Hampshire × Columbian Not specified	Griminger et al., 1956 Klain et al., 1960
0.225	7-14	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1965
0.20	8-14	Growth, feed efficiency	New Hampshire × Columbian	Boomgaardt and Baker, 197
	O Y.Z.	Secreta, food childrently	rew rampsine ~ Columbian	Doonigaarde and Daker, 191
0.20		(adjusted to 23% CP		

Nutrient and	Age	Romanco		
Estimated Requirement	Period (Days)	Response Criteria	Breed	References
≤0.14	14-28	Growth, feed efficiency	Not specified	Woodham and Deans, 1975
0.179	28-49	Growth, feed efficiency, feather scores	Arbor Acres	Hunchar and Thomas, 1976
0.163	7-14	Computer model	Not specified	Hurwitz et al., 1978
0.144	14-21	Computer model	Not specified	Hurwitz et al., 1978
0.141	21-28	Computer model	Not specified	Hurwitz et al., 1978
0.134	28-35	Computer model	Not specified	Hurwitz et al., 1978
0.118	35-42	Computer model	Not specified	Hurwitz et al., 1978
0.122	42-49	Computer model	Not specified	Hurwitz et al., 1978
0.128	49-56	Computer model	Not specified	Hurwitz et al., 1978
0.17	7–56	Growth	Cobb	Freeman, 1979
0.24 0.19	07 734	Growth, feed efficiency Growth, feed efficiency	Cobb Lohmann	Freeman, 1979 Steinhart and Kirchgessner, 1984
≤0.16 0.22	7-20 8-22	Growth, feed efficiency Growth	Vantress × Arbor Acres New Hampshire × Columbian	Smith and Waldroup, 1988b Han et al., 1991
Valine, %				
0.80	10-20 or 24	Crowth	Not specified	Almquist, 1947
0.83	8-13 or 15	Growth, feed efficiency	New Hampshire × Columbian	Klain et al., 1960
0.82	8-16	Growth, feed efficiency	New Hampshire × Columbian	Dean and Scott, 1965
0.75	7-21	Growth, plasma amino acid levels	Not specified	D'Mello, 1974
0.69-0.71	14-28	Total protein efficiency	Ross	Woodham and Deans, 1975
0.69	8-16	Growth, feed efficiency	New Hampshire × Columbian	Baker et al., 1979
>0.72	21-42	Feed efficiency, abdominal fat	Broiler strain	Mendonca and Jensen, 1989a
0.90	7–21	Growth, feed efficiency	Ross × Arbor Acres	Farran and Thomas, 1990
Proline, %	0.15	C 1 1 1 M	N. H. Line C.L. Iv.	C
≤0.5	9-15	Growth, feed efficiency	New Hampshire × Columbian	Green et al., 1962
0.4-0.8 0.40	8-14	Growth food officiency	New Hampshire × Columbian	Graber et al., 1970 Baker et al., 1979
Linoleic, %	8–16	Growth, feed efficiency	New Hampshire × Columbian	
Lindeic, 76	Varied cited in a review	Growth, tissue triene: tetraene ratio	Various	Balnave, 1970
Calcium, %	ALLOH LUDY LA LA LA CONTROL PROPERTO AND	derprovings over provinces cost vz mos to a postplane, must ober 2500 til bottlessne ett a attit and attendation a ere	######################################	egiopopia par esperimentajo i principale de bet Constitución de Constitución Constitución de La constitución d
0.90	29-56	Growth, feed efficiency	Broiler strain	Waldroup et al., 1963a
0.74	0-28	Growth, bone ash	Vantress × Arbor Acres	Twining et al., 1965
0.80	42-56	Growth, feed efficiency, bone ash	Vantress × Arbor Acres	Twining et al., 1965
0.80	2856	Growth, feed efficiency, tibia ash, bone breaking force	Broiler strain	Waldroup et al., 1974a
1.30	0-21	Maximum toe ash	White Cornish × White Plymouth Rock	Yoshida and Hoshii, 1982a
1.18	21–56	Maximum toe ash	White Cornish × White Plymouth Rock	Yoshida and Hoshii, 1982b
Nonphytate phospi				
0.43	0-21	Growth, bone ash	New Hampshire × White Leghorn	
0.35	14-35	Growth, bone ash	New Hampshire × White Leghorn	
0.27 0.45	28-70 0-28	Growth, bone ash Growth, bone ash	New Hampshire × White Leghorn Various	Almquist, 1954
0.55	0-25 0-21	Growth, bone ash	New Hampshire × White Leghorn	
0.33	28-70	Growth, bone ash	New Hampshire × White Leghorn	
0.45	0-28	Growth, bone ash, serum alkaline phosphates	Rhode Island Red	Gardiner, 1962
0.45	0-28	Growth, bone ash	Vantress × White Plymouth Rock	Waldroup et al., 1962
0.24	28-56	Growth, feed efficiency	Broiler strain	Waldroup et al., 1963a
0.39	0-28	Growth, bone ash	Broiler strain	Waldroup et al., 1963b
0.35	0-28	Growth, feed efficiency	Vantress × Arbor Acres	Twining et al., 1965
0.24	42-56	Growth, feed efficiency, bone ash	Vantress × Arbor Acres	Twining et al., 1965
0.43	0-21	Growth, bone ash	White Plymouth Rock	Fritz et al., 1969
0.24	28-56	Growth, feed efficiency, tibia ash, bone breaking force	Broiler strain	Waldroup et al., 1974a
0.53	0-28	Maximum bone ash	Broiler strain	Waldroup et al., 1975
0.35	28-56	Growth, feed efficiency	Hubbard	Sauveur, 1978
0.50	0-28	Growth, feed efficiency, bone ash	Broiler strain	El Boushy, 1979
0.50	8-22	Growth, feed efficiency, tibia ash	New Hampshire × Columbian	Willis and Baker, 1981b
0.75	0-21	Maximum toe ash	White Cornish ×	Yoshida and Hoshii, 1982a
	01 -2		White Plymouth Rock	Vodado and Hadai: 1000L
0.35	21–56	Maximum toe ash	White Cornish × White Plymouth Rock	Yoshida and Hoshii, 1982b

Nutrient and	Age	P.		
Estimated Requirement	Period (Days)	Response Criteria	Breed	References
0.38	0-28	Growth, toe ash	Hubbard	Nys et al., 1983
0.29	35-53	Growth, feed efficiency,	Broiler strain	Tortuero and Diez Tardon, 198
The state of the s		tibia ash, bone length		
Potassium, %		And the second s	The state of the s	
0.25-0.30	13-41	Growth, mortality	Vantress × Plymouth Rock	Leach et al., 1959
Sodium, %				
0.11-0.20	1-28	Growth, feed efficiency	New Hampshire × Columbian	McWard and Scott, 1961a
0.13 0.07	7-23	Growth, blood pH	White Rock	Hurwitz et al., 1973
>0.23	49-63 1-21	Growth, blood pH Growth	White Rock Broiler strain	Hurwitz et al., 1974
0.2-0.25	7-21	Growth	Cobb × Hubbard	Ross, 1977 Ross, 1979
0.35	1-21	Growth	Peterson × Hubbard	Edwards, 1984
Chlorine, %		and the Control of Control of the Co		
0.3150.340	2-28	Growth, mortality, blood chlorine	White Plymouth Rock	Leach and Nesheim, 1963
0.13	7-23	Growth, blood pH	White Rock	Hurwitz et al., 1973
0.07	49-63	Growth, blood pH	White Rock	Hurwitz et al., 1973
0.12	1-21	Growth, mortality	Ross	Gardiner and Dewar, 1976
0.42	1-21	Growth	Peterson × Hubbard	Edwards, 1984
Magnesium, mg/kg				
350-400 100-300	7-24 1-21	Growth Control of the	Not specified	Almquist, 1947
250	1-21 1-28	Growth, mortality Growth, blood magnesium, mortality	White Plymouth Rock Vantress × Hubbard	Edwards et al., 1960
200	1-14	Growth, mortality	New Hampshire × Columbian	Gardner et al., 1960 McWard and Scott, 1961b
577	1-21	Growth, mortality, bone magnesium	White Plymouth Rock	Nugara and Edwards, 1963
≤350	1-27	Growth, feed efficiency	New Hampshire × Columbian	Baker and Molitoris, 1975
Manganese, mg/kg			entre Children in an and the contract of the c	
50	1-42	Growth, perosis	New Hampshire	Gallup and Norris, 1939a
14	8-22	Growth	New Hampshire × Columbian	Southern and Baker, 1983a
Zinc, mg/kg		Company of the property of the		
35	12-26	Growth, feed efficiency	White Plymouth Rock	Morrison and Sarett, 1958
35	1–42	Growth, bone integrity	White Rock or Cornish ×	O'Dell et al., 1958
30	1-28	Growth	White Rock	
47-57	1-26 1-14	Growth, tibia ash	White Meteor × White Rock White Rock	Roberson and Shaible, 1958
>52	1-28	Growth leg deformity	New Hampshire × Connecticut	Edwards et al., 1959 Lease et al., 1960
>40 mg	1-28	Growth, hock enlargement	White Plymouth Rock	Zeigler et al., 1961
14	8-22	Growth	New Hampshire × Columbian	Southern and Baker, 1983b
18	1-21	Growth	Broiler strain	Dewar and Downie, 1984
>45	8-22	Tibia zine	New Hampshire × Columbian	Wedekind et al., 1990
Iron, mg/kg				
56	7-21	Growth, blood hemoglobin, liver iron	Not specified	Waddel and Sell, 1964
75-80	1-28	Growth, blood hemoglobin	New Hampshire and	D 1
80	1-21	Crouth blood homoglobin	Plymouth Rock	Davis et al., 1968
30	1-21	Growth, blood hemoglobin, packed cell volume	Not specified	McNaughton and Day, 1979
40	8-22	Growth, blood hemoglobin, hematocrit	New Hampshire × Columbian	Southern and Baker, 1982
Copper, mg/kg				
8	1-21	Growth, blood hemoglobin,	Not specified	McNaughton and Day, 1979
		packed cell volume		
Iodine, mg/kg		SALANA DA PETATI SATE TO POLITICA PETATORIA POLITICA PETATORIA DEL COLONIO CANDIDA DEL COLONIO COLONIO CANDIDA DEL COLONIO COLONIO COLONIO CANDIDA DEL COLONIO CANDIDA	6 a.m. 11 a.m. 11 a.m. 12 a.m.	D. 9310010-00-001 - Company of District of State - Open Co
0.3-0.4	28 - 56	Growth, thyroid histology	Barred Plymouth Rock	Creek et al., 1957
Selenium, mg/kg				
>0.02 mg	1-24	Mortality, exudative diathesis	Plymouth Rock × Vantress	Thompson and Scott, 1969
0.1 mg	1-31	Pancreatic degeneration and fibrosis	White Plymouth Rock × Vantress	Gries and Scott, 1972c
>0.1 mg	1-63	Growth, glutathione peroxidase activity	Hubbard	Binnerts and El Boushy, 1985
0.14-0.17	1-21	Growth, plasma thyroid hormones	Hubbard and Arbor Acre	Jensen et al., 1986
Vitamin A, IU/kg 2,200	Varied	Growth	Various	Almoniat 3052
1,320	1-28	Growth, feed efficiency	various Columbian Rock	Almquist, 1953 Olsen et al., 1959
≤1,100	7-63	Growth	Not specified	Marusich and Bauernfeind, 1963
900	1-56	Growth, incidence of coccidiosis	Broiler strain	Ogunmodede, 1981
Vitamin D ₃ , IU/kg				
200-396	1-28	Growth	Not specified	Waldroup et al., 1963a
198	1-28	Growth, tibia ash	Not specified	Waldroup et al., 1965
200	1–54	Growth, tibia ash	Not specified	Biely and March, 1967
≤200	1-14	Growth, bone mineralization	Not specified	McAuliffe et al., 1976

Nutrient and	Age	n.		
Estimated Requirement	Period (Days)	Response Criteria	D	n (
	- NATIONAL MARKET AND ASSESSMENT	Construction of the Constr	Breed	References
198	1-21	Growth, tibia ash	Not specified	McNaughton et al., 1977a
400	1–56	Growth, tibia ash	Not specified	Lofton and Soares, 1986
Vitamin E, IU/kg				
1524	1-28	Prevention of encephalomalacia	Barred Plymouth Rock × Rhode Island Red	Singsen et al., 1955
5-60	Varied, cited	Encephalomalacia exudative diathesis,	Various	Machlin and Gordon, 1962
	in a review	muscular degeneration		_
5.4-7.4 3050	2-33	Mortality, incidence of encephalomalacia	White Rock	Bartov and Bornstein, 1972
3030	1–14 and 1–35	Growth, peroxidation in hepatic microsomes	Vantress × Plymouth Rock	Combs and Scott, 1974
Vitamin K, mg/kg				· Silonija operato likulture kantolo Likulture in includente kantolo
0.588	1-14	Prothrombin time	White Plymouth Rock	Nelson and Norris, 1960
0.479	1-28	Prothrombin time	White Plymouth Rock	Nelson and Norris, 1960
0.515	1-84	Prothrombin time	White Plymouth Rock	Nelson and Norris, 1961a
0.500	1-14	Prothrombin time	White Plymouth Rock	Nelson and Norris, 1961b
0.370	1-28	Prothrombin time	White Plymouth Rock	Nelson and Norris, 1961b
Riboflavin, mg/kg	water and a series of the seri	and an interest of the second	NOT THE PROPERTY OF THE PROPER	
2.5	1-56	Growth	Barred Rock × New Hampshire	Bethke and Record, 1942
3.0	14-42	Growth, feed efficiency	White Wyandotte	Bolton, 1944
3.0-3.5	14-42	Growth	White Wyandotte	Bolton, 1947
2.3	1-56	Growth	Hubbard × Arbor Acres	Wyatt et al., 1973a
5.1	1-56	Growth	Harco	Ogunmodede, 1977
3.6	1-21	Growth, feed efficiency	Cobb and Cobb × Arbor Acres	Ruiz and Harms, 1988b
2.6	8-22	Growth, leg paralysis	New Hampshire × Columbian	Chung and Baker, 1990
antothenic acid, mg/l				ATTENDED TO THE PROPERTY OF TH
14	Not specified	Crowth		
10	Not specified		Not specified	Jukes, 1939
5	Not specified		Not specified	Jukes and McElroy, 1943
the present American and the same and an order of a first transfer.	avorspectmen		New Hampshire × Columbian	Staten et al., 1980
Viacin, mg/kg 26-28	7-42	Countly managin	n in in i	0141 . 1
37	1-21	Growth, perosis	Barred Plymouth Rock	Childs et al., 1952
20	7-20	Growth	White Cornish	Yoshida et al., 1966
		Growth, incidence of tongue lesions	New Hampshire × Columbian	Baker et al., 1973
≤22	8-50	Growth, feed efficiency	New Hampshire × Columbian	Yen et al., 1977
>55 mg	1-53	Growth, feed efficiency	Not specified	Waldroup et al., 1985b
28-36	1-21	Growth, leg disorders	Cobb	Ruiz and Harms, 1988
32	1-21	Growth, leg disorders	Arbor Acres × Cobb	Ruiz et al., 1990
≤22 mg	21–49	Growth	Cobb	Ruiz and Harms, 1990
/itamin B ₁₂ , mg/kg				
0.01	7-29	Growth, energetic efficiency	Dominant White ×	Looi and Renner, 1974
			White Plymouth Rock	
≤0.01 mg	I-28	Growth, feed efficiency	Sussex × White Rock	Rys and Koreleski, 1974
Choline, mg/kg			and the second s	and the same of the same should proport the same of the same state
1,000	14-42	Growth, perosis	Barred Plymouth Rock	West et al., 1951
1,540-1,760	1-56	Growth, feed efficiency	White Rock	Quillen et al., 1961
1119	1-21	Growth	White Rock	Fritz et al., 1967
358	44-55	Growth	New Hampshire × Columbian	Molitoris and Baker, 1976
800	7-28	Growth	White Rock	Lipstein et al., 1977
≤1,171	7-35	Growth, perosis	Not specified	Derilo and Balnave, 1980
1,910-4,100	1-21	Growth, feed efficiency	Not specified	Pesti et al., 1980
1,200	8-25	Growth	New Hampshire × Columbian	Baker et al., 1983
625	8-17	Growth	New Hampshire × Columbian	Lowry et al., 1987
>1,300	1-21	Growth, feed efficiency	Not specified	Tsiagbe et al., 1987
iotin, mg/kg				
>0.26 mg	1-25	Growth, mortality, leg abnormalities	Not specified	Anderson and Warnick, 1970
0.14	1-24	Growth, mortality due to fatty		10-10-10-10-10-10-10-10-10-10-10-10-10-1
		kidney liver syndrome	Not specified	Payne et al., 1974
0.14-0.18	1–35	Growth	Ross	What I In
≤0.17-0.18	1-56	Incidence of fatty liver and	Ross	Whitehead and Bannister, 1980
		kidney syndrome		Whitehead and Randall, 1982
≤0.20	I-21	Growth, leg disorders, dermatitis		Williams 1000
and and described a SARATE and a Salar and a de-		Seeman, ack madraces, dermaines	Hubbard	Watkins, 1988
olic acid, mg/kg	1 00	Crowth	21-1	
≤0.5	1-28	Growth	Not specified	Saxena et al., 1954
≤0.3	1–21 and	Growth, perosis	Rhode Island Red ×	Young et al., 1955
0.40 0.65	1-28	0 1	White Plymouth Rock	
0.40-0.65 mg	1-35	Growth	New Hampshire	March and Biely, 1956

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
0.3-0.45 mg	1-20	Growth, perosis	Arbor Acres	Creek and Vasaitis, 1963
0.34–0.49 mg	1–28	Growth, leg abnormalities	Not specified	Saxena et al., 1954
Thiamin, mg/kg				
0.75	3–28	Growth, polyneuritis	New Hampshire × Delaware	Thornton 1960
1.0–1.3	Not specified	Growth, feed efficiency	New Hampshire × Delaware	Thornton and Shutze
Pyridoxine, mg/kg			Belaware	1,00
3–5	12–42	Growth, perosis, anemia, dermatitis	White Rock	Hogan et al. 1941
2	7–28	Growth, feed efficiency	Not specified	Kratzer et al., 1947
<5.7	1-56	Growth, feed efficiency	White Plymouth Rock	Fuller and Kifer, 1959
3.3	1–14	Growth	White Plymouth Rock	Fuller and Dunahoo, 1959
2.2–2.6	1–28	Growth, gizzard erosion, serum glutamic oxaloacetic transaminase	Vantress × Arbor Acre	Daghir and Balloun, 1963
2.8–3.6	1–14 or 35	Growth, feed efficiency	Not specified	Kirchgessner and Friesecke, 1963
3	Not specified	Growth, feed efficiency	Not specified	Maier and Kirchgessner, 1968
>3.1	7–28	Growth, serum aspartate aminotransferase	Not specified	Daghir and Shah, 1973
3.2–3.4	1–28	Growth, perosis	White Plymouth Rock × Vantress	Gries and Scott, 1972a
≤1.0	1-20	Growth, feed efficiency	Ross	Lee et al., 1976
1.1	8–17	Growth	New Hampshire × Columbian	Yen et al., 1976
1.75	3–49	Growth, plasma amino acids	Not specified	aboaysha and Kratzer, 1979
1.3–2.7	1–21	Growth	Not specified	Kazemi and Kratzer,
≤1.48	1-49	Growth	Not specified	Blalock et al., 1984

TABLE A-4 Documentation of Nutrient Requirements of Broiler Breeder Pullets and Hens

Nutrient and Estimated	Age Period	Response		
Requirement	(Weeks)	Criteria	Breed	References
Protein, g/bird daily 20	24-52	Egg production, egg weight,	Cobb	Waldroup et al., 1976b
		body weight, liveability		··
15.6-16.5	Not specified	Estimated by model	Not specified	Bornstein et al., 1979
19.5 23.1	21-64 31-60	Egg production, egg weight, fertility	Marshall Tetra	Pearson and Herron, 1981 Jeroch et al., 1982
19	19-40	Egg yield Body weight, skeletal growth egg production, egg weight, hatchability	Hubbard	Spratt and Leeson, 1987
18–19	31-60	Egg production, egg weight, body weight, egg quality, hatchability	Tetra	Schloffel et al., 1988
Arginine, mg/bird daily				
1,111 1,111	Peak egg production Peak egg production	Body weight, egg mass Body weight, egg mass	Mathematical model Mathematical model	Waldroup et al., 1976c Bornstein et al., 1979
<1.226 mg	24-64	Egg production, egg weight, fertility, hatchability, egg specific gravity	Cobb	Wilson and Harms, 1984
Histidine, mg/bird daily		g dia diagnah kadi gang bang gang gang yang gang yang gang galam kangdidid yang bang gganah di Margiri yan ng ka	United Services and Services an	A CONTRACTOR AND A CONT
209	Peak egg production	Body weight, egg mass	Mathematical model	Waldroup et al., 1976c
200 Isoleucine, mg/bird daily	Peak egg production	Body weight, egg mass	Mathematical model	Bornstein et al., 1979
853	Peak egg production	Body weight, egg mass	Mathematical model	Waldroup et al., 1976c
850	Peak egg production	Body weight, egg mass	Mathematical model	Bomstein et al., 1979
Leucine, mg/bird daily	21 1 1 1	n 1 - 11.	N. J 1 11	111.11
1,247 1,250	Peak egg production Peak egg production	Body weight, egg mass Body weight, egg mass	Mathematical model Mathematical model	Waldroup et al., 1976c Bornstein et al., 1979
Lysine, mg/bird daily	PETER IN THE PRODUCTION			SECTION SUPPLIES OF SUPPLIES O
773	Peak egg production	Body weight, egg mass	Mathematical model	Waldroup et al., 1976c
760	Peak egg production	Body weight, egg mass	Mathematical model	Bornstein et al., 1979
<808	24-64	Egg production, egg weight, fertility, hatchability, egg specific gravity	Cobb	Wilson and Harms, 1984
Methionine, mg/bird daily			\$ 41 m 10 to 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1	#EDERECTO PORT (FOR STANKE STANKE STANKE STANKE)
558	Peak egg production	Body weight, egg mass	Mathematical model	Waldroup et al., 1976c
570	Peak egg production	Body weight, egg mass	Mathematical model	Bornstein et al., 1979
400	24-64	Egg production, body weight, fertility, hatchability	Cobb	Harms and Wilson, 1980
Methionine + cystine,				
mg/bird daily 819			Mathematical model	Waldroup et al., 1976c
830	Peak egg production Peak egg production	Body weight, egg mass Body weight, egg mass	Mathematical model	Bornstein et al., 1979
723	24-64	Egg production, egg weight,	Cobb	Harms and Wilson, 1980
		fertility, hatchability	Cobb	uni lu 1004
<682	24-64	Egg production, egg weight, fertility, hatchability, egg specific gravity	CODD	Wilson and Harms, 1984
694	Peak egg production	Nitrogen balance	Tetra	Halle et al., 1984
Phenylalanine + tyrosine				
mg/bird daily 1,126	Peak egg production	Body weight, egg mass	Mathematical model	Waldroup et al., 1976c
1,110	Peak egg production	Body weight, egg mass	Mathematical model	Bornstein et al., 1979
Phenylalanine, mg/bird daily 610	Peak egg production	Body weight, egg mass	Mathematical model	Bornstein et al., 1979
Threonine, mg/bird daily				
717	Peak egg production	Body weight, egg mass	Mathematical model	Waldroup et al., 1976c
720	Peak egg production	Body weight, egg mass	Mathematical model	Bornstein et al., 1979
Tryptophan, mg/bird daily 189	Peak egg production	Body weight, egg mass	Mathematical model	Waldroup et al., 1976c
190	Peak egg production	Body weight, egg mass	Mathematical model	Bornstein et al., 1979
<223 mg	24-64	Egg production, egg weight, fertility,	Cobb	Wilson and Harms, 1984
Take a death of the second		hatchability, egg specific gravity		
Valine, mg/bird daily 979	Peak egg production	Body weight, egg mass	Mathematical model	Waldroup et al., 1976c
920	Peak egg production	Body weight, egg mass	Mathematical model	Bornstein et al., 1979
Calcium, g/bird daily				
3.91	26–53	Egg production, egg specific gravity, hatchability	Cobb	Wilson et al., 1980
Nonphytate phosphorus,	The state of the s	THE PROPERTY OF THE PROPERTY O		to a record to a graph of the color of the desired 1 defined and 1 defined and 1 defined and
mg/bird daily	26-53	Egg production, egg specific	Cobb	Wilson et al., 1980
338	20	E.go Dromichon, egg specific	CODD	Wilson et al. 1900

Nutrient and Estimated Requirement	Age Period (V	Veeks) Response Criteria		Breed	References
Sodium, mg/bird daily <154	32–64	Egg production eg fertility, egg speci- hatchability		Cobb	Damron et al., 1983
Chlorine, mg/bird daily 208	32–60	Egg production, eg hatchability	gg weight,	Cobb	Harms and Wilson, 1984
Biotin, μg/bird daily 16	20–58	Egg production, eg hatchability	gg weight,	Marshall	Whitehead et al., 1985
TABLE A-5 Documentation	of Nutrient Requirement	nts of Broiler Breeder Males			
Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed		References
Metabolizable energy, kcal/b		D 1 11 0 27			
400	28–40	Body weight, fertility, hatchability, chick production, testes weight	Broiler strai	ın	McCartney and Brown, 1980
458	30–54	Body weight, fertility, hatchability, chick	Broiler strai	n	Brown and McCartney, 1983
346	30–46	production, testes weight Body weight, fertility, hatchability, chick	Hubbard		Brown and McCartney, 1986
358	30–60	production, testes weight Body weight, semen volume, sperm cells, fertility	Broiler strai	in	Buckner et al., 1986
Protein. %		Tertifity			
12.4	7–21	Development of testes, subsequent fertility	Peterson		Wilson et al., 1971
12–14	4–53	Weight gain, semen volume and concentration testes weight	Broiler strai	in	Wilson et al., 1987a
9	6–53	Weight gain, semen volume and concentration	Broiler strai	in	Wilson et al., 1987b
15 Protein, g/bird daily	1–4	testes weight Fertility 24–27 weeks	Hubbard		Vaughters et al., 1987
10–14	20–60	Semen production	Hubbard		Buckner and Savage, 1986
Calcium, % <0.2	36–60	Semen volume, sperm concentration, dead sperm, fertility, hatchability	White Legh	orn	Wilson et al., 1969
Calcium, mg/bird daily 7.98	44–56	Weight gain, blood parameters, bone constituents	White Legh	orn	Norris et al., 1972
<500 Nonphytate phosphorus, %	Not specified	Reproductive parameters	Broiler strai	ins	Kappleman et al., 1982
0.1	44–56	Weight gain, blood parameters, bone constituents	White Legh	orn	Norris et al., 1972
Nonphytate phosphorus, mg/	/bird daily 32–40	Semen volume	Arbor Acres	s, cage	Bootwalla and Harms, 1989

TABLE A-6 Documentation of Nutrient Requirements of Turkeys

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
Protein, %				
28	0–7	Growth	Bronze, both sexes	Lloyd et al., 1949
20	0–4	Growth	Jersey Buff, both sexes	Baldini et al., 1954
20	8–16	Growth	Large White, both sexes	Carter et al., 1957
28	0–8	Growth	Bronze, both sexes	Atkinson et al., 1957
25–32	0–6	Growth	Bronze, both sexes	Balloun et al., 1959
18	8–12	Growth	Bronze, females	Jensen et al., 1965
16	12–16	Growth	Bronze, females	Jensen et al., 1965
14	16–20	Growth	Bronze, females	Jensen et al., 1965
22	8–12	Growth	Large White, males	Summers et al., 1968
18	12–16	Growth	Large White, males	Summers et al., 1968
14	16–20	Growth	Large White, males	Summers et al., 1968
24	8–10	Growth	Large White, females	Summers et al., 1968
20	10–12	Growth	Large White, females	Summers et al., 1968
18	12–14	Growth	Large White, females	Summers et al., 1968
24	6–12	Growth	Large White, males	Eberst et al., 1972
30	0–7	Growth	Large White, males	Herz et al., 1975a
22	7–13	Growth	Large White, males	Herz et al., 1975b
30	0–4	Growth	Large White, males	Richter et al., 1980
21.3	10	Growth	Large White, males	Potter et al., 1981
19.5	14	Growth	Large White, males	Potter et al., 1981
17.6	18	Growth	Large White, males	Potter et al., 1981
21.7	10	Growth	Large White, females	Potter et al., 1981
18.4	14	Growth	Large White, females	Potter et al., 1981
15.0	18	Growth	Large White, females	Potter et al., 1981
20	5–14	Growth, carcass	Large White, both sexes	Richter and Prinz, 1980
26	4 10	composition	0 11 11 11 11	0.1 1004
26	4–10	Growth, carcass quality	Small White, both sexes	Salmon, 1984
20	10–13	Growth, carcass quality	Small White, males	Salmon, 1984
18	10–13	Growth, carcass quality	Small White, females	Salmon, 1984
Arginine, %	0.3	C	D b.4b	Al
1.60	0–3	Growth	Bronze, both sexes	Almquist, 1952
1.90	1-3	Growth	Bronze, both sexes	Dunkelgod et al., 1970
1.60	1–3	Growth	Bronze and Large White, both sexes	Warnick and
1 75	1–3	Growth		Anderson, 1973
1.75	1–3	Glowin	Large White, males	D'Mello and Emmans, 1975
1.59	0–4	Carcass content plus	Large White, males,	Hurwitz et al., 1983a
1.39	0-4	maintenance	mathematical model	Hui witz et al., 1983a
1.32	4–8			Unerwitz at al. 1092a
1.32	4-8	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983a
1.02	8–12			Hurwitz et al., 1983a
1.02	6-12	Carcass content plus	Large White, males,	Hulwitz et al., 1983a
0.80	12–16	maintenance Carcass content plus	mathematical model	Hurwitz et al., 1983a
0.80	12-10	maintenance	Large White, males, mathematical model	Hui witz et al., 1983a
0.63	16–20	Carcass content plus	Large White, males,	Hurwitz et al., 1983a
0.03	10-20	maintenance	mathematical model	Hui witz et al., 1983a
0.47	20–24	Carcass content plus	Large White, males,	Hurwitz et al., 1983a
0.47	20-24	maintenance	mathematical model	Hui witz et al., 1983a
Glycine, %		mamtenance	mathematical model	
0.90	0-3	Growth	Bronza both savas	Kratzer and Williams,
0.90	0–3	Glowiii	Bronze, both sexes	1948a
Histidine, %				1940a
0.58	1–3	Growth	Bronze, both sexes	Warnick and
0.38	1–3	Glowiii	Biolize, both sexes	Anderson, 1973
0.53	0–4	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.55	0-4	maintenance	mathematical model	Hulwitz et al., 1983
0.42	4–8			Unerwitz at al. 1002
0.42	-1 -0	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.30	8–12		Large White, males,	Hurwitz et al., 1983
0.50	0-12	Carcass content plus		1101 WILZ Et al., 1983
0.23	12–16	maintenance Carcass content plus	mathematical model Large White, males,	Hurwitz et al., 1983
0.43	12-10	maintenance	mathematical model	1101 WILZ Et al., 1983
0.19	16. 20			Unewitz at al. 1002
0.18	16–20	Carcass content plus maintenance	Large White, males	Hurwitz et al., 1983
0.12	20. 24		mathematical model	Unewitz at al. 1002
0.12	20–24	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
Isoleucine, %				_
0.80	0-3	Growth	Bronze, both sexes	Kratzer et al., 1952
1.10	1–3	Growth	Bronze, both sexes	Warnick and
1.10		0.10 11 111	Bronze, com senes	Anderson, 1973
0.84	1–3	Growth	Large White, males	D'Mello, 1975
1.03	0–4	Carcass content plus	Large White, males,	Hurwitz et al., 1983
1.03	0 1	maintenance	mathematical model	Trai witz et al., 1905
0.86	4–8	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.00	4 0	maintenance	mathematical model	Trui witz et al., 1965
0.67	8-12	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.07	8-12	maintenance	mathematical model	Tiui witz et al., 1985
0.53	12–16	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.55	12-10		mathematical model	Hurwitz et al., 1983
0.42	16–20	maintenance		Hurwitz et al., 1983
0.42	10-20	Carcass content plus	Large White, males,	Hulwitz et al., 1985
0.21	20.24	maintenance	mathematical model	11 : 1 1002
0.31	20–24	Carcass content plus	Large White, males,	Hurwitz et al., 1983
·		maintenance	mathematical model	
Leucine, %				
1.86	1–3	Growth	Bronze, both sexes	Warnick and
		~ .		Anderson, 1973
1.42	1–3	Growth	Large White, males	D'Mello, 1975
1.96	0–4	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	
1.62	4–8	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	
1.23	8-12	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	•
0.96	12–16	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	,
0.74	16-20	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	
0.53	20-24	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.55	20 21	maintenance	mathematical model	Trai witz et al., 1905
Lysine, %		mamtenance	mathematical model	
1.5	0–4	Growth	Bronze, both sexes	Almquist, 1952
0.96	4–8	Growth		
			Bronze, both sexes	Kratzer et al., 1956b
0.85	8–12	Growth	Bronze, both sexes	Kratzer et al., 1956b
0.76	14–18	Growth	Bronze, both sexes	Kratzer et al., 1956b
0.56	16–19	Growth	Bronze, both sexes	Kratzer et al., 1956b
0.60	20–23	Growth	Bronze, both sexes	Kratzer et al., 1956b
1.55	0–6	Growth	Bronze, both sexes	Balloun and Phillips,
				1957b
1.60	0–3	Growth	Large White, both sexes	Kummero et al., 1971
1.68	1–3	Growth	Bronze, both sexes	Warnick and
				Anderson, 1973
1.50	0–4	Growth	Large White, males	Tuttle and Balloun,
				1974
1.40	4–8	Growth	Large White, males	Tuttle and Balloun,
				1974
1.12	8-12	Growth	Large White, males	Tuttle and Balloun,
			,	1974
1.55	1–3	Growth	Large White, males	D'Mello and Emmans,
	-		6,	1975
0.96	12-16	Growth	Large White, males	Jensen et al., 1976
0.76	16–20	Growth	Large White, males	Jensen et al., 1976
1.4	8–12	Growth	Large White, both sexes	Potter et al., 1981
1.2	12–16	Growth	Large White, both sexes	Potter et al., 1981
0.9	11–20	Growth	Large White, both sexes	Potter et al., 1981
1.42	0-4	Carcass content plus	Large White, males,	Hurwitz et al., 1983
1.74	U -1		, ,	11u1 w11Z Ct al., 1903
1 12	1 0	maintenance	mathematical model	Hamita et -1 1002
1.12	4–8	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.01	0.12	maintenance	mathematical model	II '4 1 1000
0.81	8–12	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.62	10.16	maintenance	mathematical model	**
0.63	12–16	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	
0.49	16–20	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	
0.32	20-24	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	•
Methionine, %				
0.55	Starting	Growth	Bronze, both sexes	Almquist, 1952
0.56	0–6	Growth	Jersey Buff, both sexes	Baldini et al., 1957
			<u>, , , , , , , , , , , , , , , , , , , </u>	,

Nutrient and	Age			
Estimated	Period (Down)	Response Criteria	Breed	References
Requirement	(Days)		SAMPLE STATE OF THE STATE OF TH	Production of the second secon
0.6	0-3	Growth, foot pad dermatitis	Large White, males	Murillo and Jensen, 1976a
0.4	8-12	Growth, feed efficiency	Large White, males	Murillo and Jensen, 1976b
0.46	1-4	Growth	Large White, males	Behrends and Waibel, 1980
0.30	8-12	Growth	Large White, males	Behrends and Waibel, 1980
0.19	16-20	Growth	Large White, males	Behrends and Waibel, 1980
0.51	0-4	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.41	4-8	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.31	8-12	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.24	12-16	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.20	16-20	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.15	20-24	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
fethionine + cystine		minicias sumatini de la completa de la Marchalle de Caral (1920/1921)	residence consister reconstruction of the construction of the cons	Ambergation and spiriting
0.90	0-4	Growth	Bronze, both sexes	Almquist, 1952
0.79	0-3	Growth	Large White, both sexes	Kummero et al., 1971
1.04	1-3	Growth	Bronze, both sexes	Warnick and Anderson, 1973
1.05	0-3	Growth, foot pad dermatitis	Large White, both sexes	Murillo and Jensen, 1976a
0.82	8-12	Growth, feed efficiency	Large White, males	Murillo and Jensen, 1976b
0.83	1-3	Growth	Large White, males	D'Mello, 1976
1.10	0-4	Growth	Medium White, males	Potter and Shelton, 1979
1.00	4-8	Growth	Medium White, males	Potter and Shelton, 1979
			Medium White, both sexes	Potter and Shelton, 1980
0.93	8-12	Growth	Medium White, both sexes	Potter and Shelton, 1980
0.75	12-16	Growth		Behrends and Waibel, 1980
1.01	1-4	Growth	Large White, males	
0.71	8-12	Growth	Large White, males	Behrends and Waibel, 1980
0.48	16-20	Growth	Large White, males	Behrends and Waibel, 1980
1.05	0-4	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.93	4-8	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.76	8-12	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.60	12-16	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.48	16-20	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.38	20-24	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
1.15	0-4	Growth, feed efficiency	Large White, both sexes	Schutte et al., 1986
1.05	4-8	Growth, feed efficiency	Large White, both sexes	Schutte et al., 1986
henylalanine +tyro:				
1.60	1-2	Growth	Large White, males	Dunkelgod et al., 1970
1.80	1-3	Growth	Bronze, both sexes	Warnick and Anderson, 197.
1.72	0-4	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
1.43	4_8	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
1.09	8-12	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.86	12–16	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.67	16-20	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.49	20-24	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
Phenylalanine, %	4-44-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	Brilden ber armon endergebooten bronspring in den ergeliere et in 1957 gewild ber	to the second	About any contract the substantial profession and any of the
0.83	1-2	Growth	Large White, males	Dunkelgod et al., 1970
1.05	0-4	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
0.88	4 – 8	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.67	8 - 12	maintenance Carcass content plus maintenance	mathematical model Large White, males, mathematical model	Hurwitz et al., 1983
0.53	12 – 16	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.41	16 - 20	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.30	20 – 24	Carcass content plus	Large White, males, mathematical model	Hurwitz et al., 1983
Threonine, %		mamtenance	mamemanear moder	
1.10	1 - 2	Growth	Large White, males	Dunkelgod et al., 1970
1.00	1 – 3	Growth	Bronze, both sexes	Warnick and Anderson, 1973
0.94 1.14	$ \begin{array}{r} 1 - 3 \\ 0 - 4 \end{array} $	Growth Carcass content plus	Large White, males Large White, males,	D'Mello, 1976 Hurwitz et al., 1983
1.14	0 – 4	maintenance	mathematical model	Tiulwitz et al., 1965
0.94	4 - 8	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.72	8 – 12	maintenance Carcass content plus	mathematical model Large White, males,	Hurwitz et al., 1983
0.72	0 – 12	maintenance	mathematical model	Hurwitz et al., 1983
0.56	12 - 16	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.44	16 – 20	maintenance	mathematical model	Hitt -1 1092
0.44	10 – 20	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.32	20 - 24	Carcass content plus	Large White, males,	Hurwitz et al., 1983
T 1 0/		maintenance	mathematical model	
Tryptophan, % 0.26	0 - 4	Growth	Bronze, both sexes	Almquist, 1952
0.37	1-2	Growth	Large White, males	Dunkelgod et al., 1970
0.26	1 - 3	Growth	Bronze, both sexes	Warnick and
0.21	0 4	C	I Wilita	Anderson, 1973
0.21	0 - 4	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.17	4 - 8	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	
0.13	8 - 12	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
0.11	12 - 16	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	•
0.08	16 - 20	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.06	20 - 24	maintenance Carcass content plus	mathematical model Large White, males,	Hurwitz et al., 1983
0.00	20 2.	maintenance	mathematical model	11ui wii et ui., 1905
Valine, %		0 4	* ***	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.38 1.20	1-2 $1-3$	Growth Growth	Large White, males Bronze, both sexes	Dunkelgod et al., 1970 Warnick and
1.20	1 3	GIOWHI	Dionize, oour series	Anderson, 1973
1.21	1 - 3	Growth	Large White, males	D'Mello, 1975
1.34	0 - 4	Carcass content plus maintenance	Large White, males, mathematical model	Hurwitz et al., 1983
1.13	4 - 8	Carcass content plus	Large White, males,	Hurwitz et al., 1983
		maintenance	mathematical model	•
0.88	8 - 12	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.69	12 – 16	maintenance Carcass content plus	mathematical model Large White, males,	Hurwitz et al., 1983
0.07	12 10	maintenance	mathematical model	Trai witz et al., 1705
0.53	16 - 20	Carcass content plus	Large White, males,	Hurwitz et al., 1983
0.40	20 – 24	maintenance Carcass content plus	mathematical model Large White, males,	Hurwitz et al., 1983
U.TU	20 – 24	maintenance	mathematical model	11u1 witz et al., 1705
Linoleic, %				
1.00	0 - 3	Growth	Large White and Bronze,	Ketola et al., 1973
Calcium, %			both sexes	
1.7	0 - 3	Bone ash	Bronze, both sexes	Motzok and Slinger, 1948
1.5	0 - 4	Bone ash	Small White, both sexes	Wilcox et al., 1953
-			,	,

Nutrient and	Age	Remonee		
Estimated Requirement	Period (Days)	Response Criteria	Breed	References
0.6	8-24	Growth, toe ash	Bronze, both sexes	Nelson et al., 1961
10	0-8	Growth, toe ash	Large White, both sexes	Slinger et al., 1961
0.7	8-20	Growth, toe ash	Bronze, both sexes	Sullivan, 1961
0.81	0-8	Crowth, toe ash	Bronze, both sexes	Formica et al., 1962
0.83	8-23, 25	Growth, toe ash	Bronze, both sexes	Formica et al., 1962
Nonphytate phosphorus 0.6	0-4	Growth	Bronze and Small White, both sexes	Almquist, 1954
0.5	8 - 20	Growth, bone ash	Bronze, both sexes	Sullivan, 1960
0.35	9-16	Growth, toe ash	Bronze × White Holland, both sexes	Day and Dilworth, 1962
0.21	17 – 24	Growth, toe ash	Bronze × White Holland, both sexes	Day and Dilworth, 1962
0.50	0 - 3	Bone ash	Large White, males	Bailey et al., 1986
0.60.8	0-4	Growth, bone ash	Large White, males	Stevens et al., 1986
Potassium, %				
0.6	0-2	Growth	Medium White, both sexes	Supplee and Combs, 1959
0.35 0.6	0-4 0-4	Growth Growth	Bronze, both sexes Large White, both sexes	Sullivan, 1963 Chavez and Kratzer, 1973
0.8	0-4	Growth, tissue potassium	Large White, both sexes	Smith et al., 1973
Sodium, %	SOCIETY CONTRACTORS	in in the second of the second		CONTRACT CONTRACTOR CONTRACTOR TO SERVICE STATE STATE STATE STATE OF THE SERVICE STATE STA
0.20	0 - 4	Growth	Bronze, both sexes	Kumpost and Sullivan, 1966
0.25	0-4	Body, plasma composition	Large White, both sexes	Pang et al., 1978
0.17	0-3	Growth	Large White, both sexes	Harms, 1982
0.17	0-3	Growth	Large White, both sexes	Harms and Miles, 1983
0.12	42-48	Poult yield	Large White, females	Harms et al., 1985
Chlorine, % 0.15	0-4	Crowth	Large White, both sexes	Kubicek and Sullivan, 1973
0.12	32-50	Maximum shell strength, poult yield	Large White, females	Harms et al., 1983
Magnesium, mg/kg	reveseeseeverender zoon en bes	en a a a a a de como como como como como como como com	rafilianssenet (s. 🗪 faust frijest fan 17. i Londachnium Lingsom 1990 op 19 met 19 oan	el 20 mán, laga destada por por esta francia esta proposada destada como consecuente de seu da como consecuent O como como como como como como como com
475	0-4	Alleviate deficiency symptoms	Bronze, both sexes	Sullivan, 1964
Manganese, mg/kg				
30	0-8	Growth, alleviation of perosis	Bronze, both sexes	Ringrose et al., 1939
22 60	0-5 0-4	Growth, tissue levels Growth	Large White, males Bronze, both sexes	Woerpel and Balloun, 1964 Kealy and Sullivan, 1966
Zinc, mg/kg				
66	0-3	Growth, deficiency symptoms	Bronze, both sexes	Kratzer et al., 1958
70	0 - 4	Growth, deficiency symptoms	Bronze, both sexes	Sullivan, 1961
63	0-3	Growth, deficiency symptoms	Medium White, both sexes	Supplee et al., 1961
41	0-3	Growth, blood level	Large White, both sexes	Dewar and Downie, 1984
Selenium, mg/kg		~ J 4		Scott et al., 1965
0.28 0.20	0-4 0-5	Gizzard myopathy Gizzard myopathy	Bronze, both sexes Large White, both sexes	Cantor and Moorehead, 1977
0.23	18-38	Hatchability, poult mortality	Large White, both sexes	Cantor et al., 1978
Vitamin A, IU/kg		or respondent to the control of the		alidaktideliteria et tarmiteta elittama en m
5,065	0 - 4	Growth	Bronze, both sexes	Almquist, 1953
2,642	30 - 48	Poult yield	Large White, females	Stoewsand and Scott, 1961
5,280	0-8	Maintain liver levels of vitamin A	Large White, both sexes	0 1 1 1071
4,721	0-12	Growth, liver storage of vitamin A	Large White, both sexes	Couch et al., 1971
2,000 5,000	$\begin{array}{c} 0 - 12 \\ 0 - 12 \end{array}$	Growth Growth, liver storage of vitamin A	Large White, males Large White, males	Prinz et al., 1983 Prinz et al., 1986
Vitamin D, IU/kg		the resident and solution of vicinity		
700	0-12	Growth	Bronze, both sexes	Baird and Greene, 1935
800	0-4	Growth, bone ash	Small White, both sexes	Hammond, 1941
2,000	0-4	Growth, bone ash	Large White, both sexes	Sanford and Jukes, 1944
300	0-4	Growth, bone ash	Large White, both sexes	Stadelman et al., 1950
1,100	0-4	Growth, toe ash	Large White, both sexes	Neagle et al., 1968
Vitamin E, IU/kg	0.4	Countly minerard accountly	Propose both	Coatt at al. 1005
11	0-4	Growth, gizzard myopathy	Bronze, both sexes	Scott et al., 1965
50 275	0-4 $16-19$	Gizzard myopathy Meat oxidative stability	Large White, both sexes Large White, females	Cantor and Moorehead, 1977 Sheldon, 1984
Vitamin K, mg/kg	MANAGEMENT OF THE PARTY OF THE	A CONTROL OF THE PROPERTY OF T		nakundarin da
176	0-4	Prothrombin time	Bronze, both sexes	Griminger, 1957

Nutrient and Estimated	Age Period (Days)	Response Criteria	Breed	References
Requirement				
Riboflavin, mg/kg				
2.7	0–6	Growth, deficiency symptoms	Bronze, both sexes	Patrick et al., 1944
3.75	0–4	Growth, deficiency symptoms	Bronze, both sexes	Bird et al., 1946
4.0	0–6	Growth, deficiency symptoms	Bronze and Large White, both sexes	Jukes et al., 1947
4.0	0–3	Erythrocyte glutathione reductase and liver flavin	Medium White, both sexes	Lee, 1982
>3.50	0–3	Growth, leg paralysis	Large White, both sexes	Ruiz and Harms, 1989a
Pantothenic acid, mg/kg				
10.5	1–3	Growth, dermatitis	Bronze, both sexes	Kratzer and Williams, 1948b
<8.6	0–3	Growth	Large White, both sexes	Ruiz and Harms, 1989b
Niacin, mg/kg				
71.5	0–2	Growth, enlarged hocks	Bronze, both sexes	Scott, 1953
21	4–12	Growth, leg disorders	Large White, both sexes	Christmas et al., 1986
44	0–3	Growth, leg disorders	Large White, both sexes	Ruiz and Harms, 1989b
Vitamin B ₁₂ , mg/kg				
0.002-0.010	0–4	Growth	Bronze, both sexes	Sherwood and Sloan, 1954
0.003	0–6	Growth	Small White, both sexes	Johnson, 1955
Choline, mg/kg			56.165	
2.000	0-2	Perosis	Not specified	Jukes, 1940
1,900	0-6	Perosis	Not specified	Evans, 1943
	10–24		Bronze, females	
2,300		Growth	,	Slinger et al., 1946
<1,490	0–3	Growth	Large White, both sexes	Harms and Miles, 1984
<1,250	4–8	Growth	Large and Medium White, both sexes	Blair et al., 1986
Biotin, mg/kg				
0.284	0–3	Growth, deficiency symptoms	Bronze, both sexes	Jensen and Martinson, 1969
0.275-0.324	0–3	Growth, deficiency symptoms	Bronze, both sexes	Dobson, 1970
0.225-0.275	0–3	Growth, deficiency symptoms	Bronze, both sexes	Dobson, 1970
0.220 Folic acid, mg/kg	0–8	Growth	Large White, males	Krueger et al., 1976
0.8	0–6	Growth, anemia prevention	Bronze, both sexes	Jukes et al., 1947
2.0 Thiamin, mg/kg	0–3	Growth, cervical paralysis	Jersey Buff, both sexes	Russell et al., 1947
2.0	0–3	Growth, symptoms of	Bronze, both sexes	Robenalt, 1960
1.6-2.0	0–3	deficiency Growth	Bronze, both sexes	Sullivan et al., 1967
Pyridoxine, mg/kg				
2.0-3.0	0-3	Growth	Not specified	Kratzer et al., 1947
3.9-4.4	0–4	Growth, survival	Bronze, both sexes	Sullivan et al., 1967

TABLE A-7 Documentation of Nutrient Requirements of Turkey Breeders

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
Protein, % 15	32–52	Poult yield	Large White, females	Jensen and McGinnis,
15	30–48	Poult yield	Large and Small White, females	1961 Atkinson et al., 1970
10	30–46	Poult yield	Large White, females	Minear et al., 1972
18	32–48	Poult yield egg weight	Large White, females	Menge et al., 1979
14	17–20	Egg production	Large White, females	Meyer et al., 1980a
14	20–32	Egg production	Large White, females	Meyer et al., 1980a
12	12–28	Semen production	Large White, males	Meyer et al., 1980b
14	28-56	Egg production	Large White, females	Meyer et al., 1980a
10	30-41	Poult yield	Large White, females	Meyer et al., 1980b
8	28-53	Semen production	Large White, males	Cecil, 1982
16	32-48	Poult yield	Large White, females	Bougon et al., 1985
Protein, g/bird daily		,	,	,
26	32-60	Poult yield	Small White, females	Jackson et al., 1974
Linoleic acid, %		,		
1.21	24-55	Egg production,	Large White, females	Cooper and Barnett,
		hatchability		1968
1.1	30–55	Poult yield	Large White, females	Whitehead and Herron, 1988
Calcium, %				
1.75	26–54	Poult yield	Bronze, females	Jensen et al., 1963
2.0	30–48	Poult yield	Large White, females	Balloun and Miller, 1964b
1.9	30–47	Egg production	Bronze, females	Atkinson et al., 1967a
2.66	30–47	Egg production	Large White, females	Atkinson et al., 1967a
3.19	30–47	Egg production	Bronze, females	Atkinson et al., 1967a
2.25	30–46	Poult yield	Large White, females	Arends et al., 1967
1.2	0–4	Growth	Large White, males	Neagle et al., 1968
2.5	33–53	Poult yield	Small White, males	Potter et al., 1974
2.55	30–50	Poult yield	Large White, females	Waldroup et al., 1974b
Nonphytate phosphorus, %		~		
0.42	30–42	Poult yield	Small White, females	Ferguson et al., 1974
0.30	30–50	Poult yield	Large White, females	Waldroup et al., 1974
0.55 0.30	30–45 30–50	Poult yield Fertility	Small White, females Medium White, females	Atkinson et al., 1976 Slaugh et al., 1989
Manganese, mg/kg 60	30–46	Poult yield	Bronze, females	Atkinson et al., 1967b
Vitamin A, IU/kg	50 10	1 out yield	Bronze, remaies	rumbon et un, 19076
2,200–3,520	30–48	Hatchability, poult survival	Bronze, females	Jensen, 1965
Vitamin D, IU/kg				
1,000	32–40	Poult yield	Bronze, females	Wilhelm et al., 1941
<750	31–40	Poult yield	Large White, females	Kramer and Waibel, 1978
300–400	41–53	Poult yield	Large White, females	Kramer and Waibel, 1978
900	29–35	Adequate poult yield but inadequate liver storage	Large White, females	Stevens et al., 1984
Vitamin E, IU/kg 24	32–54	Poult yield	Bronze, females	Jensen and McGinnis, 1957
Riboflavin, mg/kg 3.50 Pantothenic acid, mg/kg	Not specified	Poult yield	Bronze, females	Boucher et al., 1942
16.0	Various	Poult yield, survival	Bronze, females	Kratzer et al., 1955
Niacin, mg/kg 23.6 Choline, mg/kg	32–48	Egg weight, poult yield	Large White, females	Harms et al., 1988
<990	32–46	Poult yield	Bronze and Large White, females	Balloun and Miller, 1964a
<1,230 Biotin, mg/kg	32–54	Poult yield	Small White, females	Ferguson et al., 1975
>0.105 <0.150	30–46 Not specified	Poult yield Poult yield	Large White, females Large and Medium	Waibel et al., 1969 Arends et al., 1971
0.160	27–34	Egg biotin (albumen)	White, females Medium White, females	White et al., 1987
Folic acid, mg/kg			101114100	
0.7	32-48	Poult yield	Bronze, females	Kratzer et al., 1956a
1.23	32–48	Poult yield, survival	Large White, females	Miller and Balloun, 1967

TABLE A-8 Documentation of Nutrient Requirements of Geese

Nutrient and Estimated	Age Period (Days)	Response Criteria	Breed	References
Requirement				
Protein, % 24	0–6	Growth	White Chinese	Roberson and Francis, 1963a
12	6–16	Growth	White Chinese	Roberson and Francis,
24	0–4	Growth	White Chinese	Roberson and Francis, 1963b
16	4–12	Growth	White Chinese	Roberson and Francis, 1963b
20	0–4	Growth, feathering	Embden	Allen, 1981
16	4–6	Growth, feathering	Embden	Allen, 1981
14	4–9	Growth, feathering	Embden	Allen, 1981
18.2	0–2	Growth, feed efficiency	Not specified	Nitsan et al., 1983
12.0	2–7	Growth, feed efficiency	Not specified	Nitsan et al., 1983
18	0-3	Growth, carcass yield,	Embden	Summers et al., 1987
10	0–3	carcass composition	Elliodell	Summers et al., 1967
16	0–9	Growth, carcass yield, carcass composition	Embden	Summers et al., 1987
Lysine, %				
0.90	1-2 and 3-7	Growth	White Chinese	Roberson and Francis, 1966
1.10	0-4	Growth	Not specified	Mateova et al., 1980
0.85	4–8	Growth	Not specified	Mateova et al., 1980
1.07	0-2	Growth, feed efficiency	Not specified	Nitsan et al., 1983
0.60	2–7	Growth, feed efficiency	Not specified	Nistan et al., 1983
	2-7	Growth, feed efficiency	Not specified	Nistan et al., 1985
Methionine, % 0.40	0–3	Growth, feed efficiency, carcass composition	White Italian	Znaniecke et al., 1975
0.29	0–2	Growth, feed efficiency	Not specified	Nitsan et al., 1983
0.15	2–7	Growth, feed efficiency	Not specified	Nitsan et al., 1983
	2-7	Growth, reed efficiency	Not specified	Misan et al., 1965
Methionine + cystine, %	0. 2	C 41 C 1 CC :	WI '4 To 1'	7 1 4 1 1075
0.73	0–3	Growth, feed efficiency, carcass composition	White Italian	Znaniecka et al., 1975
0.58	0–2	Growth, feed efficiency	Not specified	Nitsan et al., 1983
0.47 Calcium, %	2–7	Growth, feed efficiency	Not specified	Nitsan et al., 1983
0.4 Total phosphorus, %	0–4 and 0–6	Growth, bone ash	Pilgrim	Aitken et al., 1958
0.46 Riboflavin, mg/kg	0-4 and 0-6	Growth, bone ash	Pilgrim	Aitken et al., 1958
3.8	0–2	Growth	Embden	Serafin, 1981
Pantothenic acid, mg/kg 12.6	0–3	Growth, mortality	Embden	Serafin, 1981
Niacin, mg/kg	0.2	C 4 :	NI 4 'C' 1	D 46 4 1 1053
66	0-3	Growth, perosis	Not specified	Battig et al., 1953
31.2	0–3	Growth	Embden	Serafin, 1981
Choline, mg/kg 1530	0–3	Growth, perosis	Embden	Serafin, 1981
Choline, niacin, folic acid Not determined but	0–2	Growth, liveability	Toulouse	Briggs et al., 1953

TABLE A-9 Documentation of Nutrient Requirements of Ducks

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
Protein, %	0.2	C 4	W/I '- D 1 '	D 1072
22	0-2	Growth	White Pekin	Dean, 1972a
6	2–7	Growth	White Pekin	Dean, 1972a
8	0–2	Growth	White Pekin	Wilson, 1975
6	2 to market	Growth	White Pekin	Wilson, 1975
9	0–2	Growth	White Pekin	Siregar et al., 1982
6	3–8	Growth	White Pekin	Siregar et al., 1982
arginine, %				,
.08	1–3	Growth, feed efficiency	Mule	Chen and Shen, 1979
soleucine, %				, , , , , , , , , , , , , , , , , , , ,
0.63	1–3	Growth, feed efficiency	Mule	Yu and Shen, 1984
eucine, %	1 3	Growth, reed efficiency	Mule	Tu una Shen, 1904
	1 2	C	Marla	V 1 Cl 1004
.26	1–3	Growth, feed efficiency	Mule	Yu and Shen, 1984
ysine, %	P " '	0 4	N	1 1 111 : 1065
.60	Fattening	Growth	Not specified	Jeroch and Hennig, 1965
.90	0–8	Growth, Plasma lysine	Pekin	Gazo et al., 1970
64	3–6	Growth	Muscovy	Leclerq and Carville, 1977
55	6-10	Growth	Muscovy	Leclerg and Carville, 1977
06	1–3	Growth, feed efficiency	Mule	Chen and Shen, 1979
0.70	1–3	Growth, feed efficiency	Pekin	Adams et al., 1983
lethionine, %	± /	Growin, reed efficiency	1 CKIII	7 Mains Ct al., 1703
	0.15	Consth	D-1-i	D 10/7
45	0–1.5	Growth	Pekin	Dean, 1967
.30	3–6	Growth	Muscovy	Leclerq and de Carville,
				1977a
.25	6-10	Growth	Muscovy	Leclerq and de Carville,
			,	1977a
.40	0-2	Growth	Pekin	Elkin et al., 1986
lethionine + cystine, %				
60	0-1.5	Growth	Pekin	Dean, 1967
60	3–6	Growth	Muscovy	Leclerq and de Carville,
		~ .		1977a
55	6–10	Growth	Muscovy	Leclerq and de Carville,
				1977a
.70	0–2	Growth	Pekin	Elkin et al., 1986
ryptophan, %				,
.23	1–3	Growth, feed efficiency	Mule	Wu et al., 1984
aline, %	1 3	Growth, reed criticioney	Mule	w a et al., 1964
.78	1–3	Crayth food officionay	Mule	Viv and Chan 1004
	1-3	Growth, feed efficiency	Mule	Yu and Shen, 1984
alcium, %	0.0	o 1 0 1 or :	n. 1 ·	B 1 1065
.56	0–8	Growth, feed efficiency,	Pekin	Dean et al., 1967
		bone ash		
.58	Ducklings	Growth, bone ash	Pekin	Dean, 1972b
00	Ducklings	Growth	Taiwan	Su, 1977
75	Sexually mature	Egg production	Taiwan	Su, 1977
onphytate phosphorus, %	Seriami, matare	288 production	1 41 11 411	54, 1577
.60	0–4	Growth, bone ash	Pekin	Door 1072a
				Dean, 1972a
05	Sexually mature	Egg production	Taiwan	Su, 1977
40	0–3	Growth	Muscovy	Leclerq and de Carville,
				1979
.22	3–6	Growth	Muscovy	Leclerq and de Carville,
				1979
.18	6–10	Growth	Muscovy	Leclerg and de Carville,
· -		- 10		1979
34	0-3	Growth, bone ash	Mule	Lin and Shen, 1979
	0-3	Giowiii, boile asii	IVIUIC	Liii and Shell, 1979
odium chlorine, %	0.7	0 4 5 5 7	D.I.	D 1050
14	0–7	Growth, liveability	Pekin	Dean, 1972a
12	0–7	Growth, liveability	Pekin	Dean, 1972a
lagnesium, mg/kg		-		
00	0–2	Growth, brain alkaline	Pekin	Van Reen and Pearson,
		phosphatase		1953
anganese, mg/kg		1 F		
)	0-3	Growth	Mule	Wu and Shen, 1978
	U -J	Glowin	Muic	w u and onell, 1970
inc, mg/kg	0.2	C 4	MI	W 101 1070
3	0–3	Growth	Mule	Wu and Shen, 1978
elenium, mg/kg				
14	0–7	Growth, liveability,	Pekin	Dean and Combs, 1981
		glutathione peroxidase		,
20	0–7	Growth liveability	Pekin	Dean and Combs, 1981
	· /	glutathione peroxidase	1 41111	Domi and Comos, 1701
		gratatinone peroxidase		
itamin D ₃ , IU/kg	0.2	P 1	D. L.	P % . 1 1041
00	0–3	Bone ash	Pekin	Fritz et al., 1941
00	0–3	Bone ash	Pekin and Indian	Motzok and branion, 1946
			Runner	·

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	Breed	References
Vitamin E, IU/kg				_
9	0–4	Myopathy of heart muscle and smooth muscle of intestines	Pekin	Jager, 1972
Vitamin K, mg/kg				
0.5	0–2	Prothrombin time	Pekin	Dean, 1972
Riboflavin, mg/kg				
3	0–7	Growth	Pekin	Fritz et al., 1939
4	0.5–2	Growth	Pekin	Hegsted and Perry, 1948
Pantothenic acid, mg/kg				
11	0.5–2	Growth	Pekin	Hegsted and Perry, 1948
Niacin, mg/kg				
52	0–2	Growth, leg development	Pekin	Heuser and Scott, 1953
45	0–3	Growth, feed efficiency	Mule	Wu et al., 1984
Pyridoxine, mg/kg		•		
2.5	0.5–3 or longer	Growth, hemoglobin, hematocrit	Pekin	Hegsted and Rao, 1945

TABLE A-10 Documentation of Nutrient Requirements of Pheasants

Nutrient and Estimated Requirement			Breed	References	
Metabolizable energy, kcal/kg					
2,700	Sexually mature	Egg production, egg weight, feed efficiency, mortality	Ring-neck	Monetti et al., 1982	
Protein, %		,,,			
26	0 - 3	Growth	Ring-neck	Scott et al., 1954	
24	3 – 5	Growth	Ring-neck	Scott et al., 1954	
26	0 - 4	Growth, feed efficiency	Ring-neck	Scott et al., 1963	
24	0 - 8	Growth, feathering, liveability	Chinese	Woodard et al., 1977	
20	8 – 16	Growth, feathering, liveability	Chinese	Woodard et al., 1977	
12	After 16	Growth, feathering, liveability	Chinese	Woodard et al., 1977	
28	0 - 4	Growth	Ring-neck	Fuentes, 1981	
28	0 - 4	Growth, feed efficiency	Ring-neck	Warner et al., 1982	
19	8 – 17	Growth, feathering, feed efficiency, liveability	Ring-neck	Cain et al., 1984	
15	Sexually mature	Egg production, fertility, hatchability	Ring-neck	Monetti et al., 1985	
Methionine, %		Ť			
0.48	0 - 4	Growth	Ring-neck	Fuentes, 1981	
Methionine + cystine, %					
0.94	0 - 4	Growth	Ring-neck	Fuentes, 1981	
Calcium, %					
0.93	0 - 5	Growth, bone ash	Ring-neck	Scott et al., 1958a	
0.53	5 - 14	Growth, bone ash	Ring-neck	Scott et al., 1958a	
0.90	0 - 5	Growth, bone ash	Ring-neck	Hinkson et al., 1971	
1.2	0 - 8	Growth, bone ash	Ring-neck	Reynnells, 1979	
2.1	Sexually mature	Egg production, shell quality, bone ash	Ring-neck	Reynnells, 1979	
2.0	Sexually mature	Egg production, fertility, hatchability, body weight	Ring-neck	Wise and Ewins, 1980	
Total phosphorus, %					
0.98	0 - 4	Growth, bone ash	Ring-neck	Sunde and Bird, 1956	
0.7	0 - 5	Growth, bone ash	Ring-neck	Scott et al., 1958a	
0.48	5 – 14	Growth, bone ash	Ring-neck	Scott et al., 1958a	
Nonphytate phosphorus, %					
0.6	0 - 8	Growth, bone ash	Ring-neck	Reynnells, 1979	
0.6	Sexually mature	Egg production bone ash	Ring-neck	Reynnells, 1979	
Sodium, % 0.22	0 - 4	Growth, liveability	Ring-neck	Scott et al., 1960	
Manganese, mg/kg 70	0 - 5	Growth, bone development	Ring-neck	Scott et al., 1959	
Zinc, mg/kg	0-3	Growth, bone development	Killg-licck	Scott et al., 1939	
62	0 – 5	Growth, feather and bone development	Ring-neck	Scott et al., 1959	
120 Vitamin D ₃ , IU/kg	0 – 3	Growth, feather development	Ring-neck	Cook et al., 1984	
1,500 Riboflavin, mg/kg	0 – 5	Growth, bone ash	Ring-neck	Scott et al., 1958a	
3.4	0 – 5	Growth, feather and bone development	Ring-neck	Scott et al., 1959	
Pantothenic acid, mg/kg 10	0 - 4	Growth, feather and bone development	Ring-neck	Scott et al., 1964	
Niacin, mg/kg	0 4	C	Din 1	C J J Di J 1057	
50	0 - 4	Growth, bone development	Ring-neck	Sunde and Bird, 1957	
70	0 - 5	Growth, feathering and bone development	Ring-neck	Scott et al., 1959	
Choline, mg/kg					
1,430	0 - 5	Growth, feather and bone	Ring-neck	Scott et al., 1959	
		development	-	•	

TABLE A-11 Documentation of Nutrient Requirements of Japanese Quail

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	References
Protein, %	0.25		W.1 1D 11 10/7
24 24	0–35 0–42	Growth, protein retention Growth	Weber and Reid, 1967 Lepore and Marks, 1971
26	0-35	Growth, feed efficiency	Vogt, 1969
25	0–28	Growth	Vohra and Roudybush, 1971
20	Sexually mature	Egg production, egg weight, feed efficiency	Begin and Insko, 1972
20	Sexually mature	Egg production	Lee et al., 1977
28.4	Sexually mature	Egg production	Sakurai, 1979
16	Sexually mature, peak egg	Egg production, egg yield, body weight	Allen and Young, 1980
24	production Sexually mature	Not specified	Sakurai, 1981
20	Sexually mature	Egg production	Shim and Lee, 1982
24	0–28	Growth, carcass characteristics	Steigner, 1990
Arginine, %			
1.25	0–10	Growth	Young et al., 1978
1.13	Sexually mature	Egg production, body weight, egg weight	Allen and Young, 1980
Glycine, %			
1.74	0-21	Growth	Svacha et al., 1970
1.17 Glycina + sarina %	21–35	Growth	Svacha et al., 1970
Glycine + serine, % 1.14	0–10	Growth	Young et al., 1978
Histidine, %	· - ·		- 0000 00 000, 1770
0.36	0-10	Growth	Young et al., 1978
0.38	Sexually mature	Egg production, body weight, egg weight	Allen and Young, 1980
Isoleucine, %	0.10	C 4	V (1 1070
0.98 0.81	0–10 Sexually mature	Growth Egg production, body weight,	Young et al., 1978 Allen and Young, 1980
0.81	Sexually mature	egg yield	Affell and Tourig, 1980
Leucine, %		688 J.C.U	
1.69	0–10	Growth	Young et al., 1978
1.28	Sexually mature	Egg production, body weight,	Allen and Young, 1980
Lysine, %		egg weight	
1.37	0–21	Growth	Svacha et al., 1970
1.2	21–35	Growth	Svacha et al., 1970
1.15	0-10	Growth	Young et al., 1978
0.86	Sexually mature	Egg production	Allen and Young, 1980
0.97	Sexually mature	Egg production	Shim and Lee, 1984
Methionine, % 0.43	0–10	Growth	Young et al., 1978
0.37	Sexually mature	Egg production, body weight,	Allen and Young, 1980
		egg yield	3, 111
0.48	0–35	Growth, feed efficiency, feather development, carcass yield	Shrivastav and Panda, 1987
0.27	Sexually mature	Egg production	Shim and Lee, 1988
0.39	Sexually mature	Egg production, feather loss	Shim and Lee, 1989
Methionine + cystine, %	0.21	C 4	6 1 4 1 1070
0.74 0.72	0–21 21–35	Growth Growth	Svacha et al., 1970 Svacha et al., 1970
0.72	0-10	Growth	Young et al., 1978
0.68	Sexually mature	Egg production, body weight,	Allen and Young, 1980
0.75	0–35	egg yield Growth, feed efficiency, feather	Shrivastav and Panda, 1987
0.72	Cavually maters	development, carcass yield	Chim and Log 1000
0.72 0.71	Sexually mature Sexually mature	Egg production Egg production, feather loss	Shim and Lee, 1988 Shim and Chen, 1989
Phenylalanine + tyrosine, %	Sexually mature	255 production, reduier 1055	Simil und Chen, 1707
1.79	0–10	Growth	Young et al., 1978
1.25	Sexually mature	Egg production, body weight,	Allen and Young, 1980
Threonine %		egg yield	
Threonine, % 1.02	0–10	Growth	Young et al., 1978
0.67	Sexually mature	Egg production, body weight,	Allen and Young, 1980
T 1 0/	- -	egg yield	<u>-</u> -
Tryptophan, %	0.10	Constant	V
0.22 0.17	0–10 Sexually mature	Growth Egg production, body weight,	Young et al., 1978 Allen and Young, 1980
0.17	Sexually mature	egg yield	Ancii and Toung, 1700
Valine, %		-00 ,	
0.95	0–10	Growth	Young et al., 1978
0.83	Sexually mature	Egg production, body weight, egg yield	Allen and Young, 1980

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	References
Calcium, %			
2.5 0.80	Sexually mature 0–14	Egg production, hatchability Growth, bone ash, calcium and	Nelson et al., 1964 Consuegra and Anderson, 1967
0.48	14–28	phosphorus retention Growth, bone ash, calcium and phosphorus retention	Consuegra and Anderson, 1967
0.44	0–35	Growth, feed efficiency, bone ash, liveability	Miller, 1967
0.70 Nonphytate phosphorus, %	0–21	Growth, bone ash	Bisoi et al., 1980
0.6 0.30	Sexually mature 0–28	Egg production, hatchability Growth, bone ash, calcium and phosphorus retention	Nelson et al., 1964 Consuegra and Anderson, 1967
0.3 Sodium chlorine, %	0–21	Growth, bone ash	Bisoi et al., 1980
0.15 0.10 Magnesium, mg/kg	0–28 8–35	Growth Growth, liveability, adrenal weight	Scott et al., 1960 Lumijarvi and Vohra, 1976
300	0–14	Growth, liveability, hemoglobin, tibia ash	Harland et al., 1976
150 mg Iron, mg/kg	0–14	Growth, liveability	Vohra, 1972b
120	0–28	Growth, hemoglobin, feathering, bone ash	Harland et al., 1973
Copper, mg/kg <5	0–28	Growth, hemoglobin, feathering, bone ash	Harland et al., 1973
Manganese, mg/kg <12	0–28	Growth, hemoglobin, feathering, bone ash	Harland et al., 1973
Zinc, mg/kg 25	0–28	Growth, feathering, tibia ash, liveability	Spivey-Fox and Jacobs, 1967
Selenium, mg/kg 0.1 Iodine, mg/kg	0–42	Growth, liveability	Thompson and Scott, 1967
0.3 Vitamin A, IU/kg	0–28	Growth, thyroid weight	Scott et al., 1960
1,650 3,300 825 1,000 3,200	7–56 Sexually mature 0–14 0–10 Sexually mature	Growth, liveability Hatchability Growth Growth, liver vitamin A Hatchability, liveability, vitamin A	Shellenberger and Lee, 1966 Shellenberger and Lee, 1966 Ramachandran and Arscott, 1974 Parrish and Al-Hasani, 1983 Parrish and Al-Hasani, 1983
Vitamin D, IU/kg		in yolk	
480 750 Thiamine, mg/kg	0–21 0–14	Bone ash, plasma calcium Growth	Shue, 1967 Ramachandran and Arscott, 1974
6 1.2	0–14 0–35	Growth Growth, liveability	Ramachandran and Arscott, 1974 Mak and Vohra, 1982
Niacin, mg/kg 40 15	0–14 0–35	Growth Growth, viability	Ramachandran and Arscott, 1974 Mak and Vohra, 1982
Pantothenic acid, mg/kg 40	0–7	Growth, feather development,	Spivey-Fox et al., 1966
10	7–35	dermatitis Growth, feather development, dermatitis	Spivey-Fox et al., 1966
10 15 23	0–35 Sexually mature 0–14	Growth, feather development Fertility, hatchability Growth	Cutler and Vohra, 1967 Cutler and Vohra, 1967 Ramachandran and Arscott, 1974
Riboflavin, mg/kg 3 2 Chalina mg/kg	0–14 0–35	Growth Growth, viability	Ramachandran and Arscott, 1974 Mak and Vohra, 1982
Choline, mg/kg 2,500 2,090 1,045–2,090 1,300	0–28 Sexually mature Sexually mature 0–14	Growth, feed efficiency Egg weight Body weight, liver lipids Growth	Vogt, 1970 Latshaw and Jensen, 1971 Latshaw and Jensen, 1972 Ramachandran and Arscott, 1974
Folacin, mg/kg 0.36 Pyridoxine, mg/kg	Not specified	Growth, liveability	Wong et al., 1977
Рупаохіне, mg/кg 6 1,25	0–14 0–35	Growth Growth, viability	Ramachandran and Arscott, 1974 Mak and Vohra, 1982

TABLE A-12 Documentation of Nutrient Requirements of Bobwhite Quail

Nutrient and Estimated Requirement	Age Period (Days)	Response Criteria	References
Metabolizable energy, kcal/kg			
2,850-3,170	0-5	Growth, energy consumption, feed efficiency	Wilson et al., 1977
Protein, %			
28	0–8	Growth, liveability	Baldini et al., 1950
20	0–6	Growth, liveability	Baldini et al., 1953
26.5	0–4	Growth, feed efficiency, feathering	Scott et al., 1963
28	0–6	Growth	Andrews et al., 1973
20	6–9	Growth	Andrews et al., 1973
26	0-5	Growth, feed efficiency	Serafin, 1977
24	0-5	Growth, feed efficiency	Serafin, 1982
Methionine + cystine, %			
1.0	0-5	Growth	Serafin, 1982
Calcium, %			
0.65	0–6	Growth, liveability, bone ash	Wilson et al., 1972
2.3	Sexually mature	Egg production, eggshell thickness, fertility, hatchability	Dewitt et al., 1949
2.4	Sexually mature	Egg production, eggshell thickness, fertility	Cain et al., 1982
Nonphytate phosphorus, %			
0.8	Sexually mature	Egg production, fertility, hatchability, liveability of offspring	Dewitt et al., 1949
0.40	0–6	Growth, liveability, tibia ash	Scott et al., 1958b
0.28	6–12	Growth, liveability, bone ash	Scott et al., 1958b
0.45	0–6	Growth, liveability, bone ash	Wilson et al., 1972
0.35	0–6	Growth, bone ash	Powell et al., 1974
>0.70	Sexually mature	Egg production, egg shell thickness, fertility	Cain et al., 1982
Vitamin A, IU/kg	•		
8,800	0-10	Growth, liveability	Nestler, 1946
13,200	Sexually mature	Reproduction, survival of offspring	Nestler, 1946
Riboflavin, mg/kg	•		
3.8	0-5	Growth, feed efficiency, liveability	Serafin, 1974
Pantothenic acid, mg/kg			
10	0–4	Growth, liveability, feathering, leg development	Scott et al., 1964
12.6	0-5	Growth, feed efficiency, liveability	Serafin, 1974
Niacin, mg/kg		• •	
31	0-5	Growth, feed efficiency, liveability	Serafin, 1974
Choline, mg/kg			•
1,500	0-5	Growth, feed efficiency, liveability	Serafin, 1974

TABLE B–1 Estimating the Energy Value (kcal/kg dry matter) of Feed Ingredients from Proximate Composition (components as percentage of ingredient unless otherwise noted)

percentage of ingredient unless otherwise noted)		
Ingredient	Prediction Equation	Reference
Cereal grains and milling by-products	•	
Corn grain	$ME_{\rm n} = 36.21 \times CP + 85.44 \times EE + 37.26 \times NFE$	Janssen, 1989
Sorghum (tannin <0.4%)	$ME_{\rm n}^{\rm n} = 31.02 \times CP + 77.03 \times EE + 37.67 \times NFE$	Janssen, 1989
Sorghum (tannin >1.0%)	$ME_{\rm n} = 21.98 \times CP + 54.75 \times EE + 35.18 \times NFE$	Janssen, 1989
Sorghum	$ME = 3,152 - 357.79 \times \text{tannic acid}$	Gous et al., 1982
Sorghum	$ME_n = 38.55 \times DM - 394.59 \times \text{tannic acid}$	Janssen, 1989
Sorghum	$ME = 3,062 + 887 \times CF - 202.5 \times (CF)^2$	Moir and Connor, 1977
Sorghum	$ME = 4,412 - 90.34 \times ADF$	Moir and Connor, 1977
Sorghum	$ME = 3,773 + 65.73 \times APF - 3.272 \times (APF)^2$	Moir and Connor, 1977
Triticale	$ME_{\rm p} = 34.49 \times CP + 62.16 \times EE + 35.61 \times NFE$	Janssen, 1989
Wheat	$ME_n = 34.92 \times CP + 63.1 \times EE + 36.42 \times NFE$	Janssen, 1989
Polished rice, rice polishings	$ME_n = 46.7 \times DM - 46.7 \times ash - 69.55 \times CP +$	Janssen, 1989
1 offshed fiee, fiee polishings	$42.95 \times EE - 81.95 \times CF$	Janssen, 1707
Rice bran, solvent extracted	$ME_n = 46.7 \times DM - 46.7 \times ash - 69.54 \times CP +$	Janssen, 1989
Rice bian, solvent extracted	$42.94 \times EE - 81.95 \times CF$	Janssen, 1707
Piaa praduats		Janesan et al. 1070
Rice products	$ME_n = 4,759 - 88.6 \times CP - 127.7 \times CF + 52.1 \times EE$ $ME_n = 24.40 \times CP + 76.1 \times EE + 27.67 \times NEE$	Janssen et al., 1979
Bakery by-product	$ME_n = 34.49 \times CP + 76.1 \times EE + 37.67 \times NFE$	Janssen, 1989
Dried bakery products	$TME_n = 4,340 - 100 \times CF - 40 \times ash - 30 \times CP + 10 \times FE$	Dale et al., 1990
Wheat middlings wheat hear	10 × EE ME = 40.1 × DM 40.1 × och 165.20 × CE	Janasan 1000
Wheat and wheat products (foods in most form)	$ME_n = 40.1 \times DM - 40.1 \times \text{ash} - 165.39 \times CF$	Janssen, 1989
Wheat and wheat products (feeds in meal form)	$ME_{\rm n} = 3,985 - 205 \times CF$	Janssen et al., 1979
Wheat and wheat products (feeds in pellet form)	$ME_n = 3,926 - 181 \times CF$	Janssen et al., 1979
Barley and barley products	$ME_n = 3,078 - 90.4 \times CF + 9.2 \times STA$	Janssen et al., 1979
Oats and oat products	$ME_{\rm n} = 2,970 - 59.7 \times CF + 116.9 \times EE$	Janssen et al., 1979
Starch industry by-products	ME = 4.240 24.4 v.CP 150.6 v.CE + 12.5 v.EE	It -l 1070
Corn wet-milling by-products	$ME_n = 4,240 - 34.4 \times CP - 159.6 \times CF + 13.5 \times EE$	Janssen et al., 1979
Corn gluten meal (65% crude protein)	$ME_{\rm n} = 40.94 \times CP + 88.17 \times EE + 33.13 \times NFE$	Janssen, 1989
Corn gluten meal (40% crude protein)	$ME_n = 36.64 \times CP + 73.3 \times EE + 25.67 \times NFE$	Janssen, 1989
Corn gluten feed (20% crude protein)	$ME_n = 42.35 \times DM - 42.35 \times ash - 23.74 \times CP +$	Janssen, 1989
Ci	$28.03 \times EE$ - $165.72 \times CF$	
Sugar industry products	$ME_{\rm n} = 40.01 \times SUG$	Janasan 1000
Beet or cane molasses		Janssen, 1989
Sugar Distillars by products	$ME_{\rm n} = 38.96 \times SUG$	Janssen, 1989
Distillers by-products Brewer's dried grains, corn distillers' dried solubles,	$ME_{\rm n} = 39.15 \times DM - 39.15 \times \text{ash} - 9.72 \times CP$ -	Janeson 1000
	$ME_n = 39.13 \land DM = 39.13 \land dsn = 9.72 \land CF = 63.81 \times CF$	Janssen, 1989
corn distillers' dried grains, corn distillers' dried	03.81 × CF	
grains plus solubles	$ME = 24.06 \times CD \pm 40.92 \times EE \pm 26.01 \times MEE$	Janeson 1000
Yeast, torula	$ME_{\rm n} = 34.06 \times CP + 40.82 \times EE + 26.91 \times NFE$	Janssen, 1989
Dried roots	$ME = 0.62 \times CD + 50.12 \times EE + 27.67 \times NEE$	I 1000
Sweet potatoes (dried)	$ME_n = 8.62 \times CP + 50.12 \times EE + 37.67 \times NFE$ $ME_n = 20.14 \times DM - 20.14 \times csh - 22.78 \times CE$	Janssen, 1989
Tapioca meal (e.g., cassava)	$ME_n = 39.14 \times DM - 39.14 \times \text{ash} - 82.78 \times CF$	Janssen, 1989
Tapioca meal (e.g., cassava)	$ME_{\rm n} = 4,054 - 43.4 \times \text{ash} - 103 \times CF$	Janssen et al., 1979
Oilseeds, oilseed meals, and by-products	$ME = 21.26 \times DM + 47.12 \times EE = 20.95 \times CE$	Janasan 1000
Cottonseed meal, expeller or solvent	$ME_n = 21.26 \times DM + 47.13 \times EE - 30.85 \times CF$	Janssen, 1989
Cottonseed products	$ME_n = 2,153 - 31.8 \times CF + 43.5 \times EE$	Janssen et al., 1979
Peanut meal, expeller or solvent	$ME_n = 29.68 \times DM + 60.95 \times EE - 60.87 \times CF$	Janssen, 1989
Peanut products	$ME_n = 3,072 - 39.1 \times \text{ash} - 47.6 \times CF + 63.7 \times EE$	Janssen et al., 1979
Rapeseed meal, solvent, high glucose	$ME_{\rm n} = 29.73 \times CP + 46.39 \times EE + 7.87 \times NFE$	Janssen, 1989
Rapeseed meal, solvent, double zero	$ME_{\rm n} = 32.76 \times CP + 64.96 \times EE + 13.24 \times NFE$	Janssen, 1989
Soybean meal, expeller	$ME_n = 37.5 \times CP + 70.52 \times EE + 14.9 \times NFE$	Janssen, 1989
Soybean meal, solvent	$ME_{\rm n} = 37.5 \times CP + 46.39 \times EE + 14.9 \times NFE$	Janssen, 1989
Soybean meal (solvent or expeller process)	$ME_n = 2,702 - 57.4 \times CF + 72.0 \times EE$	Janssen et al., 1979
Soybeans, heat treated, meal	$ME_n = 36.63 \times CP + 77.96 \times EE + 19.87 \times NFE$	Janssen, 1989
Soybeans, heat treated, pellet	$ME_{\rm n} = 38.79 \times CP + 87.24 \times EE + 18.22 \times NFE$	Janssen, 1989
Full-fat soybeans (feeds in meal form)	$ME_n = 2,769 - 59.1 \times CF + 62.1 \times EE$	Janssen et al., 1979
Full-fat soybeans (feeds in pellet form)	$ME_{\rm n} = 2,636 - 55.7 \times CF + 82.5 \times EE$	Janssen et al., 1979
Sunflower seeds, unextracted	$ME_n = 36.64 \times CP + 89.07 \times EE + 4.97 \times NFE$	Janssen, 1989
Sunflower products	$ME_n = 3,999 - 189 \times \text{ash} - 58.5 \times CF + 59.5 \times EE$	Janssen et al., 1979
Sunflower, expeller, with hulls	$ME_{\rm n} = 26.7 \times DM + 77.2 \times EE - 51.22 \times CF$	Janssen, 1989
Sunflower, expeller or solvent, decorticated	$ME_n = 6.28 \times DM - 6.28 \times ash + 25.38 \times CP 62.62$	Janssen, 1989
	\times EE	

Products of animal origin Skim milk powder ME _n = 40.94 × $CP + 77.96 \times EE + 19.04 \times NFE$ Janssen, 1989 Meat and bone meal ME _n = 33.94 × $DP + 77.96 \times EE + 19.04 \times NFE$ Janssen, 1989 Meat and bone meal ME _n = 33.94 × $DM - 45.77 \times \text{ash} + 59.99 \times EE$ Janssen, 1989 Herring meal, Norwegian ME _n = 35.87 × $DM - 34.08 \times \text{ash} + 42.09 \times EE$ Janssen, 1989 Blood meal, spray dried ME _n = 33.44 × $CP + 64.96 \times EE$ Janssen, 1989 Blood meal, grund dried ME _n = 31.88 × $CP + 60.32 \times EE$ Janssen, 1989 Blood meal, drum dried ME _n = 31.88 × $CP + 60.32 \times EE$ Janssen, 1989 Poultry offal meal Feather meal (pepsin dig ≥ 80%) ME _n = 33.2 × $CP + 57.53 \times EE$ Janssen, 1989 Poultry offal meal Foultry by-product meal Poultry by-product meal P	Ingredient	Prediction Equation	Reference
Whey, dried, low lactose ME = 38.79 × CP + 77.96 × EE + 19.04 × NFE Janssen, 1989 Meat and bone meal Fish meal (60%, 65%, 67% crude protein) ME = 33.94 × DM = 45.77 × ash + 59.99 × EE Janssen, 1989 Janssen, 1989 Blood meal, spray dried ME = 35.87 × DM - 34.08 × ash + 42.09 × EE Janssen, 1989 Blood meal, spray dried ME = 34.49 × CP + 64.96 × EE Janssen, 1989 Janssen, 1989 Blood meal, drum dried ME = 33.2 × CP + 50.32 × EE Janssen, 1989 Poultry offal meal (pepsin dig ≥ 80%) ME = 33.2 × CP + 57.53 × EE Janssen, 1989 Poultry offal meal ME = 31.02 × CP + 78.87 × EE Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 78.87 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.03 \times CP + 50.841 \times GE$ (kcal/kg dry matter) Pesti et al., 1986 Poultry by-product meal $ME_n = 31.03 \times CP + 50.841 \times GE$ (kcal/kg dry matter) Pesti et al., 1986 Poultry by-product meal $ME_n = 5.060 \cdot 263 \times ash + 491 \times calcium$ Pesti et al., 1986 Poultry by-product meal $ME_n = 5.060 \cdot 263 \times ash + 491 \times calcium$ Pesti et al., 1986 Poultry by-product meal $ME_n = 5.060 \cdot 263 \times ash + 491 \times calcium$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $ME_n = 5.060 \cdot 263 \times ash + 491 \times calcium$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $ME_n = 5.060 \times 263 \times ash + 506 \times phosphorus$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $ME_n = 20.041 \cdot 23.0 \times IV \cdot 319.1 \times C16 \cdot 0 - 153.4 \times C18 \cdot 0$ Pesti et al., 1986 Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $ME_n = 20.041 \cdot 23.0 \times IV \cdot 319.1 \times C16 \cdot 0 - 153.4 \times C18 \cdot 0$ Huyghebaert et al., 1988 Pesti et al., 1988 ME = 20.041 \ 23.0 \times IV \ FR_1) \ 23.0 \times IV \ FR_1) \ 20.0000379 (IV[FR] + FFA]^2 \ Vegetable oils (free fatty acid <50%) $ME_n = 1.0,147.94 + 188.28 \ IV + 155.09 \ FR_1 - 1.6709 \ IV \ FR_1)$ Huyghebaert et al., 1988 ME = 126.694 + 1645 \ IV \ FR_1) \ 20.0000379 (IV \ FR_1)	Products of animal origin		
Meaf and bone meal Fish meal (60%, 65%, 67% crude protein) Herring meal, Norwegian Blood meal, spray dried Blood meal, spray dried Blood meal, drum dried Feather meal (pepsin dig ≥ 80%) Poultry offal meal Poultry offal meal Poultry by-product meal TME _n = 35.87 × BM - 34.08 × ash + 42.09 × EE Janssen, 1989 Poultry offal meal ME _n = 31.02 × CP + 74.23 × EE Janssen, 1989 Janssen, 1989 Janssen, 1989 Janssen, 1989 Poultry by-product meal Poultry by-product meal TME _n = 31.02 × CP + 74.23 × EE Janssen, 1989 Festi et al., 1986 Poultry by-product meal TME _n = 4,070 · 142 × calcium Pesti et al., 1986 Poultry by-product meal TME _n = 4,330 · 61 × ash Poultry by-product meal TME _n = 5,060 · 263 × ash + 491 × calcium Pesti et al., 1986 Poultry by-product meal TME _n = 11,340 · 103 × CP - 327 × calcium Pesti et al., 1986 Poultry by-product meal TME _n = 51 · 154 × calcium - 622 × phosphorus Poultry by-product meal TME _n = 556 · 63 × ash - 506 × phosphorus Poultry by-product meal TME _n = 556 · 63 × ash - 506 × phosphorus Pesti et al., 1986 Poultry by-product meal TME _n = 8,227 · 10,318(-1,1685[Unsaturated:Saturated ratio]) All fats and oils ME _n = 8,227 · 10,318(-1,1685[Unsaturated:Saturated ratio]) ME _n = 20,041 · 23.0 × IV · 319.1 × C16 : 0 · 153.4 × C18 : 0 TME _n = 50.00 · 26 × CP · 110 × ash Poultry by-product meal Poultry by-product meal TME _n = 510 · 154 × calcium - 622 × phosphorus Pesti et al., 1986 Pesti et al., 1988 Pesti et al.,	Skim milk powder	$ME_n = 40.94 \times CP + 77.96 \times EE + 19.04 \times NFE$	Janssen, 1989
Fish meal (60%, 65%, 67% crude protein) Herring meal, Norwegian $ME_n = 35.87 \times DM - 34.08 \times ash + 42.09 \times EE$ Janssen, 1989 Blood meal, spray dried $ME_n = 35.87 \times DM - 34.08 \times ash + 42.09 \times EE$ Janssen, 1989 Blood meal, drum dried $ME_n = 34.49 \times CP + 64.96 \times EE$ Janssen, 1989 Feather meal (pepsin dig ≥ 80%) $ME_n = 31.88 \times CP + 60.32 \times EE$ Janssen, 1989 Poultry offal meal $ME_n = 31.02 \times CP + 75.53 \times EE$ Janssen, 1989 Poultry offal meal, high-fat $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry offal meal, high-fat $ME_n = 31.02 \times CP + 78.87 \times EE$ Janssen, 1989 Poultry by-product meal $TME_n = -725 + 0.841 \times GE$ (kcal/kg dry matter) Pesti et al., 1986 Poultry by-product meal $TME_n = 4.330 - 61 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4.330 - 61 \times ash$ Post et al., 1986 Poultry by-product meal $TME_n = 5.060 - 263 \times ash + 491 \times calcium$ Pesti et al., 1986 Poultry by-product meal $TME_n = 11.340 - 103 \times CP - 327 \times calcium$ Pesti et al., 1986 Poultry by-product meal $TME_n = 11.340 - 103 \times CP - 327 \times calcium$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 110 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 110 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 103 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 103 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 103 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 103 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 103 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 103 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 103 \times ash$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times Pr - 103 \times ash$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal Pou	Whey, dried, low lactose	$ME_n = 38.79 \times CP + 77.96 \times EE + 19.04 \times NFE$	Janssen, 1989
Herring meal, Norwegian Blood meal, spray dried $ME_n = 35.87 \times DM - 34.08 \times ash + 42.09 \times EE$ Janssen, 1989 Blood meal, spray dried $ME_n = 34.49 \times CP + 64.96 \times EE$ Janssen, 1989 Poultry offal meal $ME_n = 31.88 \times CP + 60.32 \times EE$ Janssen, 1989 Poultry offal meal $ME_n = 31.02 \times CP + 57.53 \times EE$ Janssen, 1989 Poultry offal meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 78.87 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 78.87 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 78.87 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 78.87 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 78.87 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.887 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.887 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.887 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 71.03 \times CP + 71.$	Meat and bone meal	$ME_n = 33.94 \times DM = 45.77 \times ash + 59.99 \times EE$	Janssen, 1989
Blood meal, spray dried Blood meal, drum dried $ME_n = 34.49 \times CP + 64.96 \times EE$ Janssen, 1989 Janssen, 1989 Feather meal (pepsin dig ≥ 80%) $ME_n = 31.88 \times CP + 57.53 \times EE$ Janssen, 1989 Poultry offal meal $ME_n = 31.02 \times CP + 77.23 \times EE$ Janssen, 1989 Janssen, 1989 Poultry offal meal, high-fat $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Janssen, 1989 Poultry by-product meal $TME_n = -725 + 0.841 \times GE$ (kcal/kg dry matter) Pesti et al., 1986 Poultry by-product meal $TME_n = -725 + 0.841 \times GE$ (kcal/kg dry matter) Pesti et al., 1986 Poultry by-product meal $TME_n = 4,070 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 5,060 - 263 \times \text{ash} + 491 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,330 - 61 \times \text{ash}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,070 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,040 - 10.04 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 5,060 - 263 \times \text{ash} + 491 \times \text{calcium}$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 5,060 \times \text{calcium} + 622 \times \text{phosphorus}$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 561 - 154 \times \text{calcium} - 622 \times \text{phosphorus}$ Pesti et al., 1986 Pesti et al., 1988	Fish meal (60%, 65%, 67% crude protein)	$ME_n = 35.87 \times DM - 34.08 \times ash + 42.09 \times EE$	Janssen, 1989
Blood meal, spray dried Blood meal, drum dried $ME_n = 34.49 \times CP + 64.96 \times EE$ Janssen, 1989 Feather meal (pepsin dig ≥ 80%) $ME_n = 31.88 \times CP + 60.32 \times EE$ Janssen, 1989 Poultry offal meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry offal meal, high-fat $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $TME_n = -725 + 0.841 \times GE$ (kcal/kg dry matter) Pesti et al., 1986 Poultry by-product meal $TME_n = 4,070 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,070 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,000 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,000 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,000 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,000 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,000 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,000 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 5,060 - 263 \times \text{ash} + 491 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 50.60 \times CP - 1.100 \times CP - 327 \times \text{calcium}$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 51.1340 - 103 \times CP - 327 \times \text{calcium}$ Pesti et al., 1986 Pesti et al., 1988 Pesti et al	Herring meal, Norwegian	$ME_{\rm n} = 35.87 \times DM - 34.08 \times ash + 42.09 \times EE$	Janssen, 1989
Feather meal (pepsin dig ≥ 80%) $ME_n^c = 33.2 \times CP + 57.53 \times EE$ Janssen, 1989 Poultry offal meal $ME_n = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry by-product meal $ME_n = 31.02 \times CP + 78.87 \times EE$ Janssen, 1989 Pesti et al., 1986 Poultry by-product meal $TME_n = -725 + 0.841 \times GE$ (kcal/kg dry matter) Pesti et al., 1986 Poultry by-product meal $TME_n = 4,070 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,070 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 5,060 - 263 \times \text{ash} + 491 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 11,340 - 103 \times CP - 327 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 11,340 - 103 \times CP - 327 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 55.61 - 154 \times \text{calcium} - 622 \times \text{phosphorus}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 55.61 - 154 \times \text{calcium} - 622 \times \text{phosphorus}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 55.61 - 154 \times \text{calcium} - 622 \times \text{phosphorus}$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 55.61 - 154 \times \text{calcium} - 622 \times \text{phosphorus}$ Pesti et al., 1986 Pesti et al.,		$ME_{\rm n} = 34.49 \times CP + 64.96 \times EE$	Janssen, 1989
Poultry offal meal $ME_n^c = 31.02 \times CP + 74.23 \times EE$ Janssen, 1989 Poultry offal meal, high-fat $ME_n = 31.02 \times CP + 78.87 \times EE$ Janssen, 1989 Poultry by-product meal $TME_n = -725 + 0.841 \times GE$ (kcal/kg dry matter) Pesti et al., 1986 Poultry by-product meal $TME_n = 4,330 - 61 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,330 - 61 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,330 - 61 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,330 - 61 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 479 + 89 \times CP - 1,094 \times phosphorus$ Pesti et al., 1986 Poultry by-product meal $TME_n = 11,340 - 103 \times CP - 327 \times calcium$ Pesti et al., 1986 Poultry by-product meal $TME_n = 934 - 69 \times CP - 110 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times phosphorus$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times phosphorus$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times phosphorus$ Pesti et al., 1986 Poultry by-product meal $TME_n = 520,041 - 23.0 \times IV - 319.1 \times C16 : 0 - 153.4 \times C18 : 0$ Janssen et al., 1979 All fats and oils $TE_n = 20,041 - 23.0 \times IV - 319.1 \times C16 : 0 - 153.4 \times C18 : 0$ Janssen et al., 1979 Pound of the fatty acid $TE_n = 20,041 - 23.0 \times IV - 319.1 \times C16 : 0 - 153.4 \times C18 : 0$ Janssen et al., 1988 Presi e	Blood meal, drum dried	$ME_{\rm n} = 31.88 \times CP + 60.32 \times EE$	Janssen, 1989
Poultry offal meal, high-fat Poultry by-product meal $TME_n = 725 + 0.841 \times GE \text{ (kcal/kg dry matter)}$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 4,070 - 142 \times \text{calcium}$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 4,030 - 61 \times \text{ash}$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 5,060 - 263 \times \text{ash} + 491 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 479 + 89 \times CP - 1,094 \times \text{phosphorus}$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 11,340 - 103 \times CP - 327 \times \text{calcium}$ Pesti et al., 1986 Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 934 - 69 \times CP - 110 \times \text{ash}$ Pesti et al., 1986 Pesti et	Feather meal (pepsin dig ≥ 80%)	$ME_{\rm n} = 33.2 \times CP + 57.53 \times EE$	Janssen, 1989
Poultry by-product meal $TME_n = -725 + 0.841 \times GE$ (kcal/kg dry matter) Pesti et al., 1986 Poultry by-product meal $TME_n = 4,070 - 142 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 4,330 - 61 \times \text{ash}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 5,060 - 263 \times \text{ash} + 491 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 479 + 89 \times CP - 1,094 \times \text{phosphorus}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 11,340 - 103 \times CP - 327 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 934 - 69 \times CP - 110 \times \text{ash}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 561 - 154 \times \text{calcium} - 622 \times \text{phosphorus}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times \text{ash} - 506 \times \text{phosphorus}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times \text{ash} - 506 \times \text{phosphorus}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 55.6 - 63 \times \text{ash} - 506 \times \text{phosphorus}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 5.0.4 \times \text{calcium} - 622 \times \text{phosphorus}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 5.0.4 \times \text{calcium} - 622 \times \text{phosphorus}$ Pe	Poultry offal meal	$ME_{\rm n} = 31.02 \times CP + 74.23 \times EE$	Janssen, 1989
Poultry by-product meal $TME_n = 5,060 - 263 \times ash + 491 \times calcium$ Pesti et al., 1986 Poultry by-product meal $TME_n = 479 + 89 \times CP - 1,094 \times phosphorus$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 11,340 - 103 \times CP - 327 \times calcium$ Pesti et al., 1986 Pesti et al.,	Poultry offal meal, high-fat		Janssen, 1989
Poultry by-product meal $TME_n = 479 + 89 \times CP - 1,094 \times \text{phosphorus}$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 934 - 69 \times CP - 110 \times \text{ash}$ Pesti et al., 1986 Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 561 - 154 \times \text{calcium} - 622 \times \text{phosphorus}$ Pesti et al., 1986 Pesti et al.,			
Poultry by-product meal $TME_n^- = 5,060 - 263 \times ash + 491 \times calcium$ Pesti et al., 1986 Poultry by-product meal $TME_n = 479 + 89 \times CP - 1,094 \times phosphorus$ Pesti et al., 1986 Poultry by-product meal $TME_n = 11,340 - 103 \times CP - 327 \times calcium$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 934 - 69 \times CP - 110 \times ash$ Poultry by-product meal $TME_n = 561 - 154 \times calcium - 622 \times phosphorus$ Pesti et al., 1986 Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times phosphorus$ Pesti et al., 1986 Poultry by-product meal $TME_n = 556 - 63 \times ash - 506 \times phosphorus$ Pesti et al., 1986 Pesti et al	Poultry by-product meal	$TME_{\rm n} = 4,070 - 142 \times \text{calcium}$	Pesti et al., 1986
Poultry by-product meal $TME_n^1 = 479 + 89 \times CP - 1,094 \times \text{phosphorus}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 11,340 - 103 \times CP - 327 \times \text{calcium}$ Pesti et al., 1986 Poultry by-product meal $TME_n = 934 - 69 \times CP - 110 \times \text{ash}$ Pesti et al., 1986 Pesti et al.,	Poultry by-product meal		
Poultry by-product meal Poult		$TME_{\rm n} = 5,060 - 263 \times \text{ash} + 491 \times \text{calcium}$	Pesti et al., 1986
Poultry by-product meal $TME_n^{-} = 934 - 69 \times CP - 110 \times ash$ Pesti et al., 1986 Poultry by-product meal $TME_n^{-} = 561 - 154 \times calcium - 622 \times phosphorus$ Pesti et al., 1986 Pest			Pesti et al., 1986
Poultry by-product meal $TME_n = 561 - 154 \times \text{calcium} - 622 \times \text{phosphorus}$ Pesti et al., 1986 Pesti et al., 1989 Pesti et al., 1989 Pesti et al., 1989 Pesti et al., 1986 Pesti et al., 1989 Pesti et al., 1989 Pesti et al., 1986 Pesti et al., 1989 Pesti et al., 1989 Pesti et al., 1986 Pesti et al., 1989 Pesti et al., 1989 Pesti et al., 1986 Pesti et al., 1989 Pesti et al., 1986 Pesti et al., 1989 Pesti et al., 1986 Pesti et al., 1986 Pesti et al., 1989 Pesti et al., 1986 Pesti et al., 1986 Pesti et al., 1989 Pesti et al., 1986 Pesti et	Poultry by-product meal		
Poultry by-product meal Fat products from Dutch renderers Fats and oils $ME_n = 556 - 63 \times \text{ash} - 506 \times \text{phosphorus}$ $ME_n = 20,041 - 23.0 \times IV - 319.1 \times \text{C16} : 0 - 153.4 \times \text{C18} : 0$ Janssen et al., 1979 Ketels and DeGroote, 1989 $ME_n = 28,119 - 235.8 \text{ (C18} : 1 + \text{C18} : 2) - 6.4 \text{ (C16} : 0) - 310.9 \text{ (C18} : 0) + 0.726 \text{ (IV} \times FR_1) - 0.0000379 \text{ (IV}[FR_1 + \text{FFA}])^2}$ Vegetable oils (free fatty acid <50%) $ME_n = -10,147.94 + 188.28 \text{ IV} + 155.09 \text{ FR}_1 - 1.6709 \text{ (IV} \times FR_1)$ Huyghebaert et al., 1988 $\times FR_1$) Vegetable oils (free fatty acid <50%) $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16} : 0 - 215.3 \text{ C18} : 0$ Huyghebaert et al., 1988 $\times FR_1$) $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16} : 0 - 215.3 \text{ C18} : 0$ Huyghebaert et al., 1988 $\times FR_1$) $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16} : 0 - 215.3 \text{ C18} : 0$ Huyghebaert et al., 1988 $\times FR_1$)			Pesti et al., 1986
Fat products from Dutch renderers Fats and oils $ME_n = 20,041 - 23.0 \times IV - 319.1 \times C16 : 0 - 153.4 \times C18 : 0$ $ME_n = 8,227 - 10,318(-1,1685[Unsaturated:Saturated ratio])$ $ME_n = 28,119 - 235.8 \text{ (C18 : } 1 + \text{C18 : } 2) - 6.4 \text{ (C16:0)} - 310.9 \text{ (C18 : } 0) + 0.726 \text{ (IV } \times FR_1) - 0.0000379 \text{ (IV}[FR_1 + FFA])^2}$ Vegetable oils (free fatty acid <50%) $ME_n = -10,147.94 + 188.28 \text{ IV} + 155.09 \text{ FR}_1 - 1.6709 \text{ (IV}$ $\times FR_1$) Vegetable oils (free fatty acid <50%) $ME_n = 126,694 + 1645 \text{ IV} + 29.302 \text{ FR}_1$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$ $ME_n = 126,694 + 1645 \text{ IV} + 838.4 \text{ C16 : } 0 - 215.3 \text{ C18 : } 0$			Pesti et al., 1986
Fats and oils $ME_n^c = 8,227 - 10,318(-1,1685[Unsaturated:Saturated ratio])$ $ME_n = 28,119 - 235.8 (C18:1 + C18:2) - 6.4 (C16:0) - 310.9 (C18:0) + 0.726 (IV × FR_1) - 0.0000379 (IV[FR_1 + FFA])^2$ Huyghebaert et al., 1988 $ME_n = -10,147.94 + 188.28 \ IV + 155.09 \ FR_1 - 1.6709 (IV FR_1)$ Huyghebaert et al., 1988 $\times FR_1$) Vegetable oils (free fatty acid >50%) $ME_n = 1,804 + 29.7084 \ IV + 29.302 \ FR_1$ Huyghebaert et al., 1988 $\times FR_1$)			
All fats and oils $ME_{\rm n} = 28,119 - 235.8 \cdot (C18:1 + C18:2) - 6.4 \cdot (C16:0) - 310.9 \cdot (C18:0) + 0.726 \cdot (IV \times FR_1) - 0.0000379 \cdot (IV[FR_1 + FFA])^2$ Huyghebaert et al., 1988 $ME_{\rm n} = -10,147.94 + 188.28 \cdot IV + 155.09 \cdot FR_1 - 1.6709 \cdot (IV + FR_1)$ Wegetable oils (free fatty acid >50%) $ME_{\rm n} = 1,804 + 29.7084 \cdot IV + 29.302 \cdot FR_1$ Huyghebaert et al., 1988 $ME_{\rm n} = 126,694 + 1645 \cdot IV + 838.4 \cdot C16:0 - 215.3 \cdot C18:0$ Huyghebaert et al., 1988 $ME_{\rm n} = 126,694 + 1645 \cdot IV + 838.4 \cdot C16:0 - 215.3 \cdot C18:0$ Huyghebaert et al., 1988 $ME_{\rm n} = 126,694 + 1645 \cdot IV + 838.4 \cdot C16:0 - 215.3 \cdot C18:0$ Huyghebaert et al., 1988 $ME_{\rm n} = 126,694 + 1645 \cdot IV + 838.4 \cdot C16:0 - 215.3 \cdot C18:0$ Huyghebaert et al., 1988	Fat products from Dutch renderers		Janssen et al., 1979
Vegetable oils (free fatty acid <50%) $ME_n = -10,147.94 + 188.28 \ IV + 155.09 \ FR_1 - 1.6709 \ (IV)$ Huyghebaert et al., 1988 $\times FR_1$) $ME_n = 1,804 + 29.7084 \ IV + 29.302 \ FR_1$ Huyghebaert et al., 1988 $ME_n = 126,694 + 1645 \ IV + 838.4 \ C16 : 0 - 215.3 \ C18 : 0$ Huyghebaert et al., 1988 $ME_n = 126,694 + 1645 \ IV + 838.4 \ C16 : 0 - 215.3 \ C18 : 0$ Huyghebaert et al., 1988 $ME_n = 126,694 + 1645 \ IV + 838.4 \ C16 : 0 - 215.3 \ C18 : 0$ Huyghebaert et al., 1988 $ME_n = 126,694 + 1645 \ IV + 838.4 \ C16 : 0 - 215.3 \ C18 : 0$ Huyghebaert et al., 1988 $ME_n = 126,694 + 1645 \ IV + 838.4 \ C16 : 0 - 215.3 \ C18 : 0$			
Vegetable oils (free fatty acid <50%) $ ME_n = -10,147.94 + 188.28 \ IV + 155.09 \ FR_1 - 1.6709 \ (IV \\ \times FR_1) $ Huyghebaert et al., 1988 $ \times FR_1) $ Negetable oils (free fatty acid >50%) $ ME_n = 1,804 + 29.7084 \ IV + 29.302 \ FR_1 $ Huyghebaert et al., 1988 $ ME_n = 126,694 + 1645 \ IV + 838.4 \ C16:0 - 215.3 \ C18:0 $ Huyghebaert et al., 1988 $ + 746.61 \ FR_1 + 356.12 \ (FR_1 + FFA) - 14.83 \ (IV \times FR_1) $ Huyghebaert et al., 1988	All fats and oils		Huyghebaert et al., 1988
Vegetable oils (free fatty acid <50%) $ME_n = -10,147.94 + 188.28 \ IV + 155.09 \ FR_1 - 1.6709 \ (IV \times FR_1)$ Huyghebaert et al., 1988 $\times FR_1$) $ME_n = 1,804 + 29.7084 \ IV + 29.302 \ FR_1$ Huyghebaert et al., 1988 $ME_n = 126,694 + 1645 \ IV + 838.4 \ C16 : 0 - 215.3 \ C18 : 0 + 746.61 \ FR_1 + 356.12 \ (FR_1 + FFA) - 14.83 \ (IV \times FR_1)$ Huyghebaert et al., 1988		2 / 1/	
Vegetable oils (free fatty acid >50%) $ME_n = 1,804 + 29.7084 \ IV + 29.302 \ FR_1$ Huyghebaert et al., 1988 $ME_n = 126,694 + 1645 \ IV + 838.4 \ C16:0 - 215.3 \ C18:0$ Huyghebaert et al., 1988 $+ 746.61 \ FR_1 + 356.12 \ (FR_1 + FFA) - 14.83 \ (IV \times FR_1)$			
Vegetable oils (free fatty acid >50%) $ME_n = 1,804 + 29.7084 \ IV + 29.302 \ FR_1$ Huyghebaert et al., 1988 $ME_n = 126,694 + 1645 \ IV + 838.4 \ C16:0 - 215.3 \ C18:0 + 746.61 \ FR_1 + 356.12 \ (FR_1 + FFA) - 14.83 \ (IV \times FR_1)$	Vegetable oils (free fatty acid <50%)		Huyghebaert et al., 1988
Animal fats (free fatty acid <40%) $ME_{\rm n}^{\rm r} = 126,694 + 1645\ IV + 838.4\ C16:0 - 215.3\ C18:0 \\ + 746.61\ FR_1 + 356.12\ (FR_1 + FFA) - 14.83\ (IV \times FR_1)$ Huyghebaert et al., 1988			
$+746.61 FR_1 + 356.12 (FR_1 + FFA) - 14.83 (IV \times FR_1)$			
	Animal fats (free fatty acid <40%)		Huyghebaert et al., 1988
Animal fats (free fatty acid >40%) $ME_n = -9.865 + 194.1 \text{ IV} + 300.1 \text{ C18:0}$ Huyghebaert et al., 1988			
	Animal fats (free fatty acid >40%)	$ME_{\rm n} = -9,865 + 194.1 \ IV + 300.1 \ C18:0$	Huyghebaert et al., 1988

NOTE: Abbreviations used above are as follows: GE = gross energy; ME = metabolizable energy; $ME_n = \text{nitrogen-corrected}$ metabolizable energy; $TME_n = \text{nitrogen-corrected}$ true metabolizable energy; CP = % crude protein; EE = % ether extract; CF = % crude fiber; NFE = % nitrogen-free extract; ADF = % acid detergent fiber; APF = % Acid-pepsin fiber; STA = % starch; SUG = % sugar; IV = iodine value; C16 : 0 = % palmitic acid; C18 : 0 = % stearic acid; C18 : 1 = % oleic acid; C18 : 2 = % linoleic acid; C18 : 1 = % free fatty acid, calculated as oleic acid equivalents; C18 : 1 = % acid equivalents; C18 : 1 = % from a column chromatography separation that contains the practically unaltered triglycerides plus other apolar components; and DM = dry matter.

TABLE C-1 Conversion reactors—Weights and Measures

Units	Multiplied by the Factor Below	Units	Multiplied by the Factor Below	Units
	Equals		Equals	
lb	453.6	g	0.002205	lb
lb	0.4536	g kg	2.205	lb
OZ	28.35	g	0.035273	OZ
kg	1,000	g	0.001	kg
kg	1,000,000	mg	0.000001	kg
g	1,000	mg	0.001	g
g	1,000,000	mcg (or µg)	0.001	mg
g	10^9	ng (nanogram)	10-9	-
g	10^{12}	pg (picogram)	10-12	g g
mg	1,000	mcg (or µg)	0.001	mg
mg/kg ^a	0.0001	%	10,000	mg/kg
ppm	0.0001	%	10,000	ppm
gal (U.S.)	3.785	liters	0.2642	gal (U.S.gal (Brit.)
4.546	liters	0.220	gal (Brit.bu (bushel)	0.3525 hl
(hectoliter)	2.837	bu		
cal (calorié)	4.184	j (joule)	0.239	cal
kcal (kilocálorie)	1,000	cal	0.001	kcal
Mcal (megacalorie)	1,000,000	cal	0.000001	Mcal
Mcal	1,000	kcal	0.001	Mcal

 $^{^{}a}$ 100 ppm = 100 mg/kg = 0.010 percent; thus converting 0.0002 percent = 2 ppm = 2 mg/kg.

References

- Abdulrahim, S. M., M. B. Patel, and J. McGinnis. 1979. Effects of vitamin D₃ and D₃ metabolites on production parameters and hatchability of eggs. Poult. Sci. 58:858.
- Aboaysha, A. M., and F. H. Kratzer. 1979. Interrelationships between dietary pyridoxine and free plasma amino acids in chicks. Poult. Sci. 58:117.
- Acar, N., E. T. Moran, Jr., and S. F. Bilgili. 1991. Live performance and carcass yield of male broilers from two commercial strain crosses receiving rations containing lysine below and above the established requirement between six and eight weeks of age. Poult. Sci. 70:2315
- Adams, A. W. 1973. Consequences of depriving laying hens of water a short time. Poult. Sci. 52:1221.
- Adams, A. W., A. J. Kahrs, and J. L. West. 1967. Effect of sodium nitrate in the drinking water on performance of turkeys. Poult. Sci. 46:1255.
- Adams, R. L., and C. W. Carrick. 1967. A study of the niacin requirement of the laying hen. Poult. Sci. 46:712.
- Adams, R. L., F. N. Andrews, J. C. Rogler, and C. W. Carrick. 1962. The sulfur amino acid requirement of the chick from 4 to 8 weeks of age as affected by temperature. Poult. Sci. 41:1801.
- Adams, R. L., P. Y. Hester, and W. J. Stademan. 1983. The effect of dietary lysine levels on performance and meat yields of White Pekin ducks. Poult. Sci. 62:616.
- Adkins, J. S., E. C. Miller, H. R. Bird, C. A. Elvehjem, and M. L. Sunde. 1958. An estimate of the threonine requirements of the laying hen. Poult. Sci. 37:1362.
- Adkins, J. S., A. E. Harper, and M. L. Sunde. 1962. The L-arginine requirement of the laying pullet. Poult. Sci. 41:657.
- Aitken, J. R., G. S. Lindblad, and W. G. Hunsaker. 1958. The calcium and phosphorus requirements of goslings. Poult. Sci. 37:1180.
- Albrecht, W. J., G. C. Mustakas, and J. E. McGhee. 1966. Rate studies on atmospheric steaming and immersion cooking of soybeans. Cereal Chem. 43:400.
- Alenier, J. C., and G. F. Combs, Jr. 1981. Effects of feed palatability of ingredients believed to contain unidentified growth factors for poultry. Poult. Sci. 60:215.
- Alimentation Equilibree Commentri (AEC). 1981. Arginine requirement of broilers. In Alimentation Equilibree Commentri Information, Poultry 251. Rhône-Poulenc, Commentry, France: AEC.
- Allaway, W. H. 1986. Soil-plant-animal and human interrelationships in trace element nutrition. P. 465 in Trace Elements in Human and Animal Nutrition, Vol. 2, W. Mertz, ed. 5th ed. New York: Academic Press.
- Allen, N. K., 1981. Nutrition of growing geese. In Proceedings of the 42nd Minnesota Nutrition Conference for Feed Manufacturers. St. Paul, Minn.: University of Minnesota, Department of Animal Science.
- Allen, N. K., and D. H. Baker. 1972. Effect of excess lysine on the utilization of and requirement for arginine by the chick. Poult. Sci. 57:902. Allen, N. K., and R. J. Young. 1980. Studies on the amino acid and protein requirements of laying Japanese quail (*Coturnix coturnix japonica*). Poult. Sci. 59:2029.
- Allen, N. K., A. Peguri, C. J. Mirocha, and J. A. Newman. 1983. Effects of fusarium cultures, T-2 toxin, and zealenone on reproduction of turkey females. Poult. Sci. 62:282.
- Almquist, H. J. 1942. Magnesium requirement of the chick. Proc. Soc. Exp. Biol. Med. 49:544.
- Almquist, H. J. 1947. Evaluation of amino acid requirements by observations on the chick. J. Nutr. 34:543.
- Almquist, H. J. 1952. Amino acid requirements of chickens and turkeys—A review. Poult. Sci. 31:966.
- Almquist, H. J. 1953. Evaluation of vitamin requirement data. Poult. Sci. 32:122.
- Almquist, H. J. 1954. The phosphorus requirement of young chicks and poults—A review. Poult. Sci. 33:936.
- Almquist, H. J., and E. Mecchi. 1942. Lysine requirement of the chick. Proc. Soc. Exp. Biol. Med. 49:174.
- Al-Ubaidi, Y. Y., and H. R. Bird. 1964. Assay for the unidentified growth factor in dried whey. Poult. Sci. 43:1484.
- Ameenuddin, S., M. Sunde, H. F. DeLuca, N. Ikekawa, and Y. Kobayashi. 1982. 24-hydroxylation of 25-hydroxyvitamin D₃: Is it required for embryonic development in chicks? Science 217:451.
- Ameenuddin, S., M. L. Sunde, and M. E. Cook. 1985. Essentiality of Vitamin D₃ and its metabolites in poultry nutrition. A review. World Poult. Sci. J. 41:52.
- Ameenuddin, S., M. L. Sunde, H. F. DeLuca, and M. E. Cook. 1986. Excessive cholecalciferol in a layers diet: Decline in some aspects of reproductive performance and increased bone mineralization of progeny. Br. Poult. Sci. 27:671.
- Amend, J. F., D. H. Strumeyer, and H. Fisher. 1979. Effect of dietary histidine on tissue concentrations of histidine-containing dipeptides in adult cockerels. J. Nutr. 109:1779.
- Amine, E. K., E. J. Desilets, and D. M. Hegsted. 1976. Effect of dietary fats on lipogenesis in iron deficiency anemic chicks and rats. J. Nutr. 106:405.
- Anderson, D. L., F. W. Hill, and R. Renner. 1958. Studies of the metabolizable and productive energy of glucose for the growing chick. J.
- Anderson, J. O., and R. E. Warnick. 1970. Studies of the need for supplemental biotin in chick rations. Poult. Sci. 49:569.
- Anderson, R., and N. Jackson. 1975. The effect of folate deficiency on the in vitro incorporation of serine into the oviduct of oestrogentreated immature female domestic fowl. Int. J. Biochem. 6:64.

Andrews, D. K., H. R. Bird, and M. L. Sunde. 1966. The effects of arsanilic acid on laying hens at three dietary protein levels. 1. Egg production. Poult. Sci. 45:838.

Andrews, T. L., R. H. Harms, and H. R. Wilson. 1973. Protein requirements of the Bobwhite chick. Poult. Sci. 52:2199.

Anonymous. 1977. Leucocyte transketolase activity: An indicator of thiamin nutriture. Nutr. Rev. 35:185.

Anonymous, 1981. Arginine requirement of broilers, Alimentation Equilibree Commentri Informations, Poultry 251. Rhône-Poulenc, Commentry, France: AEC.

Anonymous. 1990. Nomenclature policy: Generic descriptors and trivial names for vitamins and related compounds. J. Nutr. 120:12.

Antoniou, T., and R. R. Marquardt. 1981. Influence of rye pentosans on the growth of chicks. Poult. Sci. 60:1898

Arends, L. G., D. L. Miller, and S. L. Balloun. 1967. Calcium requirements of the turkey breeder hen. Poult. Sci. 46:727.

Arends, L. G., E. W. Kienholz, J. V. Shutze, and D. D. Taylor. 1971. Effect of supplemental biotin on reproductive performance of turkey breeder hens and its effect on the subsequent progeny's performance. Poult. Sci. 50:208

Armstrong, W. D., J. C. Rogler, and W. R. Featherston. 1974. In vitro studies of the protein digestibility of sorghum grain. Poult. Sci. 53:2224. Arnold, A., and C. A. Elvehjem. 1938. Studies on the vitamin B₁ requirement of growing chicks. J. Nutr. 15:403.

Arnold, R. L., O. E. Olson, and C. W. Carlson. 1974. Tissue selenium content and serum tocopherols are influenced by dietary type, selenium and vitamin E. Poult. Sci. 53:2185.

Arrington, L. R., R. A. Santa Cruz, R. H. Harms, and H. R. Wilson. 1967. Effects of excess dietary iodine upon pullets and laying hens. J. Nutr. 92:325.

Arscott, G. H. 1972. The effect of riboflavin on reproductive performance of adult White Leghorn male cockerels. Nutr. Rep. Int. 5:287.

Arscott, G. H., P. Rachapaetayakom, P. E. Bernier, and F. W. Adams. 1962. Influence of ascorbic acid, calcium and phosphorus on specific gravity of eggs. Poult. Sci. 41:485

Artman, N. R.. 1964. Interactions of fats and fatty acids as energy sources for the chick. Poult. Sci. 43:994.

Asmar, J. A., N. J. Daghir, and H. A. Azar. 1968. Effects of pyridoxine deficiency on the lymphatic organs and certain blood components of the neonatal chicken. J. Nutr. 95:153.

Asmundson, V. S., and F. H. Kratzer. 1952. Observations on vitamin A deficiency in turkey breeding stock. Poult. Sci. 31:71.

Association of American Feed Control Officials. 1984. Official Publication. Charleston, W. Va.: Department of Agriculture.

Astrup, H. 1979. The ubiquitousity of labelled tocopherol in the cockerel body. Int. J. Vitam. Nutr. Res. 49:186.

Atkinson, R. L., A. A. Kurnick, T. M. Ferguson, B. L. Reid, J. H. Quisenberry, and J. R. Couch. 1957. Protein and energy levels for turkey starting diets. Poult. Sci. 36:767.

Atkinson, R. L., J. W. Bradley, J. R. Couch, and J. H. Quisenberry. 1967a. The calcium requirement of breeder turkeys. Poult. Sci. 46:207.

Atkinson, R. L., J. W. Bradley, J. R. Couch, and J. H. Quisenberry. 1967b. Effect of various levels of manganese on the reproductive performance of turkeys. Poult. Sci. 46:472.

Atkinson, R. L., J. W. Bradley, T. M. Ferguson, J. R. Couch, and J. H. Quisenberry. 1970. Protein level and reproductive performance of turkey hens. Nutr. Rep. Int. 1:353.

Atkinson, R. L., J. W. Bradley, J. R. Couch, T. M. Ferguson, and W. F. Krueger. 1976. Relationship of supplemental biotin, phosphorus level and calcium level to reproductive performance of turkeys. Nutr. Rep. Int. 13:237.

Attar, M. W., N. J. Daghir, and J. Asmar. 1967. Influence of vitamin B₆ deficiency on certain serum components in mature female chickens. Poult. Sci. 46:838

Atteh, J. O., and S. Leeson. 1983. Influence of increasing dietary calcium and magnesium levels on performance, mineral metabolism and egg mineral content of laying hens. Poult. Sci. 62:1261.

Attia, A. M. N., and J. D. Latshaw. 1979. Amino acid requirements of broiler starter diets with different energy levels. Nutr. Rep. Int. 19:299. Austic, R. E., and K. Keshavarz. 1988. Interaction of dietary calcium and chloride and the influence of monovalent minerals on eggshell quality. Poult. Sci. 67:750.

Austic, R. E., and M. Rangel-Lugo. 1989. Studies on the threonine requirement of broiler chicks. P. 136 in Proceedings of the Cornell Nutrition Conference. Ithaca, N.Y.: Cornell University

Avdelotte, M. B. 1963. Vitamin A deficiency in chickens. Br. J. Nutr. 17:205.

Bai, K. M., and M. K. Krishnakumari. 1986. Acute and chronic toxicity of warfarin to poultry, Gallus domesticus: A non-target species. Bull. Environ. Contam. Toxicol. 37:554

Bailey, C. A., S. Linton, R. Brister, and C. R. Creger. 1986. Effects of graded levels of dietary phosphorus on bone mineralization in the very young poult. Poult. Sci. 65:1018.

Baird, F. D., and D. J. Greene. 1935. The comparative vitamin D requirements of growing chicks, turkeys and pheasants. Poult. Sci. 14:70

Baker, D. H. 1976. Nutritional and metabolic interrelationships among sulfur compounds in avian nutrition. Fed. Proc., Fed. Am. Soc. Exp. Biol. 35:1917.

Baker, D. H., and B. A. Molitoris. 1975. Lack of response to supplemental tin, vanadium, chromium and nickel when added to a purified crystalline amino acid diet for chicks. Poult. Sci. 54:925.

Baker, D. H., and K. R. Robbins. 1979. Sulfur amino acid utilization in chicks fed supplemental monensin and copper. P. 39 in Proceedings of the Maryland Nutrition Conference for Feed Manufacturers . College Park, Md.: University of Maryland.

Baker, D. H., M. Sugahara, and H. M. Scott. 1968. The glycine-serine interrelationship in chick nutrition. Poult. Sci. 47:1376.

Baker, D. H., N. K. Allen, and A. J. Kleise. 1973. Efficiency of tryptophan as a niacin precursor in the young chick. J. Anim. Sci. 36:299.

Baker, D. H., K. R. Robbins, and J. S. Buck. 1979. Modification of the level of histidine and sodium bicarbonate in the Illinois crystalline amino acid diet. Poult. Sci. 58:749.

Baker, D. H., K. M. Halpin, G. L. Czarnecki, and C. M. Parsons, 1983. The choline-methionine interrelationship for growth of the chick. Poult. Sci. 62:133.

Baldini, J. T., and H. R. Rosenberg. 1955. The effect of productive energy level of the diet on the methionine requirement of the chick. Poult. Sci. 34:1301

Baldini, J. R., R. E. Roberts, and C. M. Kirkpatrick. 1950. A study of the protein requirements of Bobwhite quail reared in confinement in battery brooders to eight weeks of age . Poult. Sci. 29:161.

Baldini, J. T., R. E. Roberts, and C. M. Kirkpatrick. 1953. Antibiotic and vitamin B₁₂ supplements as related to crude protein level of Bobwhite quail diets. Poult. Sci. 32:563

Baldini, J. T., H. R. Rosenberg, and J. Waddell. 1954. The protein requirement of the turkey poult. Poult. Sci. 33:539. Baldini, J. T., J. P. Marvel, and H. R. Rosenberg. 1957. The effect of the productive energy level of the diet on the methionine requirement of the poult. Poult. Sci. 36:1031

Balek, J. J., and L. M. Morse. 1976. The effect of age and sex on dihydrofolic acid reductase activity in chicken liver. Nutr. Rep. Int. 13:101.

Balloun, S. L. 1954. Effect of high level aureomycin feeding on rate of egg production. Poult. Sci. 33:867.

Balloun, S. L., and D. L. Miller. 1964a. Calcium requirements of turkey breeder hens. Poult. Sci. 43:378.

Balloun, S. L., and D. L. Miller. 1964b. Choline requirements of turkey breeder hens. Poult. Sci. 43:64.

Balloun, S. L., and R. E. Phillips, 1957a, Interaction effects of vitamin B₁₂ and pantothenic acid in breeder hen diets on hatchability, chick growth and livability. Poult. Sci. 36:929.

Balloun, S. L., and R. E. Phillips. 1957b. Lysine and protein requirements of Bronze turkeys. Poult. Sci. 36:884.

Balloun, S. L., and G. M. Speers. 1969. Protein requirements of laying hens as affected by strain. Poult. Sci. 48:1175.

Balloun, S. L., W. J. Owings, J. L. Sell, and R. E. Phillips. 1959. Energy and protein requirements for turkey starting diets. Poult. Sci. 38:1328. Balnave, D. 1970. Essential fatty acids in poultry nutrition. World's Poult. Sci. J. 26:442.

Balnave, D. 1982. Egg weight and production responses of laying hens fed rice pollard. J. Sci. Food Agric. 33:231.

Bar, A., and S. Hurwitz. 1973. Bone ash and duodenal calcium-binding protein in chicks treated with EHDP. Poult. Sci. 52:2338.

Bar, A., S. Hurwitz, and I. Cohen. 1972. Relationship between duodenal calcium-binding protein, parathyroid activity, and various parameters of mineral metabolism in the rachitic and vitamin D-treated chick. Comp. Biochem. Physiol. 43A:519.

Bar, A., A. Cohen, U. Eisner, G. Risenfeld, and S. Hurwitz. 1978a. Differential response of calcium transport systems in laving hens to exogenous and endogenous changes in vitamin D status. J. Nutr. 108:1322.

Bar, A., D. Dubrov, U. Eisner, and S. Hurwitz. 1978b. Calcium-binding protein and kidney 25-hydroxycholecalciferol-1-hydroxylase activity in turkey poults. J. Nutr. 108:1501.

Bartov, I., and S. Bornstein. 1972. Nutritional factors affecting occurrence of experimental encephalomalacia in chicks. Poult. Sci. 51:868.

Bartov, I., and S. Bornstein. 1980. Susceptibility of chicks to nutritional encephalopathy: Effect of fat and α-tocopherol content of the breeder ration. Poult. Sci. 59:264.

Bartov, I., B. Lipstein, and S. Bornstein. 1974. Differential effects of dietary acidulated soybean oil soapstock, cottonseed oil soapstock and tallow on broiler carcass fat characteristics. Poult. Sci. 53:115.

Bartov, I., P. Budowski, and Y. Dror. 1981. Effect of ozone exposure on growth, nutritional encephalopathy, and fatty acid composition of cerebellum and lungs in the young chick. Poult. Sci. 60:532.

Battig, M. J., E. G. Hill, T. H. Canfield, and H. J. Sloan. 1953. Prevention of perosis in goslings by nicotinic acid. Poult. Sci. 32:550.

Bauernfeind, J. C., L. C. Norris, and G. F. Heuser. 1942. The pantothenic acid requirement of chicks. Poult. Sci. 21:142.

Baumgartner, S., D. J. Brown, E. Salevsky, and R. M. Leach. 1978. Copper deficiency in the laying hen. J. Nutr. 108:804.

Beadle, P. C. 1977. The epidermal biosynthesis of cholecalciferol (vitamin D₃). Photochem. Photobiol, 25:519.

Beagle, W. S., and J. J. Begin. 1976. The effect of pantothenic acid in the diet of growing chicks on energy utilization and body composition. Poult. Sci. 55:950.

Bedford, M. R., H. L. Classen, and G. L. Campbell. 1991. The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poult. Sci. 70:1571.

Beer, A. E., M. L. Scott, and M. C. Nesheim. 1963. The effects of graded levels of pantothenic acid on the breeding performance of White Leghorn pullets. Br. Poult. Sci. 4:243.

Beetner, G., T. Tsao, A. Frey, and J. Harper. 1974. Degradation of thiamine and riboflavin during extrusion processing. J. Food Sci. 39:207.

Begin, J. J. 1971. The effect of antibiotic supplementation on growth and energy utilization of chicks. Poult. Sci. 50:1497.

Begin, J. J., and W. M. Insko, Jr. 1972. The effects of dietary protein levels on the reproductive performance of Coturnix breeder hens. Poult. Sci. 51:1662

Behrends, B. R., and P. E. Waibel. 1980. Methionine and cystine requirements of growing turkeys. Poult. Sci. 59:849.

Ben-Dor, B. 1941. Requirement of potassium by the chick. Proc. Soc. Exp. Biol. Med. 46:341.

Berdanier, C. D., and P. Griminger. 1968. In vitro and in vivo absorption of three vitamin K analogs by chick intestine. Int. J. Vitam. Nutr. Res. 38:376.

Berg, L. R. 1963. Evidence of vanadium toxicity resulting from the use of certain commercial phosphorus supplements in chick rations. Poult. Sci. 42:766.

Berg, L. R. 1965. Effect of diet composition on vanadium toxicity for the chick. Poult. Sci. 44:1351.

Berg, L. R. 1976. Lysine requirements of White Leghorn pullets from 8 to 21 weeks of age. Poult. Sci. 55:389.

Berg, L. R., and W. W. Lawrence. 1971. Cottonseed meal, dehydrated grass, and ascorbic acid as dietary factors preventing toxicity of vanadium for the chick. Poult. Sci. 50:1399.

Berg, L. R., and R. D. Martinson. 1972. Effect of diet composition on the toxicity of zinc for the chick. Poult. Sci. 51:1690.

Berg, L., G. E. Bearse, and L. H. Merrill. 1963. Vanadium toxicity in laying hens. Poult. Sci. 42:1407.

Bertram, H.-L., J. Schutte, and E. van Weerden. 1988. Threonine requirements of young broilers. In Proceedings of the XVIII World's Poultry Congress. Nagoya, Japan.

Bethke, R. M., and P. R. Record. 1942. The relation of riboflavin to growth and curled-toe paralysis in chicks. Poult. Sci. 21:147. Bethke, R. M., P. R. Record, O. H. M. Wilder, and C. H. Kick. 1936. Effect of different sources of vitamin D on the laying bird. II. Storage of vitamin D in the egg and chick and mineral composition of the mature embryo. Poult. Sci. 15:336.

Bettger, W. J., J. E. Savage, and B. L. O'Dell. 1979. Effect of dietary copper and zinc on erythrocyte superoxide dismutase activity in the chick. Nutr. Rep. Inter. 19:893.

Bhargava, K. K., and M. L. Sunde. 1969. A short-time chick assay for unidentified growth factors. Poult. Sci. 48:694.

Bhargava, K. K., R. P. Hanson, and M. L. Sunde. 1971. Effects of threonine on growth and antibody production in chicks infected with Newcastle disease virus. Poult. Sci. 50:710.

Biely, J., and B. E. March. 1967. Calcium and vitamin D in broiler rations. Poult. Sci. 46:223.

Bierer, B. W., T. H. Eleazer, and D. E. Roebuck. 1965a. Effects of feed and water deprivation on chickens, turkeys, and laboratory animals. Poult. Sci. 44:768.

Bierer, B. W., T. H. Eleazer, and D. E. Roebuck. 1965b. Effects of feed and water deprivation on chickens of various ages. Poult. Sci. 44:1351.

Bilgili, S. F., E. T. Moran, Jr., and N. Acar. 1992. Strain-cross response of heavy male broilers to dietary lysine in the finisher feed: Live performance and further-processing yields. Poult. Sci. 71:850.

Binnerts, W. T., and A. R. El Boushy. 1985. Evidence for biological activity of selenium in levels higher than 0.1 mg/kg. P. 120 in Proceedings of the Fifth International Symposium on Trace Elements in Man and Animals. Farnham Royal, Slough, England: Commonwealth Agricultural Bureau.

Bird, F. H. 1949. Magnesium deficiency in the chick. 1. Clinical and neuropathological findings. J. Nutr. 39:13.

Bird, F. H. 1953. The lysine requirement of eight-week old chickens. Poult. Sci. 32:10.

Bird, F. H. 1978. The effect of aflatoxin B₁ on the utilization of cholecalciferol by chicks. Poult. Sci. 57:1293.

Bird, F. H., V. S. Asmundson, F. H. Kratzer, and S. Lepkowsky. 1946. The comparative requirements of chicks and turkey poults for riboflavin. Poult. Sci. 25:47.

Bird, D. W., B. L. O'Dell, and J. E. Savage. 1963. Copper deficiency in laying hens. Poult. Sci. 42:1256.

Bird, H. R. 1968. Effectiveness of antibiotics in broiler feed. World's Poult. Sci. J. 24:309.

Bishop, J. E., and A. W. Norman. 1975. Studies on calciferol metabolism. Metabolism of 25-hydroxy-vitamin D₃ by the chicken embryo. Arch. Biochem. Biophys. 167:769.

Bisoi, P. K., B. Panda, V. R. Reddy, and R. Singh. 1980. Calcium and phosphorus requirements of starter Japanese quail. Indian J. Anim. Sci.

- Blair, M. E., and L. M. Potter. 1988. Effects of varying fat and protein in diets of growing large white turkeys. 1. Body weights and feed efficiencies. Poult. Sci. 67:1281.
- Blair, M. E., L. M. Potter, B. A. Bliss, and J. R. Shelton. 1986. Methionine, choline and sulfate supplementation of practical-type diets for young turkeys. Poult. Sci. 65:130.
- Blair, R., S. McKenzie, and D. J. W. Lee. 1977. A purified diet for one-day-old chicks. Br. Poult. Sci. 18:129.
 Blalock, T. L., and J. P. Thaxton. 1984. Hematology of chicks experiencing marginal vitamin B₆ deficiency. Poult. Sci. 63:1243.
- Blalock, T. L., J. P. Thaxton, and J. D. Garlich. 1984. Humoral immunity in chicks experiencing marginal vitamin B₆ deficiency. J. Nutr. 114:312
- Bletner, J. K., R. P. Mitchell, and R. L. Tugwell. 1966. The effect of *Eimeria maxima* on broiler pigmentation. Poult. Sci. 45:689.
- Bolton, W. 1947. The riboflavin requirement of the White Wyandotte chick. J. Agric. Sci. 34:198.
- Bolton, W. 1947. The riboflavin requirement of the White Wyandotte chick. J. Agric. Sci. 37:316.
- Boomgaardt, J., and D. H. Baker. 1971. Tryptophan requirement of growing chicks as affected by dietary protein level. J. Anim. Sci. 33:595.
- Boomgaardt, J., and D. H. Baker. 1973a. The lysine requirement of growing chicks fed sesame meal-gelatin diets at three protein levels. Poult. Sci. 52:586.
- Boomgaardt, J., and D. H. Baker. 1973b. Effect of age on the lysine and sulfur amino acid requirement of growing chickens. Poult. Sci. 52:592.
- Boomgaardt, J., and D. H. Baker. 1973c. Effect of dietary energy concentration on sulfur amino acid requirements and body composition of young chicks. J. Anim. Sci. 36:307.
- Bootwalla, S. M., and R. H. Harms. 1989. Research note: Effect of supplementary dietary phosphorus on the reproductive capacity and bone integrity of broiler breeder males fed a corn-soybean meal diet. Poult. Sci. 68:1153.
- Bootwalla, S. M., and R. H. Harms. 1990. Reassessment of riboflavin requirement for single comb Leghorn pullets from 0-6 weeks of age fed on maize-soyabean meal diets and its subsequent effect on sexual maturity and egg production. Br. Poult. Sci. 31:779.
- Bootwalla, S. M., and R. H. Harms. 1991. Reassessment of pantothenic acid requirement for SCWL pullets from 0-6 weeks of age and its subsequent effect on sexual maturity. Poult. Sci. 70:80.
- Bornstein, S. 1970. The lysine requirement of broilers during their finishing period. Br. Poult. Sci. 11:197.
- Bornstein, S., and Y. Lev. 1982. The energy requirements of broiler breeders during the pullet-layer transition period. Poult. Sci. 61:755.
- Bornstein, S., and B. Lipstein. 1964. Methionine supplementation of practical broiler rations. II. The value of added methionine in broiler starter rations. Br. Poult. Sci. 5:175.
- Bornstein, S., and B. Lipstein. 1966. Methionine supplementation of practical broiler rations. III. The value of added methionine in broiler finisher rations. Br. Poult. Sci. 7:273.
- Bornstein, S., and Y. Samberg. 1954. Field cases of vitamin K deficiency in Israel. Poult. Sci. 33:831.
- Bornstein, S., S. Hurwitz, and Y. Lev. 1979. The amino acid and energy requirements of broiler breeder hens. Poult. Sci. 58:104.
- Boucher, R. V., H. Patrick, and H. C. Knandel. 1942. The riboflavin requirement of turkeys for hatchability and growth. Poult. Sci. 21:466.
- Bougon, M., M. Le Menec, and R. L'Hospitalier. 1985. Turkey breeder performance affected by the protein content of the feed. Turkeys 18
- Bowyer, B. L., and P. W. Waldroup. 1987. An evaluation of high lysine purple-seeded wheat in diets for broiler chickens. Nutr. Rep. Int. 35:825.
- Boyan, B. D., and N. M. Ritter. 1984. Proteolipid-lipid relationships in normal and vitamin D-deficient chick cartilage. Calcif. Tissue Int. 36:332
- Bragg, D. D. 1953. An attempt to determine the cause of curled or deformed tongues in young Beltsville White turkey. Poult. Sci. 31:294.
- Braham, J. E., C. Teiada, M. A. Guzman, and R. Bressani. 1961. Chemical and histological changes in the femurs of chicks fed lysinedeficient diets. J. Nutr. 74:363.
- Brake, J. 1988. Relationship of time of feeding and strain to egg shell quality and hatchability in broiler breeders. Poult. Sci. 67:538.
- Bray, D. J. 1969. Studies with corn-soya laying diets. Poult. Sci. 48:674.
- Briggs, G. M., Jr., R. C. Mills, D. M. Hegsted, C. A. Elvehjem, and E. B. Hart. 1942. The vitamin B6 requirement of the chick. Poult. Sci. 21:379.
- Briggs, G. M., Jr., T. D. Juckey, L. J. Teply, C. A. Elvehjem, and E. B. Hart. 1943. Studies on nicotinic acid deficiency in the chick. J. Biol. Chem. 148:517
- Briggs, G. M., E. G. Hill, and T. H. Canfield. 1953. The need for choline, folic acid, and nicotinic acid by goslings fed purified diets. Poult. Sci. 32:678.
- Brown, H. B., and M. G. McCartney. 1983. Effects of dietary restriction on reproductive performance of broiler breeder males. Poult. Sci. 62:1885
- Brown, H. B., and M. G. McCartney. 1986. Restricted feeding and reproductive performance of individually caged broiler breeder males. Poult. Sci. 65:850.
- Bruckental, I., and I. Ascarelli. 1975. Influence of vitamin A on formation and excretion of end products of nitrogen catabolism in chicks. Int. J. Vit. Nutr. Res. 45:378.
- Bruckental, I., I. Ascarelli, and A. Bondi. 1974. Effect of vitamin A deficiency on protein catabolism in chicks. Br. J. Nutr. 31:1.
- Brue, R. N., and J. D. Latshaw. 1985. Energy utilization by the broiler chicken as affected by various fats and fat levels. Poult. Sci. 64:2119.
- Bryan, T. A., D. L. Blamberg, R. W. Gerry, P. C. Harris, and D. C. O'Meara. 1975. Observations of possible thiaminase activity in scallop viscera fed in broiler diets. Case report. Poult. Sci. 54:1299.
- Buckner, R. E., and T. F. Savage. 1986. The effects of feeding 5, 7, and 9 percent crude protein diets to caged broiler breeder males. Nutr. Rep. Int. 34:967.
- Buckner, R. E., J. A. Renden, and T. F. Savage. 1986. The effect of feeding programs on reproductive traits and selected blood chemistries of caged broiler breeder males. Poult. Sci. 65:85
- Budowski, P., and M. A. Crawford. 1986. Effect of dietary linoleic acid and γ-linolenic acid on the fatty acid composition of brain lipids in the young chick. Prog. Lipid Res. 25:615.
- Budowski, P., I. Bartov, Y. Dror, and E. N. Frankel. 1979. Lipid oxidation products and chick nutritional encephalopathy. Lipids 14:768. Burns, C. H., W. W. Cravens, and P. H. Phillips. 1952. The requirement of breeding hens for sodium chloride. Poult. Sci. 31:302.
- Burns, C. H., W. W. Cravens, and P. H. Phillips. 1953. The sodium and potassium requirements of the chick and their interrelationship. J. Nutr. 50:317.
- Burns, R. A., and N. Jackson. 1979. The effects of folate deficiency and oestradiol administration on the plasma free amino acid concentrations of the immature hen. Br. Poult. Sci. 20:131.
- Burton, E. M., and P. W. Waldroup. 1979. Arginine and lysine needs of young broiler chicks. Nutr. Rep. Int. 19:607.
- Bush, L., T. J. McGrahan, and H. B. White III. 1988. Purification and characterization of biotin-binding protein. II. From chicken oocystes. Biochem. J. 256:797.
- Butler, L. G., D. J. Riedl, D. G. Lebryk, and H. J. Blytt. 1984. Interaction of proteins with sorghum tannin: Mechanism, specificity, and significance. J. Am. Oil Chem. Soc. 61:916.

- Byerly, J. C., J. W. Kessler, R. M. Gous, and O. P. Thomas. 1980. Feed requirements for egg production. Poult. Sci. 59:2500.
- Cain, J. R., S. L. Beasom, L. O. Rowland, and L. D. Rowe. 1982. The effects of varying dietary phosphorus on breeding Bobwhites. J. Wildl. Manage. 46:1061
- Cain, J. R., J. M. Weber, T. A. Lockamy, and C. R. Creger. 1984. Grower diets and bird density effects on growth and cannibalism in Ringnecked pheasants. Poult. Sci. 63:450.
- Calderon, V. M., and L. S. Jensen. 1990. The requirement for sulfur amino acids by laying hens as influenced by the protein concentration. Poult. Sci. 69:934.
- Cantor, A. H., and T. H. Johnson. 1983. Effects of unidentified growth factor sources on feed preference of chicks. Poult. Sci. 62:1281.
- Cantor, A. H., and P. D. Moorhead. 1977. Effects of selenium and vitamin E on nutritional muscular dystrophy in turkey poults. Ohio Agric. Res. Dev. Cent. Res. Circ. 229:25
- Cantor, A. H., P. D. Moorhead, and K. I. Brown. 1978. Influence of dietary selenium upon reproductive performance of male and female breeder turkeys. Poult. Sci. 57:1337.
- Cantor, A. H., P. D. Moorhead, and M. A. Musser. 1982. Comparative effects of sodium selenite and selenomethionine upon nutritional muscular dystrophy, selenium-dependent glutathione peroxidase, and tissue selenium concentrations of turkey poults. Poult. Sci. 61:478
- Caplan, A. I. 1972. The site and sequence of action of 6-aminonicotinamide in causing bone malformations of embryonic chick limb and its relationship to normal development. Dev. Biol. 28:710.
- Card, L. E., H. H. Mitchell, and T. S. Hamilton. 1930. Further studies on the vitamin E requirements of poultry. II. The performance of pullets raised on a vitamin E free diet. P. 9 in Proceedings of the Poultry Science Association. Montreal, Canada: Macdonald
- Carew, L. B., and D. C. Foss. 1980. Dietary phosphorus levels during growth of brown-egg type replacement pullets. Poult. Sci. 59:812.
- Carlisle, E. M. 1970. Silicon: A possible factor in bone calcification. Science 167:279.
- Carlisle, E. M. 1980. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency. J. Nutr.
- Carlson, C. W., and E. Leitis. 1957. Methionine, betaine, and choline as counteractants of selenium toxicity. Poult. Sci. 36:1108. Carlson, C. W., R. A. Wilcox, W. Kohlmeyer, and D. G. Jones. 1953. The effect of penicillin and streptomycin in diets for breeding hens. Poult. Sci. 32:176.
- Carlton, W. W., and W. Henderson. 1963. Cardiovascular lesions in experimental copper deficiency in chickens. J. Nutr. 81:200.
- Carnaghan, R. B. A., G. Lewis, D. S. P. Patterson, and R. Allcroft. 1966. Biochemical and pathological aspects of groundnut poisoning in chickens. Pathol. Vet. 3:601.
- Carter, R. D., J. W. Wyne, and H. Yacowitz. 1957. Effect of dietary energy and protein level on growth and feed conversion of turkeys from 8 to 16 weeks of age. Poult. Sci. 36:824.

- Caskey, C. D., and F. C. Knapp. 1944. Method for determining inadequately heated soybean meal. Ind. Eng. Chem. 16:640. Caskey, C. D., W. D. Gallup, and L. C. Norris. 1939. The need for manganese in the bone development of the chick. J. Nutr. 17:407. Castillo, L., Y. Tanaka, M. J. Wineland, J. O. Jowsey, and H. F. DeLuca. 1979. Production of 1,25-dihydroxy-vitamin D₃ and formation of medullary bone in the egg-laying hen. Endocrinology 104:1598.
- Cecil, H. C. 1982. Effects of frequency of semen collection on reproductive performance of male turkeys fed low protein diets during the breeder period. Poult. Sci. 61:1866.
- Cerniglia, G. J., Á. C. Goodling, and J. A. Hebert. 1984. Production performance of White Leghorn layers on limited feed. Poult. Sci. 63:1105. Chandra, M., B. Singh, G. L. Soni, and S. P. Ahuja. 1984. Renal and biochemical changes produced in broilers by high protein, high-calcium, urea-containing, and vitamin A deficient diets. Avian Dis. 28:1.
- Charles, O. W., D. A. Roland, and H. M. Edwards, Jr. 1972. Thiamine deficiency identification and treatment in commercial turkeys and
- Coturnix quail. Poult. Sci. 51:419.
 Chavez, E., and F. H. Kratzer. 1973. The potassium requirement of poults. Poult. Sci. 52:1542.
- Chavez, E., and F. H. Kratzer. 1974. Effect of diet on foot pad dermatitis in poults. Poult. Sci. 53:755.
- Chen, B., and T. F. Shen. 1979. Studies on duck nutrition. III. Arginine and lysine requirements of mule ducklings. Poult. Sci. 58:1316.
- Chernick, S. S., S. Lepkovsky, and I. L. Chaikoff. 1948. A dietary factor regulating the enzyme content of the pancreas: Changes induced in
- size and proteolytic activity of the chick pancreas by the ingestion of raw soybean meal. Am. J. Physiol. 155:33.

 Cherry, J. A., D. E. Jones, D. F. Calabotta, and D. J. Zelenka. 1983. Feed intake responses of mature White Leghorn chickens to changes in feed density. Poult. Sci. 62:1846.
- Chi, M. S. 1985. Effect of low protein diets for growing Leghorn pullets upon subsequent laying performance. Br. Poult. Sci. 26:433.
- Chicco, C. F., C. B. Ammerman, P. A. Van Walleghem, P. W. Waldroup, and R. H. Harms. 1967. Effects of varying dietary ratios of magnesium, calcium, and phosphorus in growing chicks. Poult. Sci. 46:368.
- Childs, G. R., C. W. Carrick, and S. M. Hauge. 1952. The niacin requirement of young chickens. Poult. Sci. 31:551.
- Chin, D., J. B. Anderson, R. F. Miller, L. C. Norris, and G. F. Heuser. 1958. The vitamin B₁₂ requirement of White Leghorn hens. Poult. Sci.
- Chou, S. T. 1971. Effect of riboflavin deficiency on the metabolism of oxypurines in chicks. Can. J. Physiol. Pharmacol. 49:1059.
- Christmas, R. B., R. H. Harms, and N. Ruiz. 1986. Evaluation of supplemental niacin for turkeys fed corn-soy diets from four to twelve weeks of age. Poult. Sci. 65:2369.
- Chung, E., P. Griminger, and H. Fisher. 1973. The lysine and sulfur amino acid requirements at two stages of growth in chicks. J. Nutr. 103:117
- Chung, T. K., and D. H. Baker. 1990. Riboflavin requirement of chicks fed purified amino acid and conventional corn-soybean meal diets. Poult. Sci. 69:1357
- Clark, N. B., M. J. Murphy, and S. K. Lee. 1989. Ontogeny of vitamin D action on the morphology and calcium transport properties of the chick embryonic yolk sac. J. Dev. Physiol. 11:243
- Clark, S. A., W. E. Stumpf, M. Sar, and H. F. DeLuca. 1987. 1,25-dihydroxy-vitamin D₃ target cells in immature pancreatic islets. Am. J. Physiol. 253:E99
- Classen, H. L., and T. A. Scott. 1982. Self-selection of calcium during the rearing and early laying periods of White Leghorn pullets. Poult. Sci. 61:2065
- Classen, H. L., G. L. Campbell, B. G. Rossnagel, R. Bhatty, and R. D. Reichert. 1985. Can. J. Anim. Sci. 65:725.
- Clegg, A. J. 1973. Composition and related nutritional and organoleptic aspects of palm oil. J. Am. Oil Chem. Sci. 50:321.
- Clemens, T. L., S. A. McGlade, K. P. Garrett, N. Horiuchi, and G. N. Hendy. 1988. Tissue-specific regulation of avian vitamin D-dependent calcium-binding protein 28-kD mRNA by 1,25-dihydroxy-vitamin D. J. Biol. Chem. 263:13112.
- Coates, M. E., and G. F. Harrison. 1969. Observations on the growth promoting effects of procaine penicillin and zinc bacitracin on chicks in different environments. J. Sci. Food Agric. 20:182
- Coates, M. E., S. K. Harrison, S. K. Kon, M. E. Mann, and C. O. Rose. 1951. Effect of antibiotics and vitamin B₁₂ on the growth of normal and animal protein factor deficient chicks. Biochem. J. 48:12.
- Coates, M. E., D. Hewitt, and P. Golob. 1970. A comparison of effects of raw and heated soya-bean meal in the diets of the germ-free and conventional chicks. Br. J. Nutr. 24:213.
- Cohen, I., and S. Hurwitz. 1974. The response of blood ionic constituents and acid-base balance to dietary sodium, potassium, and chloride in laying fowls. Poult. Sci. 53:378.

- Cohen, I., S. Hurwitz, and A. Bar. 1972. Acid-base balance and sodium-to-chloride ratio in diets of laying hens. J. Nutr. 102:1.
- Coles, B., J. Biely, and B. E. March. 1970. Vitamin A deficiency and Eimeria acervulina infection in the chick. Poult. Sci. 49:1295.
- Colnago, G. L., L. S. Jensen, and P. L. Long. 1984. Effect of selenium and vitamin E on development of immunity to coccidiosis in chickens. Poult. Sci. 63:1136.
- Combs, G. F., Jr. 1976. Differential effects of high dietary levels of vitamin A on the vitamin E-selenium nutrition of young and adult chickens. J. Nutr. 106:967.
- Combs, G. F. 1961. Quality and quantity of final product—Poultry. Fed. Proc. 20:306.
- Combs, G. F., Jr., and M. L. Scott. 1974. Dietary requirements for vitamin E and selenium measured at the cellular level in the chick. J. Nutr.
- Combs, G. F., Jr., and M. L. Scott. 1979. The selenium needs of laying and breeding hens. Poult. Sci. 58:871.
- Consuegra, P. K., and D. L. Anderson. 1967. Studies on the dietary calcium and phosphorus requirements of immature Coturnix quail. Poult. Sci. 46:1247.
- Cook, M. E., M. L. Sunde, J. L. Stahl, and L. E. Hanson. 1984. Zinc deficiency in pheasant chicks fed practical diets. Avian Dis. 28(4):1102.
- Coon, C. N., V. B. Grossie, Jr., and J. R. Couch. 1974. Glycine-serine requirement for chicks. Poult. Sci. 53:1709.
- Coon, C. N., I. Obi, and M. L. Hamre. 1988. Use of barley in laying hen diets. Poult. Sci. 67:1306.
- Cooper, J. B., and B. D. Barnett. 1968. Response of turkey hens to dietary linoleic acid fed as corn oil. Poult. Sci. 47:671.
- Coty, W. A. 1980. A specific, high affinity binding protein for 1,25-dihydroxy vitamin D in the chick oviduct shell gland. Biochem. Biophys. Res. Commun. 93:285.
- Couch, J. R., and W. W. Abbott. 1974. Arginine-lysine interrelationships in the nutrition of broiler breeder pullets during the developmental period. Br. Poult. Sci. 15:467.
- Couch, J. R., and T. M. Ferguson. 1972. Effect of nutrition on embryonic development in chickens and turkeys. P. 86 in Proceedings of the Cornell Nutrition Conference . Ithaca, N.Y.: Cornell University.

 Couch, J. R., and H. L. German. 1950. Pteroylglutamic acid studies with the mature fowl. Poult. Sci. 29:539.
- Couch, J. R., W. W. Cravens, C. A. Elvehjem, and J. G. Halpin. 1947. Biotin deficiency in the newly hatched chick. Poult. Sci. 26:536.
- Couch, J. R., C. R. Creger, and R. Chavez. 1971. Vitamin A requirement for growing turkeys. Br. Poult. Sci. 12:367.
- Coulson, E. J., and J. S. Hughes. 1930. Collection and analysis of chicken urine. Poult. Sci. 10:53.
- Council for Agricultural Science and Technology. 1989. Mycotoxins: Economic and Health Risks. Report No. 116. Ames, Iowa: Council for Agricultural Science and Technology.
- Cox, A. C., and S. L. Balloun. 1969. Manganese requirements of laying hens as related to diet calcium. Poult. Sci. 48:745.
- Cox, A. C., and J. L. Sell. 1967. Magnesium deficiency in the laying hen. Poult. Sci. 46:675. Cox, E. V., and A. M. White. 1962. Methylmalonic acid excretion. An index of vitamin B₁₂ deficiency. Lancet 2:853.
- Cravens, W. W., S. B. Randle, C. A. Elvehjem, and J. G. Halpin. 1941. Vitamin K studies. I. Effect of the vitamin K content of the hen's ration on clotting ability of chick blood. Poult. Sci. 20:313.
- Cravens, W. W., W. H. McGibbon, and E. E. Sebesta. 1944. Effect of biotin deficiency on embryonic development in the domestic fowl. Anat. Rec. 90:55.
- Cravens, W. W., E. E. Sebesta, J. G. Halpin, and E. B. Hart. 1946. Studies on the pyridoxine requirements of laying and breeding hens. Poult. Sci. 25:80.
- Creech, B. G., G. L. Feldman, T. M. Ferguson, B. L. Reid, and J. R. Couch. 1957. Excudative diathesis and vitamin E deficiency in turkey poults. J. Nutr. 62:83
- Creek, R. D. 1968. Nonequivalence in mass in the conversion of phenyl alanine to tyrosine and methionine to cystine. Poult. Sci. 47:1385.
- Creek, R. D., and V. Vasaitis. 1963. The effect of excess dietary protein on the need for folic acid by the chick. Poult. Sci. 42:1136.
- Creek, R. D., H. E. Parker, S. M. Hauge, F. N. Andrews, and C. W. Carrick. 1957. The iodine requirements of young chickens. Poult. Sci. 36:1360.
- Cropper, W. J., and M. L. Scott. 1967. Studies on folic acid nutrition in chicks and poults. Br. Poult. Sci. 8:65.
- Cross, H. S., and M. Peterlik, 1983, Vitamin D stimulates (Na⁺ + K⁺)-ATPase activity in chick small intestine, FEBS Lett, 153:141.
- Cruickshank, J. J., and J. S. Sim. 1987. Effects of excess vitamin D₃ and cage density on the incidence of leg abnormalities in broiler chickens. Avian Dis. 31:332.
- Cuca, M., and L. S. Jensen. 1990. Arginine requirement of starting broiler chicks. Poult. Sci. 69:1377.
- Cullen, M. P., O. G. Rasmussen, and O. H. M. Wilder. 1962. Metabolizable energy value and utilization of different types and grades of fat by the chick. Poult. Sci. 41:360
- Culton, T. G., and H. R. Bird. 1940. The effect of some riboflavin supplements on chick growth and curled-toe paralysis. Poult. Sci. 19:414.
- Cunningham, D. C., and W. D. Morrison. 1976. Dietary energy and fat content as factors in the nutrition of developing egg strain pullets and young hens. 1. Effect on several parameters and body composition at sexual maturity. Poult. Sci. 55:85.
- Cunningham, D. L. 1984. A comparison of controlled feeding programs for maximizing returns of White Leghorn layers. Poult. Sci. 63:2352.
- Cunningham, F. E., O. J. Cotterill, and E. M. Funk. 1960. The effect of season and age of bird. 1. On egg size, quality and yield. Poult. Sci.
- Cupo, M. A., and W. E. Donaldson. 1986. Effect of pantothenic acid deficiency on lipogenesis in the chick. Nutr. Rep. Int. 33:147.
- Cuppett, S. L., and J. H. Soares, Jr. 1972. The metabolizable energy values and digestibilities of Menhaden fish meal, fish solubles, and fish oils. Poult. Sci. 51:2078.
- Cutler, B. A., and P. Vohra. 1967. Pantothenic acid requirements of Japanese quail for growth and production. Poult. Sci. 56:1707.
- Cvetanov, I., R. Doncey, and S. Kumanov. 1969. Requirements for protein and energy in mixed feeds for laying ducks. Zhivotnovud. Nauki
- Daghir, N. J., and S. L. Balloun. 1963. Evaluation of the effect of breed on vitamin B₆ requirements of chicks. J. Nutr. 79:279.
- Daghir, N. J., and M. A. Shah. 1973. Effect of dietary protein level on vitamin B₆ requirement of chicks. Poult. Sci. 52:1247.
- Dale N. M., and M. Araba. 1987. Protein solubility as an indicator of overprocessing of soybean meal. Poult. Sci. 66(Suppl. 1):10.
- Dale, N. M., and H. L. Fuller. 1981. Effect of carrier on the metabolizable energy of corn oil. Poult. Sci. 60:1504.
- Dale, N. M., G. M. Pesti, and S. R. Rogers. 1990. True metabolizable energy of dried bakery product. Poult. Sci. 69:72.
- Damron, B. L., and L. S. Kelly. 1987. Short-term exposure of laying hens to high dietary sodium chloride levels. Poult. Sci. 66:825.
- Damron, B. L., C. F. Simpson, and R. H. Harms. 1969. The effects of feeding various levels of lead on the performance of broilers. Poult. Sci. 48:1507.
- Damron, B. L., H. R. Wilson, and R. H. Harms. 1983. Sodium chloride for broiler breeders. Poult. Sci. 62:480.
- Daniel, L. J., F. A. Farmer, and L. C. Norris. 1946. Folic acid and perosis. J. Biol. Chem. 163:349. Darby, W. J., K. W. NcNutt, and E. N. Todhunter. 1975. Niacin. Nutr. Rev. 33:289.
- Davies, R. E., B. L. Reid, A. A. Kurnick, and J. R. Couch. 1960. The effect of sulfate on molybdenum toxicity in the chick. J. Nutr. 70:193.

- Davis, A. D., and R. E. Austic. 1982. Threonine imbalance and the threonine requirement of the chicken. J. Nutr. 112:2170.
- Davis, C. Y., and J. L. Sell. 1989. Immunoglobulin concentrations in serum and tissues of vitamin A deficient broiler chicks after Newcastle disease virus vaccination. Poult. Sci. 68:136.
- Davis, P. N., L. C. Norris, and F. H. Kratzer. 1962. Iron deficiency studies in chicks using treated isolated soybean protein diets. J. Nutr. 78:445
- Davis, P. N., L. C. Norris, and F. H. Kratzer. 1968. Iron utilization and metabolism in the chick. J. Nutr. 94:407.
- Davis, R. H., O. E. Hassan, and A. Sykes. 1973. Energy utilization in the laying hen in relation to ambient temperature. J. Agric. Sci. Camb.
- Davis, R. L., and G. M. Briggs. 1951. The vitamin B₁₂ requirement of the chick. Poult. Sci. 30:628.
- Day, E. J., and B. C. Dilworth. 1962. Dietary phosphorus levels and calcium:phosphorus ratios needed by growing turkeys. Pult. Sci. 41:1324. Dean, W. F. 1967. Nutritional and management factors affecting growth and body composition of ducklings. P. 74 in Proceedings of the Cornell Nutrition Conference. Ithaca, N.Y.: Cornell University.
- Dean, W. F. 1972a. Recent findings in duck nutrition. P. 77 in Proceedings of the Cornell Nutrition Conference. Ithaca, N.Y.: Cornell University.
- Dean, W. F. 1972b. Phosphorus requirement of ducklings at different calcium levels. Poult. Sci. 51:1799.
- Dean, W. F. 1986. Nutrition of the Pekin duck in North America: An update . P. 44 in Proceedings of the Cornell Nutrition Conference.
- Ithaca, N.Y.: Cornell University.

 Dean, W. F., and G. F. Combs, Jr. 1981. Influence of dietary selenium on performance, tissue selenium content, and plasma concentrations of selenium-dependent glutathione peroxidase, vitamin E, and ascorbic acid in ducklings. Poult. Sci. 60:2655.
- Dean, W. F., and H. M. Scott. 1965. The development of an amino acid reference diet for the early growth of chicks. Poult. Sci. 44:803. Dean, W. F., M. L. Scott, R. J. Young, and W. J. Ashi. 1967. Calcium requirements of ducklings. Poult. Sci. 46:1496.
- De Koning, A. J., S. Milkovitch, M. Fick, and J. P. H. Wessels. 1986. The free fatty acid content of fish oil--An analysis of anchovy lipids at different stages in the manufacture of anchovy meal and oil. Fette, Seifen, Anstrichm. 88:404.
- DeLuca, L., M. Schumacher, and D. P. Nelson. 1971. Localization of the retinol-dependent fucose-glycopeptide in the goblet cell of the rat small intestine. J. Biol. Chem. 246:5762.
- Deobold, H. J., and C. A. Elvehjem. 1935. The effect of feeding high amounts of soluble iron and aluminum salts. Am. J. Physiol. 111:118.
- Derilo, Y. L., and D. Balnave. 1980. The choline and sulphur amino acid requirements of broiler chickens fed on semipurified diets. Br. Poult. Sci. 21:479
- DeRosa, G., C. L. Keen, R. M. Leach, and L. S. Hurley. 1980. Regulation of superoxide dismutase activity by dietary manganese. J. Nutr. 110:795
- De Schrijver, R.. 1977. An evaluation of the urease activity test for determining the quality of soybean oil meal. Vlaams Diergeneeskd. Tijdschr. 46:333.
- Dewar, W. A., and J. N. Downie. 1984. The zinc requirements of broiler chicks and turkey poults fed on purified diets. Br. J. Nutr. 51:467.
- Dewar, W. A., P. W. Teague, and J. N. Downie. 1974. The transfer of minerals from the egg to the chick embryo from the 5th to 18th days of incubation. Br. Poult. Sci. 15:119.
- Dewitt, J. B., R. B. Nestler, and J. V. Derby, Jr. 1949. Calcium and phosphorus requirements of breeding Bobwhite quail. J. Nutr. 39:567.
- Diener, U. L., R. J. Cole, T. H. Sanders, G. A. Payne, L. S. Lee, and M. A. Klich. 1987. Epidemiology of aflatoxin formation by Aspergillus flavus. Annu. Rev. Phytopathol. 25:249.
- Dixon, T., and J. R. Couch. 1970. Distillers dried solubles as a source of unidentified growth factors required by the chick and poult. Poult. Sci. 49:393
- D'Mello, J. P. F. 1974. Plasma concentrations and dietary requirements of leucine, isoleucine and valine: Studies with the young chick. J. Sci. Food Agric. 25:187.
- D'Mello, J. P. F. 1975. Amino acid requirements of the young turkey: Leucine, isoleucine and valine. Br. Poult. Sci. 16:607. D'Mello, J. P. F. 1976. Requirements of the young turkey for sulphur amino acids and threonine: Comparison with other species. Br. Poult.
- D'Mello, J. P. F., and G. C. Emmans. 1975. Amino acid requirements of the young turkey: Lysine and arginine. Br. Poult. Sci. 16:297.
- D'Mello, J. P. F., and D. Lewis. 1970. Amino acid interactions in chick nutrition. 3. Interdependence in amino acid requirements. Br. Poult. Sci. 11:367.
- Doberenz, A. R., A. A. Kurnick, B. J. Hulett, and B. L. Reid. 1965. Bromide and fluoride toxicities in the chick. Poult. Sci. 44:1500.
- Dobinska, E., L. Polasek, V. Zidek, M. Karmazin, and M. Sandova. 1982. The influence of diet enriched by vitamin E on some haematological and biochemical indicators in chickens. Vet. Med. (Prague) 27:557.
- Dobson, D. C. 1970. Biotin requirement of turkey poults. Poult. Sci. 49:546.
- Donaldson, W. E., G. F. Combs, and G. L. Romoser. 1956. Studies on energy levels in poultry rations. 1. The effect of calorie-protein ratio of the ration on growth, nutrient utilization and body composition of chicks. Poult. Sci. 35:1100.
- Doran, B. H., W. F. Krueger, and J. W. Bradley. 1983. Effect of step-down and step-up protein-energy feeding systems on egg-type pullet growth and laying performance. Poult. Sci. 62:255.
- Douglas, C. R., and R. H. Harms. 1982. The influence of low-protein grower diets on spring housed pullets. Poult. Sci. 61:1885.
- Douglas, C. R., and R. H. Harms. 1986. Phosphorus requirement of commercial Leghorn pullets from 8-20 weeks. Poult. Sci. 65:2366.
- Dua, P. N., and E. J. Day. 1966. Vitamin K activity of menadione dimethylpyrimidinol bisulfite in chicks. Poult. Sci. 45:94.
- Duke, G. E., G. A. Petrides, and R. K. Ringer. 1968. Cr-51 in food metabolizability and passage rate studies with the Ring-necked pheasant. Poult. Sci. 47:1356.
- Dun, P., and G. C. Emmans. 1971. Comparison of nipple and trough drinkers for cage layers. Exp. Husb. 20:40.
- Dunkelgod, K. E., P. E. Waibel, R. J. Sirny, and D. C. Snetsinger. 1970. An improved free amino acid diet for the growing turkey. Poult. Sci. 49:261.
- Dunn, L. C. 1924. Effect of cod-liver oil in various amounts and forms on the growth of young chickens. J. Biol. Chem. 61:129.
- du Vigneaud, V. 1952. A Trail of Research: Sulfur Chemistry and Metabolism. Ithaca, N.Y.: Cornell University Press.
- Dwivedi, B. K., and R. G. Arnold. 1973. Chemistry of thiamine degradation in food products and model systems: A review. Agric. Food Chem. 21:54.
- Eberst, D. P., B. L. Damron, and R. H. Harms. 1972. Protein requirement of growing turkeys. Pult. Sci. 51:1309.
- Edens, F. W., and J. D. Garlich. 1983. Lead-induced egg production decrease in Leghorn and Japanese quail hens. Poult. Sci. 62:1757.
- Edmonds, M. S., and D. H. Baker. 1987. Comparative effects of individual amino acid excesses when added to a corn-soybean meal diet: Effects on growth and dietary choice in the chick. J. Anim. Sci. 65:699.
- Edney, M. J., G. L. Campbell, and H. L. Classen. 1989. The effect of β-glucanase supplementation on nutrient digestibility and growth in broilers given diets containing barley, oat groats or wheat . Anim. Feed Sci. Technol. 25:193.
- Edwards, H. M., Jr. 1964. Fatty acid composition of feeding stuffs. Technical Bulletin N.S. 36, Georgia Agricultural Experiment Station. Athens, Ga.: University of Georgia.

Edwards, H. M., Jr. 1974. Uses and limitations of biochemical methods in diagnosing nutritional deficiencies. P. 1 in Proceedings of the Georgia Nutrition Conference. Athens, Ga.: University of Georgia.

Edwards, H. M., Jr. 1984. Studies on the etiology of tibial dyschondroplasia in chickens. J. Nutr. 114:1001.

Edwards, H. M., Jr., and D. Nugara. 1968. Magnesium requirement of the laying hen. Poult. Sci. 47:963.

Edwards, H. M., Jr., L. C. Norris, and G. F. Heuser. 1956. Studies on the lysine requirement of chicks. Poult. Sci. 35:385.

Edwards, H. M., Jr., W. S. Dunahoo, and H. L. Fuller. 1959. Zinc requirement studies with practical rations, Poult. Sci. 38:436.

Edwards, H. M., Jr., H. L. Fuller, and C. W. Hess. 1960. The effect of environment on chick growth. J. Nutr. 70:302.

Edwards, H. M., Jr., J. Denman, A. Abou-Ashour, and D. Nugara. 1973. Carcass composition studies. 1. Influences of age, sex and type of dietary fat supplementation on total carcass and fatty acid composition. Poult. Sci. 52:934.

Eeckhout, W., and R. Moermans. 1981. Prediction of the energy value of commercial pig feeds, according to the various energy systems used in the European community that are based on simple analytical parameters of the feed. Anim. Feed Sci. Technol. 6:367

El Boushy, A. R. 1979. Available phosphorus in poultry. 2. Effect of phosphorus in diet on performance of chicks, bone composition and strength, and calcium and inorganic phosphorus in blood plasma. Neth. J. Agric. Sci. 27:184.

Elkin, R. G. 1987. A review of duck nutrition research. World's Poult. Sci. J. 43:84.

Elkin, R. G., T. S. Stewart, and J. C. Rogler. 1986. Methionine requirement of male White Pekin ducklings. Poult. Sci. 65:1771.

Elkin, R. G., M. L. Lyons, and J. C. Rogler. 1988. Comparative utilization of D- and L-methionine by the White Pekin duckling (Anas platyrhynchos). Comp. Biochem. Physiol. 91 B(2):325.

Elvehjem, C. A., and E. B. Hart. 1929. The relation of iron and copper to hemoglobin synthesis in the chick. J. Biol. Chem. 84:131

Emmans, G. C. 1981. Alternative feeding systems. P. 29 in Proceedings of the Scottish Poultry Conference. Edinburgh, U.K.: East of Scotland Agricultural College.
Enos, H. L., R. E. Moreng, and W. A. Whitter. 1967. Shade materials, growth and water consumption of turkeys. Poult. Sci. 46:1412.

Erin, A., M. M. Spirin, L. V. Tabidze, and V. E. Kagan. 1984. Formation of tocopherol complexes with fatty acids. A hypothetical mechanism of stabilization of biomembranes by vitamin E. Biochim. Biophys. Acta 774:96.

Evans, R. J. 1943. Research notes: The choline requirements of turkey poults. Poult. Sci. 22:266.

Evans, R. J., M. Rhian, and C. I. Draper. 1943. Perosis in turkey poults and the choline content of their diets. Poult. Sci. 22:88.

Ewen, L. M., and K. J. Jenkins. 1967. Antidystrophic effect of selenium and other agents on chicks from vitamin E-depleted hens. J. Nutr. 93:470.

Farmer, M., D. A. Roland, Sr., and M. K. Eckman. 1983. Calcium metabolism in broiler breeder hens. 2. The influence of the time of feeding on calcium status of the digestive system and eggshell quality in broiler breeders. Poult. Sci. 62:465.

Farran, M. T., and O. P. Thomas. 1990. Dietary requirements of leucine, isoleucine, and valine in male broilers during the starter period. Poult. Sci. 69:757.

Farrell, D. J. 1981. True metabolizable energy--It is a significant advance in poultry energy systems? P. 79 in Proceedings of the Maryland Nutrition Conference for Feed Manufacturers. College Park, Md.: University of Maryland.

Farrell, D. J., E. Thomson, J. J. du Preez, and J. P. Hayes. 1991. The estimation of endogenous excreta and the measurement of metabolizable energy in poultry feedstuffs using four feeding systems, four assay methods, and four diets. Br. Poult. Sci. 32:483.

Featherston, W. R. 1976. Glycine-serine interrelations in the chick. Fed. Proc., Fed. Am. Soc. Exp. Biol. 35:1910.

Ferguson, T. M., R. Rigdon, and J. R. Couch. 1955. A pathologic study of vitamin B₁₂-deficient chick embryos. Arch. Pathol. 60:393.

Ferguson, T. M., C. E. Sewell, Jr., and R. L. Atkinson. 1974. Phosphorus levels in the turkey breeder diet. Poult. Sci. 53:1627.

Ferguson, T. M., R. L. Atkinson, J. W. Bradley, and H. D. Miller. 1975. Reproductive performance of caged Beltsville Small White turkeys as affected by choline, bird density and forced molting. Poult. Sci. 54:1679.
Ferket, P. R., and E. T. Moran, Jr. 1985. Effect of plane of nutrition from starting through the breeder period on the reproductive performance

of tom turkeys. Poult. Sci. 64:2110.

Ferket, P. R., and E. T. Moran, Jr. 1986. Effect of plane of nutrition from starting to and through the breeder period on reproductive performance of hen turkeys. Poult. Sci. 65:1581.

Fisher, C. 1982a. Amino acid requirements of the growing turkey. Turkeys 31(1):39.

Fisher, C. 1982b. Energy evaluation of poultry rations. P. 113 in Recent Advances in Animal Nutrition, W. Haresign, ed. London: Butterworth.

Fisher, C., and B. J. Wilson. 1974. Response to dietary energy concentration by growing chickens. P. 151 in Energy Requirements of Poultry, T. R. Morris and B. M. Freeman, eds. Edinburgh: British Poultry Science.

Fisher, C., T. R. Morris, and R. C. Jennings. 1973. A model for the description and prediction of the response of laying hens to amino acid intake. Br. Poult. Sci. 14:469.

Fisher, H., and R. Shapiro. 1961. Amino acid imbalance: Rations low in tryptophan, methionine or lysine and the efficiency of utilization of nitrogen in imbalanced rations. J. Nutr. 75:394.

Fisher, H., D. Johnson, Jr., and G. A. Leveille. 1957. The phenylalanine and tyrosine requirement of the growing chick with special reference to the utilization of the D-isomer of phenylalanine. J. Nutr. 62:349.

Fisher, H., P. Griminger, G. A. Leville, and R. Shapiro. 1960. Quantiating aspects of lysine deficiency and amino acid imbalance. J. Nutr. 71:213.

Flegal, C. J., P. J. Schaible, and H. H. Hall. 1971. The relative biopotency of fermentation beta-carotene, crystalline beta-carotene and vitamin A for poultry. Poult. Sci. 50:351.

Fletcher, D. L. 1981. The effect of light exposure on feed in broiler pigmentation. Poult. Sci. 60:68.

Fletcher, D. L., C. M. Papa, H. R. Halloran, and D. Burdick. 1985. Utilization and yolk coloring capability of dietary xanthophylls from yellow corn, corn gluten meal, alfalfa and coastal Bermuda-grass. Poult. Sci. 64:1458.

Fletcher, R. A. 1971. Effects of vitamin A deficiency on the pituitary-gonad axis of the California quail (Lophortyx californicus). J. Exp. Zool. 176:25

Fonnesbeck, P. V., M. F. Wardeh, and L. E. Harris. 1984. Mathematical Models for Estimating Energy and Protein Utilization of Feedstuffs. Bull. 508. Logan, Utah: Utah State University.

Formica, S. D., J. J. Smidt, M. M. Bacharach, W. F. Davin, and J. C. Fritz. 1962. Calcium and phosphorus requirements of growing turkeys and chickens. Poult. Sci. 41:771.

Franchini, A., A. Meluzzi, S. Bertuzzi, and G. Giordani. 1988. High doses of vitamin E in the broilers diets. Arch. Gefluegelkd. 52:12. Frank, F. R., and R. E. Burger. 1965. The effect of CO_2 inhalation and sodium biocarbonate ingestion on egg shell deposition. Poult. Sci. 44:1604

Fraps, G. S. 1946. Composition and Productive Energy of Poultry Feeds and Rations. Bull. No. 678. Texas Agricultural Experiment Station, College Station, Tex.: Texas A&M University

Fraps, G. S., E. C. Carlyle, and J. F. Fudge. 1940. Metabolizable energy of some chicken foods. Texas Agric. Exp. Stn. Bull. 589.

Freeman, C. P. 1979. The trytophan requirement of broiler chicks. Br. Poult. Sci. 20:27.

Friedrichsen, J. V., G. H. Arscott, and D. L. Willis. 1980. Improvement in fertility of White Leghorn males by vitamin E following a prolonged deficiency. Nutr. Rep. Int. 22:41.

Friesen, O. D., W. Guenter, R. R. Marquardt, and B. A. Rotter. 1992. The effect of enzyme supplementation on the apparent metabolizable energy and nutrient digestibilities of wheat, barley, oats, and rye for the young broiler chick. Poult. Sci. 71:1710.

Frigg, M. 1976. Bio-availability of biotin in cereals. Poult. Sci. 55:2310.

Frigg, M., and J. Torhorst. 1982. Auto-radiographic localization of ³H-biotin in chick tissues. Int. J. Vitam. Nutr. Res. 52:417.

Fritz, J. C. 1969. Vitamin K deficiency in chicks fed practical diets. Poult. Sci. 48:736.

Fritz, J. C., W. Archer, and D. Barker. 1939. Riboflavin requirements of ducklings. Poult. Sci. 18:449.

Fritz, J. C., W. Archer, and D. Barker. 1941. Vitamin D requirements of ducklings. Poult. Sci. 20:151.
Fritz, J. C., W. F. Archer, and D. Barker. 1942. Observations on the stability of vitamin D. Poult. Sci. 21:361.
Fritz, J. C., T. Roberts, and J. W. Boehne. 1967. The chick's response to choline and its application to an assay for choline in feedstuffs. Poult. Sci. 46:1447

Fritz, J. C., T. Roberts, J. W. Boehne, and E. L. Hove. 1969. Factors affecting the chick's requirement for phosphorus. Poult. Sci. 48:307. Fritz, J. C., P. B. Mislivec, G. W. Pla, B. N. Harrison, C. E. Weeks, and J. G. Dantzman. 1973. Toxicogenicity of moldy feed for very contract of the chick's requirement for phosphorus. , P. B. Mislivec, G. W. Pla, B. N. Harrison, C. E. Weeks, and J. G. Dantzman. 1973. Toxicogenicity of moldy feed for young chicks. Poult. Sci. 52:1523.

Fry, J. L., P. van Walleghem, P. W. Waldroup, and R. H. Harms. 1965. Fish meal studies. 2. Effects of levels and sources on "fishy flavor" in broiler meat. Poult. Sci. 44:1016.

Fuentes, M. 1981. Protein and Methionine Requirements for Starting and Laying Ring-necked pheasants. Ph.D. dissertation. Michigan State University, East Lansing, Mich.

Fuller, H. L., and N. M. Dale. 1982. Effect of ratio of basal diet fat to test fat on the true metabolizable energy of the test fat. Poult. Sci.

Fuller, H. L., and W. S. Dunahoo. 1959. The effect of various drug additives on the vitamin B₆ requirement of chicks. Poult. Sci. 38:1150.

Fuller, H. L., and P. E. Kifer. 1959. The vitamin B₆ requirement of chicks. Poult. Sci. 38:255

Fuller, H. L., R. C. Field, R. Roncalli-Amici, W. S. Dunahoo, and H. M. Edwards, Jr. 1961. The vitamin B₆ requirement of breeder hens. Poult. Sci. 40:249.

Fuller, H. L., W. M. Kirkland, and L. W. Chaney. 1973. Methods of delaying sexual maturity of pullets. 2. Restricting energy consumption. Poult. Sci. 52:228.

Gallup, W. D., and L. C. Norris. 1939a. The amount of manganese required to prevent perosis in the chick. Poult. Sci. 18:76.

Gallup, W. D., and L. C. Norris. 1939b. The effect of a deficiency of manganese in the diet of the hen. Poult. Sci. 18:83. Gardiner, E. E. 1962. The relationship between dietary phosphorus level and the level of plasma inorganic phosphorus of chicks. Poult. Sci. 41:1156

Gardiner, E. E. 1972. Differences between ducks, pheasants, and chickens in tissue mercury retention, depletion, and tolerance to increasing levels of dietary mercury. Can. J. Anim. Sci. 52:419.

Gardiner, E. E. 1973. Effects of egg weight on posthatching growth rate of broiler chicks. Can. J. Anim. Sci. 53:665.

Gardiner, E. E. 1982. Water and poultry. P. 76 in Proceedings of the Seventeenth Pacific Northwest Animal Nutrition Conference. Vancouver, Canada: University of British Columbia.

Gardiner, E. E., and W. A. Dewar. 1976. Dietary chloride requirement of broiler chicks fed a wheat-soybean diet. Br. Poult. Sci. 17:337.

Gardiner, E. E., and J. R. Hunt. 1984. Water consumption of meat-type chickens. Can. J. Anim. Sci. 64:1059.

Gardiner, E. E., H. E. Parker, and C. W. Carrick. 1959. Soft phosphate in chick rations. Poult. Sci. 38:721

Gardiner, E. E., J. C. Rogler, and H. E. Parker. 1960. Magnesium requirement of the chick. Poult. Sci. 39:1111.

Gardner, H. K., Jr., S. P. Koltun, F. G. Dollear, and E. T. Rayner. 1971. Inactivation of aflatoxins in peanut and cottonseed meals by ammoniation. J. Am. Oil Chem. Soc. 48:70.

Garlich, J. D., F. W. Edens, and C. R. Parkhurst. 1978. The phosphorus requirement of laying hens with special reference to high environmental temperatures. P. 598 in Proceedings of the Sixteenth World's Poultry Congress. Vol. IV. Hermannsburg, Germany: World's Poultry Science Association .

Garrett, R. L., and R. J. Young. 1975. Effect of micelle formation on the absorption of neutral fat and fatty acids by the chicken. J. Nutr. 105:827.

Gazo, M., V. Gergelyiova, and A. Grom. 1970. Lysine requirement of fattening ducklings. Sitzungsber. Dtsch. Akad. Landwirtschaftswiss. 19

Gedek, B., B. Huttner, D. I. Kahlau, H. Kohler, and E. Vielitz. 1978. Rickets in broilers by contamination of the feed with Fusarium moniliforme Sheldon. 1. Field observations, reproduction of the disease picture and treatment studies. Zentralbl. Veterinaermed.

Gillis, M. B. 1948. Potassium requirement of the chick. J. Nutr. 36:351.

Gillis, M. B., and L. C. Norris. 1949. Vitamin B₁₂ and the requirement of the chick for methylating compounds. Poult. Sci. 28:749. Gillis, M. B., G. F. Heuser, and L. C. Norris. 1948. Pantothenic acid in the nutrition of the hen. J. Nutr. 35:351. Gillis, M. B., L. C. Norris, and G. F. Heuser. 1949. The effect of phytin on the phosphorus requirement of the chick. Poult. Sci. 28:283.

Gish, C. L., F. A. Kummerow, and L. F. Rayne. 1949. Choline and ethanolamine requirements in the laying ration. Poult. Sci. 28:305.

Glazener, E. W., and G. M. Briggs. 1948. Further studies in abnormal blackening of feathers of vitamin D deficient chicks. Poult. Sci. 27:462. Glista, W., and M. L. Scott. 1950. All-Industry Poultry Day. Urbana: University of Illinois.

Goeger, M. P., and G. H. Arscott. 1984. Effect of pantothenic acid on reproductive performance of adult White Leghorn cockerels. Nutr. Rep. Int. 30:1193.

Goff, S., W. C. Russell, and M. W. Taylor. 1953. Hematology of the chick in vitamin deficiencies. I. Riboflavin. Poult. Sci. 32:54.

Goodwin, T. W. 1986. Metabolism, nutrition and function of carotenoids. Annu. Rev. Nutr. 6:273.

Gordon, R. S., and I. W. Sizer. 1955. Ability of sodium sulfate to stimulate growth of the chicken. Science 122:1270.

Gous, R. M., M. A. Kuyper, and C. Dennison. 1982. The relationship between tannic acid content and metabolizable energy concentration of some sorghum cultivars, S. Afr. J. Anim. Sci. 12:39.

Gous, R. M., M. Griessel, and T. R. Morris. 1987. Effect of dietary energy concentration on the response of laying hens to amino acids. Br. Poult. Sci. 28:427

Graber, G., N. K. Allen, and H. M. Scott. 1970. Proline essentiality and weight gain. Poult. Sci. 49:692.

Graber, G., H. M. Scott, and D. H. Baker. 1971. Sulfur amino acid nutrition of the growing chick: Effect of age on the dietary methionine requirement. Poult. Sci. 50:854.

Grau, C. R. 1945. Deformity of the tongue associated with amino acid deficiencies in the chick. Proc. Soc. Exp. Biol. Med. 59:177.

Grau, C. R. 1947. The threonine requirement of the chick. J. Nutr. 37:105. Grau, C. R., and M. Kamei. 1950. Amino acid imbalance and the growth requirements for lysine and methionine. J. Nutr. 41:89-101.

Grau, C. R., F. H. Kratzer, and V. S. Asmundson. 1946. The lysine requirement of poults and chicks. Poult. Sci. 25:529.

Green, S. 1987. Digestibilities of Amino Acids in Foodstuffs for Poultry and Pigs. Digestibility Rep. 8/87. Commentry, France: Rhône-Poulenc Nutrition Laboratories.

Greene, D. E., H. M. Scott, and B. C. Johnson. 1962. The role of proline and certain nonessential amino acids in chick nutrition. Poult. Sci.

Gries, C. L., and M. L. Scott. 1972a. The pathology of pyridoxine deficiency in chicks. J. Nutr. 102:1259.

Gries, C. L., and M. L. Scott. 1972b. The pathology of thiamine, riboflavin, pantothenic acid and niacin deficiencies. J. Nutr. 102:1269.

Gries, C. L., and M. L. Scott, 1972c. Pathology of selenium deficiency in the chick, J. Nutr. 102:1287.

Griminger, P. 1957. On the vitamin K requirement of turkey poults. Poult. Sci. 36:1227.

Griminger, P. 1964. Effect of vitamin K nutrition of the dam on hatchability and prothrombin levels in the offspring. Poult. Sci. 43:1284.

Griminger, P. 1965. Vitamin K activity in chickens: Phylloquinone and menadione in the presence of stress agents. J. Nutr. 87:337.

Griminger, P. 1966. Influence of maternal vitamin D intake on growth and bone ash of offspring. Poult. Sci. 45:849.

Griminger, P. 1987. Vitamin K antagonists: The first 50 years. J. Nutr. 117:1325.

Griminger, P., and G. Brubacher, 1966. The transfer of vitamin K₁ and menadione from the hen to egg. Poult. Sci. 45:512.

Griminger, P., H. M. Scott, and R. M. Forbes. 1956. The effect of protein level on the tryptophan requirement of the growing chick. J. Nutr. 59:67

Griminger, P., Y. S. Shum, and P. Budowski. 1970. Effect of dietary vitamin K on avian brain thromboplastin activity. Poult. Sci. 49:1681. Grundboeck, J., K. Honory, and D. Honory. 1977. Influence of vitamin E on intestinal resorption of carotenoids and vitamin A in adult hens. Bull. Vet. Inst. Pulawy 21:55

Guenter, W., and P. H. B. Hahn. 1986. Fluorine toxicity and laying hen performance. Poult. Sci. 65:769. Guenter, W., D. B. Bragg, and P. A. Kondra. 1971. Effect of dietary linoleic acid on fatty acid composition of egg yolk, liver, and adipose tissue. Poult. Sci. 50:845.

Guill, R. A., and K. W. Washburn. 1973. Relationship between hatch weight as a percentage of egg weight and feed conversion ratio in broiler chicks . Poult. Sci. 52:1641.

Guillaume, J. 1977. Donnes complimentaires sur les besoins de la poule reproductrice naine Vedette I.N.R.A. (JV 15) en energie et acides amines. (Further data on energy and amino acid requirements of the dwarf breeding hen Vedette I.N.R.A. (JV 15). Ann. Zootechnol.

Guirguis, N. 1976. Metabolizable energy values of fats and protein concentrates for poultry: Effect of sex and inclusion level of feedstuffs. Aust. J. Exp. Agric. Anim. Husb. 16:691.

Guo, L. S. S., and J. D. Summers. 1969. Stability and effect on energy metabolism of thiamine in poultry rations. Poult. Sci. 48:1471

Gutowska, M. S., and R. T. Parkhurst. 1942. Studies in mineral nutrition of laying hens. 2. Excess of calcium in the diet. Poult. Sci. 21:321.

Hafez, Y. S. M., and F. H. Kratzer. 1976. The effect of diet on the toxicity of vanadium. Poult. Sci. 55:918.

Hajj, R. N., and J. L. Sell. 1969. Magnesium requirement of the laying hen for production. J. Nutr. 97:441.

Hakansson, J. 1974. Factors affecting the digestibility of fats and fatty acids in chicks and hens. Swed. J. Agric. Res. 4:33.

Hall, W. C., I. Damjanou, S. W. Nielsen, L. van der Heide, and H. D. Eaton. 1980. Testicular changes of acute vitamin A deficiency of cockerels. Am. J. Vet. Res. 41:586.

Halle, I., H. Jeroch, and G. Gebhardt. 1984. Untersuchungen zur Eiweissverwertung sowie zum Rohprotein- und Aminosaurenbedarf der Broilerhenne. (Investigations into protein utilization as well as the crude protein and amino acid requirements of the broiler hen.) Arch. Tierernaehr. 34:833.

Haller, R. W., and M. L. Sunde. 1966. The effects of withholding water on the body temperature of poults. Poult. Sci. 45:991.

Halpin, K. M., and D. H. Baker. 1986. Long-term effects of corn, soybean meal, wheat bran, and fish meal on managanese utilization in the chick. Poult. Sci. 65:1371.

Ham, W. E., R. M. Sandstedt, and F. E. Mussehl. 1945. The proteolytic inhibiting substance in the extract from unheated soybean meal and its effect upon growth in chickens. J. Biol. Chem. 161:635.

Hamazume, Y., T. Mega, and T. Ikenaka. 1984. Characterization of hen egg white- and yolk-riboflavin binding proteins and amino acid sequence of egg white-riboflavin binding protein. J. Biochem. 93:1633.

Hamilton, P. B. 1971. A natural and extremely severe occurrence of aflatoxicosis in laying hens. Poult. Sci. 50:1880.

Hamilton, R. M. G., and J. D. Cipera. 1981. Effects of dietary calcium levels during the brooding, rearing and early laying period on feed intake, egg production and shell quality of White Leghorn hens. Poult. Sci. 60:349.

Hamilton, R. M. G., and B. K. Thompson. 1980. Effects of sodium plus potassium to chloride ratio in practical-type diets on blood gas levels in three strains of White Leghorn hens and the relationship between acid-base balance and egg shell strength. Poult. Sci. 59:1294.

Hammond, J. C. 1941. The vitamin D requirement of turkey poults. Poult. Sci. 20:204.

Han, Y., H. Suzuki, and D. H. Baker. 1991. Histidine and tryptophan requirement of growing chicks. Poult. Sci. 70:2148.

Harland, B. F., B. E. Fry, R. M. Jacobs, and M. R. S. Fox. 1973. Mineral requirements of young Japanese quail. Fed. Proc., Fed. Am. Soc. Exp. Biol. 32:930.

Harland, B. F., M. R. Spivey-Fox, and B. E. Fry, Jr. 1976. Magnesium deficiency, requirement, and toxicity in the young Japanese quail. Poult. Sci. 55:359.

Harms, R. H. 1980. New concepts in broiler breeder nutrition. P. 139 in Proceedings of the Florida Nutrition Conference. Gainesville, Fla.: University of Florida.

Harms, R. H. 1982. Sodium chloride requirement of young turkeys. Poult. Sci. 61:1772.

Harms, R. H. 1984. Life-cycle amino acid and protein requirement of the laying hen. In Proceedings of the Maryland Nutrition Conference for Feed Manufacturers. College Park, Md.: University of Maryland.

Harms, R. H., and R. D. Miles. 1983. The lack of a sodium and phosphorus interaction in the diet of young poults. Nutr. Rep. Int. 27:179.

Harms, R. H., and R. D. Miles, 1984. Effects of supplemental methionine and potassium sulfate on the choline requirement of the turkey poult. Poult. Sci. 63:1464.

Harms, R. H., and H. R. Wilson. 1980. Protein and sulfur amino acid requirements of broiler breeder hens. Poult. Sci. 59:470.

Harms, R. H., and H. R. Wilson. 1984. The chloride requirement of the broiler breeder hen. Poult. Sci. 63:835.

Harms, R. H., and H. R. Wilson. 1987. Life cycle feeding of broiler breeders explored. Feedstuffs 50(May 25):14.

Harms, R. H., C. R. Douglas, and P. W. Waldroup. 1961. The effects of feeding various levels and sources of phosphorus to laying hens. Fla. Agric. Exp. Stn. Bull. 644.

Harms, R. H., O. M. Junquiera, and H. R. Wilson. 1983. Chloride requirement of the turkey breeder hen. Poult. Sci. 62:2442.

Harms, R. H., S. M. Bootwalla, and H. R. Wilson. 1984. Performance of broiler breeder hens on wire and litter floors. Poult. Sci. 63:1003.

Harms, R. H., R. E. Buresh, and H. R. Wilson. 1985. Sodium requirement of the turkey hen. Br. Poult. Sci. 26:217.

Harms, R. H., N. Ruiz, R. E. Buresh, and H. R. Wilson. 1988. Research note: Effect of niacin supplementation of a corn-soybean meal diet on performance of turkey breeder hens. Poult. Sci. 67:336.

Harper, J. A., and G. H. Arscott. 1962. Salt as a stress factor in relation to pendulous crop and aortic rupture in turkeys. Poult. Sci. 41:497.

Harris, L. E., L. C. Kearl, and P. V. Fonnesbeck. 1972. Use of regression equations in predicting availability of energy and protein. J. Anim. Sci. 35:658.

Hart, E. B., J. G. Halpin, and H. Steenbock. 1922. Nutritional requirements of baby chicks. II. Further study of leg weakness in chickens. J. Biol. Chem. 52:379

- Hartel, H.. 1986. Influence of food input and procedure of determination on metabolizable energy and digestibility of a diet measured with young and adult birds. Br. Poult. Sci. 27:11.
- Hassan, S., L. Jonsson, and J. Hakkarainen. 1985. Morphological studies on nutritional encephalomalacia in chicks, with reference to mineralized deposits in the cerebellum. Zentralbl. Veterinaermed. Reihe A 32:662.
- Hathcock, J. N., C. H. Hill, and G. Matrone. 1964. Vanadium toxicity and distribution in chicks and rats. J. Nutr. 82:106.
- Hauschka, P. V., and M. L. Reid. 1978a. Timed appearance of a calcium-binding protein containing carboxyglutamic acid in developing chick bone. Dev. Biol. 65:426.
- Hauschka, P. V., and M. L. Reid. 1978b. Vitamin K dependence of a calcium-binding protein containing gamma carboxyglutamic acid in chicken bone. J. Biol. Chem. 263:9063.
- Hauschka, P. V., J. B. Lian, D. E. C. Cole, and C. M. Gundberg. 1989. Osteocalcin and matrix Gla protein: Vitamin K-dependent proteins in bone. Physiol. Rev. 69:990.
- Heard, G. S., and E. F. Annison. 1986. Gastrointestinal absorption of vitamin B-6 in the chicken (Gallus domesticus). J. Nutr. 116:107.
- Hearn, P. J., and J. A. Hill. 1978. The role of water in commercial egg production. ADAS Q. Rev. Spring:35.
- Hegsted, D. M., and R. L. Perry. 1948. Nutritional studies with the duck. V. Riboflavin and pantothenic acid requirements. J. Nutr. 35:411.
- Hegsted, D. M., and M. N. Rao. 1945. Nutritional studies with the duck. 2. Pyridoxine deficiency. J. Nutr. 30:367. Heine, U. I., A. B. Roberts, E. F. Munoz, N. S. Roche, and M. B. Sporn. 1985. Effects of retinoid deficiency on the development of the heart and vascular system of the quail embryo. Virchows Arch. (Cell Pathol.) 50:135.
- Henderson, R. F., and T. R. Henderson. 1966. Vitamin B₁₂ and the synthesis of thymine and choline in the chick. J. Nutr. 88:151.
- Hermayer, K. L., P. E. Stake, and R. L. Shippe. 1977. Evaluation of dietary zinc, cadmium, tin, lead, bismuth and arsenic toxicity in hens. Poult. Sci. 56:1721.
- Herz, J., M. Kirchgessner, S. Dammert, and H. Giebler. 1975a. Protein and energy requirement of heavy male turkeys during the starting period. Arch. Gefluegelk. 39:91
- Herz, J., M. Kirchgessner, H. Giebler, and S. Dammert. 1975b. On the nutritional requirement of heavy male turkeys in the early fattening period. Arch. Gefluegelk. 39:203.
- Heuser, G. F., and M. L. Scott. 1953. Studies in duck nutrition. 5. Bowed legs in ducks, a nutritional disorder. Poult. Sci. 32:137.
- Heuser, G. F., H. S. Wilgus, and L. C. Norris. 1938. The quantitative vitamin G requirement of chicks. Poult. Sci. 17:105.
- Hewitt, D., and D. Lewis. 1972. The amino acid requirements of the growing chick. 1. Determination of amino acid requirements. Br. Poult. Sci. 13:449.
- Hill, C. H. 1974. Influence of high levels of minerals on the susceptibility of chicks to Salmonella gallinarum. J. Nutr. 104:1221.
- Hill, C. H., and G. Matrone. 1961. Studies on copper and iron deficiencies in growing chicks. J. Nutr. 73:425.
- Hill, C. H., G. Matrone, W. L. Payne, and C. W. Barber. 1963. In vivo interactions of cadmium with copper, zinc, and iron. J. Nutr. 80:227. Hill, C. H., B. Starcher, and G. Matrone. 1964. Mercury and silver interrelationships with copper. J. Nutr. 83:107.
- Hill, F. W. 1979. The effect of dietary protein levels on mineral toxicity in chicks. J. Nutr. 109:501.
- Hill, F. W., and L. M. Dansky. 1950. Studies of the protein requirement of chicks and its relation to dietary energy level. Poult. Sci. 29:763.
- Hill, F. W., and L. M. Dansky. 1954. Studies on the energy requirements of chickens 1. The effect of dietary energy level on growth and feed consumption. Poult. Sci. 33:112.
- Hill, F. W., and D. L. Anderson. 1958. Comparison of ME and PE determinations with growing chicks. J. Nutr. 64:587.
- Hill, F. W., D. L. Anderson, and L. M. Dansky. 1956. Studies of the energy requirements of chickens. 3. The effect of dietary energy level on the rate and gross efficiency of egg production. Poult. Sci. 35:54.
- Hill, F. W., M. L. Scott, L. C. Norris, and G. F. Heuser. 1961. Reinvestigation of the vitamin A requirements of laying and breeding hens and their progeny. Poult. Sci. 40:1245.
- Hinkson, R. S., Jr., E. E. Gardiner, A. G. Kese, D. N. Reddy, and L. T. Smith. 1971. Calcium requirement of the pheasant chick. Poult. Sci. 50:35.
- Hogan, A. G., L. R. Richardson, H. Patrick, D. L. O'Dell, and H. L. Kempster. 1941. Vitamin B₆ and chick nutrition. Poult. Sci. 20:180.
- Holdas, A., and K. N. May. 1966. Fish oil and fishy flavor of eggs and carcasses of hens. Poult. Sci. 45:1405
- Holsheimer, J. P. 1981. The protein and amino-acid requirements of broilers between 5 and 6 weeks. 2. Feeding diets supplemented with essential and nonessential amino acids. Arch. Gefluegelkd. 45:151.
- Horani, F., and J. L. Sell. 1977. Effect of feed-grade animal fat on laying hen performance and on metabolizable energy of rations. Poult. Sci. 56:1972.
- Howell, J. McC., and J. N. Thompson. 1967. Lesions associated with the development of ataxia in vitamin A-deficient chicks. Br. J. Nutr. 21:741.
- Hoyle, C. M., and J. D. Garlich. 1987. Effect of high-fat diet fed prior to or at sexual maturity on egg weight. Poult. Sci. 66:1202.
- Hughes, B. L., and D. G. M. Wood-Gush. 1971. Investigations into specific appetites for sodium and thiamine in domestic fowls. Physiol. Behav. 6:331
- Hughes, B. L., B. D. Barnett, J. E. Jones, and J. W. Dick. 1979. Safety of feeding aflatoxin-inactivated corn to White Leghorn layer-breeders. Poult. Sci. 58:1202.
- Hunchar, J. G., and O. P. Thomas. 1976. The tryptophan requirement of male and female broilers during the 4-7 week period. Poult. Sci. 55:379.
- Hurwitz, S., and A. Bar. 1971. The effect of prelaying mineral nutrition on the development, performance and mineral metabolism of pullets. Poult. Sci. 50:1044.
- Hurwitz, S., and S. Bornstein. 1973. The protein and amino acid requirements of laying hens: Suggested models for calculation. Poult. Sci. 52:1124.
- Hurwitz, S., and S. Bornstein. 1978. The protein and amino acid requirements of laying hens: Experimental evaluation of models of calculation. II. Valine requirement and layer-starter diets. Poult. Sci. 57:711.
- Hurwitz, S., H. C. Harrison, E. C. Bull, and H. E. Harrison. 1967. Comparison of the actions of vitamins D2 and D3 in the chick and their retention in serum, liver and intestinal mucosa. J. Nutr. 91:208
- Hurwitz, S., I. Cohen, A. Bar, and H. Bornstein. 1973. Sodium and chloride requirements of the chick: Relationship to acid-base balance. Poult. Sci. 52:903.
- Hurwitz, S., D. Sklan, and I. Bartov. 1978. New formal approaches to the determination of energy and amino acid requirements of chicks. Poult. Sci. 57:197.
- Hurwitz, S., M. Weiselberg, U. Eisner, I. Bartov, G. Riesenfeld, M. Sharvit, A. Niv, and S. Bornstein. 1980. The energy requirements and performance of growing chickens and turkeys as affected by environmental temperature. Poult. Sci. 59:2290.
- Hurwitz, S., Y. Frisch, A. Bar, U. Eisner, I. Bengal, and M. Pines. 1983a. The amino acid requirements of growing turkeys. 1. Model construction and parameter estimation. Poult. Sci. 62:2208.
- Hurwitz, S., E. Wax, and J. Bengal. 1983b. Performance and energy needs of 20-week-old male turkeys at different environmental temperatures. Poult. Sci. 62:1327.

Hussein, A. S., A. H. Cantor, and T. H. Johnson. 1989. Effect of dietary aluminum on calcium and phosphorus metabolism and performance of laying hens. Poult. Sci. 68:706

- Huyghebaert, G., G. De Munter, and G. DeGroote. 1988. The metabolizable energy (AME_n) of fats for broilers in relation to their chemical composition. Anim. Feed Sci. Technol. 20:45.
- Ikumo, H. 1980. Comparison in inducing effect on vitamin E deficiency symptoms in chicks between dilauryl succinate and unsaturated fatty acids. J. Nutr. 100:2045.
- Isaacks, R. E., B. L. Reid, R. E. Davies, J. H. Quisenberry, and J. R. Couch. 1960. Restricted feeding of broiler type replacement stock. Poult. Sci. 39:339
- Ishibashi, T. 1972. Protein metabolism in the fowl. IV. Possibility of conversion of tyrosine to phenylalanine in the adult rooster. Agric. Biol. Chem. 36:596.
- Ishihara, T., H. Kinari, and M. Yasuda. 1974. Studies on thiaminase I in marine fish. III. Vitamin B₁ deficiency disease of chicken caused by inclusion of anchovy in diet. Bull. J. Soc. Sci. Fish. 40:309.
- Jaap, R. G. 1938. Breeding for body shape in chickens. U.S. Egg Poult. Mag. 44:488.
 Jackson, C. D., G. G. Walker, H. L. Burrus, R. D. Morrison, A. L. Malle, E. C. Nelson, and R. H. Thayer. 1974. Protein and energy intake requirements for caged turkey breeder hens. P. 248 in Annals of Scientific Research 1974. Stillwater, Okla.: Oklahoma Agricultural Experiment Station.
- Jager, F. C. 1972. Linoleic acid intake and vitamin E requirement in rats and ducklings. Ann. N.Y. Acad. Sci. 20:199.
- Jande, S. S., S. Tolnai, and D. E. M. Lawson. 1981. Immunohistochemical localization of vitamin D-dependent calcium-binding protein in duodenum, kidney, uterus and cerebellum of chickens. Histochemistry 71:99.
- Janssen, W. M. M. A. 1971. The influence of feeding on gizzard erosion in broilers. Arch. Gefluegelkd. 4:137.
- Janssen, W. M. M. A., ed. 1989. European Table of Energy Values for Poultry Feedstuffs. 3rd ed. Beekbergen, Netherlands: Spelderholt Center for Poultry Research and Information Services.
- Janssen, W. M. M. A., K. Terpstra, F. F. E. Beeking, and A. J. N. Bisalsky. 1979. Feeding Values for Poultry. 2nd ed. Beekbergen, Netherlands: Spelderholt Center for Poultry Research and Information Services.
- Jensen, L. S. 1965. Vitamin A requirement of breeding turkeys. Poult. Sci. 44:1609.
- Jensen, L. S. 1974. Fat soluble vitamin problems in biochemical diagnosis. P. 14 in Proceedings of the 1974 Georgia Nutrition Conference. Athens, Ga.: University of Georgia.
- Jensen, L. S. 1975a. Modification of a selenium toxicity in chicks by dietary silver and copper. J. Nutr. 105:769.
- Jensen, L. S. 1975b. Precipitation of a selenium deficiency by high dietary levels of copper and zinc. Proc. Soc. Exp. Biol. Med. 149:113.
- Jensen, L. S., and R. Martinson. 1969. Requirement of turkey poults for biotin and effect of deficiency on incidence of leg weakness in developing turkeys. Poult. Sci. 48:222.
- Jensen, L. S., and D. V. Maurice. 1980. Dietary chromium and interior egg quality. Poult. Sci. 59:341.
- Jensen, L. S., and J. McGinnis. 1957. Studies on the vitamin E requirement of turkeys for reproduction. Poult. Sci. 36:1344.
- Jensen, L. S., and J. McGinnis. 1960. Influence of selenium, antioxidants and type of yeast on vitamin E deficiency. J. Nutr. 72:23.
- Jensen, L. S., and J. McGinnis. 1961. Nutritional investigations with turkey hens. 1. Quantitative requirement for protein. Poult. Sci. 40:288.
- Jensen, L. S., V. M. Calderon, and C. X. Mendonca, Jr. 1990. Response to tryptophan of laying hens fed practical diets varying in protein concentration. Poult. Sci. 69:1956.
- Jensen, L. S., H. C. Saxena, and J. McGinnis. 1963. Nutritional investigations with turkey hens. 4. Quantitative requirement for calcium. Poult. Sci. 42:604.
- Jensen, L. S., G. O. Ranit, R. K. Wagstaff, and J. McGinnis. 1965. Protein and lysine requirements of developing turkeys as influenced by pelleting. Poult. Sci. 44:1435
- Jensen, L. S., R. Martinson, and G. Schumaier. 1970. A foot pad dermatitis in turkey poults associated with soybean meal. Poult. Sci. 49:76.
- Jensen, L. S., R. P. Peterson, and L. Falen. 1974. Inducement of enlarged hearts and muscular dystrophy in turkey poults with dietary silver. Poult. Sci. 53:57.
- Jensen, L. S., B. Manning, L. Falen, and J. McGinnis. 1976. Lysine needs of rapidly growing turkeys from 12-22 weeks of age. Poult. Sci. 55:1394.
- Jensen, L. S., G. L. Colnago, K. Takahaski, and Y. Akiba. 1986. Dietary selenium status and plasma thyroid hormones in chicks. Biol. Trace Element Res. 10:11.
- Jensen, L. S., C. L. Wyatt, and B. I. Fancher. 1989. Sulfur amino acid requirement of broiler chickens from 3 to 6 weeks of age. Poult. Sci. 68:163
- Jeroch, H., and A. Hennig. 1965. Untersuchungen über den Eiweißbedarf der Mastente unter Berücksichtigung einer Lysin, Methionin und Vitamin B erganzung des mastfutters. arch. Tierernaehr. 15:385.
- Jeroch, H., I. Halle, T. Pahle, and G. Gebhardt. 1982. Untersuchungen zum Rohproteinbedarf der Broilerhenne. (Investigations of the crude protein requirement of hens for broiler production.) Arch. Tierernaehr. 32:9.
- Jeschke, N., P. E. Nelson, and W. F. O. Marasas. 1987. Toxicity to ducklings of Fusarium moniliforme isolated from corn intended for use in poultry feed. Poult. Sci. 66:1619
- Johnson, D., Jr., A. L. Mehring, Jr., F. X. Savins, and H. W. Titus. 1962. The tolerance of growing chickens for dietary zinc. Poult. Sci. 41:311
- Johnson, E. L. 1954. Vitamin B₁₂ requirements of hen as affected by choline and pencillin. Poult. Sci. 33:100.
- Johnson, E. L. 1955. Turkeys require vitamin B₁₂ and choline. Poult. Sci. 34:1013.

 Jones, J. E., H. R. Wilson, R. H. Harms, C. F. Simpson, and P. W. Waldroup. 1967. Reproductive performance in male chickens fed protein deficient diets during the growing period. Poult. Sci. 46:1569.
- Jukes, T. H. 1939. The pantothenic acid requirement of the chick. J. Biol. Chem. 129:225.
- Jukes, T. H. 1940. Effect of choline and other supplements on perosis. J. Nutr. 20:445.
- Jukes, T. H., and F. H. Bird. 1942. Prevention of perosis by biotin. Proc. Soc. Exp. Biol. Med. 49:231.
- Jukes, T. H., and L. W. McElroy. 1943. Observations on the pantothenic acid requirement of chicks. Poult. Sci. 22:438.
- Jukes, T. H., E. L. R. Stokstad, and M. Belt. 1947. Deficiencies of certain vitamins as studied with turkey poults on a purified diet . J. Nutr.
- Jull, M. A. 1924. Egg weight in relation to production. II. The nature and causes of changes in egg weight in relation to annual production in pullets. Poult. Sci. 4:3.
- Just, A., H. Jorgensen, and J. A. Fernandez. 1984. Prediction of metabolizable energy for pigs on the basis of crude nutrients in the feeds. Livest. Prod. Sci. 11:105.
- Kaetzel, D. M., Jr., and J. H. Soares, Jr. 1985. Effect of dietary calcium stress on plasma vitamin D₃ metabolites in the egg-laying Japanese quail. Poult. Sci. 64:1121
- Kane, E. A., W. C. Jacobson, and L. A. Moore. 1950. A comparison of techniques used in digestibility studies with dairy cattle. J. Nutr. 41:583.
- Kappleman, J. A., G. R. McDaniel, and D. A. Roland. 1982. The effect of four dietary calcium levels on male broiler breeder reproduction. Poult. Sci. 61:1383.
- Kazemi, R., and F. H. Kratzer. 1980. Source of protein affecting the vitamin B₆ requirement of chicks. Poult. Sci. 59:95.
- Kealy, R. D., and T. W. Sullivan. 1966. Studies on manganese requirement and interactions in the diet of young turkeys. Poult. Sci. 45:1352.
- Kellerup, S. U., J. W. Parker, and G. H. Arscott. 1965. Effects of restricted water consumption on broiler chickens. Poult. Sci. 44:78.

Keshavarz, K. 1984. The effect of different dietary protein levels in the rearing and laying periods on performance of White Leghorn chickens. Poult. Sci. 63:2229

Keshavarz, K. 1987. Influence of feeding a high-calcium diet for various durations in prelaying period on growth and subsequent performance of White Leghorn pullets. Poult. Sci. 66:1576.

Keshavarz, K., and R. E. Austic. 1985. An investigation concerning the possibility of replacing supplemental methionine with choline in practical laying rations. Poult. Sci. 64:114.

Kessler, J. W., and O. P. Thomas. 1976. The arginine requirement of the 4-7 week old broiler. Poult. Sci. 55:2379.

Ketels, E., and G. DeGroote. 1987. Effect of fat source and level of fat inclusion on the utilization of fatty acids in broiler diets. Arch. Gefluegelkd, 51:127.

Ketels, E., and G. DeGroote. 1988. The nutritional value for broilers of fats characterized by short-chain fatty acids as affected by level of inclusion and age. Anim. Feed Sci. Technol. 22:105.

Ketels, E, and G. DeGroote. 1989. Effect of ratio of unsaturated fatty acids of the dietary lipid fraction on utilization and metabolizable energy of added fats in young chicks. Poult. Sci. 68:1506.

Ketels, E., G. Huyghebaert, and G. DeGroote. 1986. The nutritional value of commercial fat blends in broiler diets. 2. Effect of the incorporation level on the fatty acid utilization. Arch. Gefluegelkd. 51:65.

Ketels, E., G. Huyghebaert, and G. DeGroote. 1987. The nutritional value of commercial fat blends in broiler diets. 1. Effect of the incorporation level on the metabolizable energy content. Arch. Gefluegelkd. 51:59.

Ketola, H. G., R. J. Young, and M. C. Nesheim. 1973. Linoleic acid requirement of turkey poults. Poult. Sci. 52:597.

Kienholz, E. W., D. E. Turk, M. L. Sunde, and W. G. Hoekstra. 1961. Effects of zinc deficiency in the diets of hens. J. Nutr. 75:211.

Kietzmann, M. 1981. Influence of pantothenic acid on the metabolism and the excretion of sulfonamides in chicken. Arch. Gefluegelkd. 45:233

Kim, C. S., and C. H. Hill. 1966. Interrelationship of dietary copper and amine oxidase in the formation of elastin. Biochem. Biophys. Res. Commun. 24:395.

Kinsella, J. E., B. Lokesh, S. G. Broughton, and J. Whelan. 1990. Dietary polyunsaturated fatty acids and eicosanoids: potential effects on the modulation of inflammatory and immune cells: an overview. Nutrition 6:24.

Kirchgessner, M., and F. Friesecke. 1963. Growth and body composition of chickens given different amounts of vitamin B-6. Arch.

Gefluegelkd. 27:412 (abstracted in 1964 in Nutr. Abst. Rev. 34:411).
Klain, G. J., D. C. Hill, J. A. Gray, and H. D. Branion. 1957. Achromatosis in the feathers of chicks fed lysine-deficient diets. J. Nutr. 61:317. Klain, G. J., H. M. Scott, and B. C. Johnson. 1960. The amino acid requirement of the growing chick fed a crystalline amino acid diet. Poult. Sci. 39:39

Klosterman, H. J., G. L. Lamoureux, and J. L. Parsons. 1967. Isolation, characterization and synthesis of linatine, a vitamin B₆ antagonist found in flaxseed (Linum usitatissium). Biochemistry 6:170.

Kobayashi, T., and M. Yasumura. 1973. Studies of the ultraviolet irradiation of provitamin D and its related compounds. III. Effect of wavelength on the formation of potential vitamin D₂ in the irradiation of erosterol by monochromatic ultraviolet rays. J. Nutr. Sci. Vitaminol. 19:123.

Koehler, H. H., and G. E. Bearse. 1975. Egg flavor quality as affected by fish meals or fish oils in laying rations. Poult. Sci. 54:881.

Kohler, H., B. Huttner, E. Vielitz, D. I. Kahlan, and B. Gedek. 1978. Rickets in broilers by food contamination with Fusarium moniliforme Sheldon. 2. Histological and mycotoxicological studies. Zentralbl. Veterinaermed. Reihe B 25:89.

Kramer, S. L., and P. E. Waibel. 1978. The Vitamin D Requirement of Turkey Breeder Hens in Cages. Minnesota Res. Rep. 165. Minneapolis, Minn.: University of Minnesota.

Kratzer, F. H. 1952. Effect of dietary molybdenum upon chicks and poults. Proc. Soc. Exp. Biol. Med. 80:483.

Kratzer, F. H., and P. Vohra. 1986. Chelates in Nutrition. Boca Raton, Fla.: CRC Press.

Kratzer, F. H., and D. Williams. 1948a. The pantothenic acid requirement of poults for early growth. Poult. Sci. 27:518.

Kratzer, F. H., and D. E. Williams. 1948b. The relation of pyridoxine to the growth of chicks fed rations containing linseed oil meal. J. Nutr. 36:297.

Kratzer, F. H., and D. E. Williams. 1948c. The glycine requirement of young poults. J. Nutr. 35:315.

Kratzer, F. H., F. H. Bird, V. S. Asmundson, and S. Lepkousky. 1947. The comparative pyridoxine requirements of chicks and turkey poults. Poult. Sci. 26:453.

Kratzer, F. H., D. E. Williams, and B. Marshall. 1952. The requirement for isoleucine and the activities of its isomers for the growth of turkey poults. J. Nutr. 47:631.

Kratzer, F. H., P. N. Davis, B. J. Marshall, and D. E. Williams. 1955. The pantothenic acid requirement of turkey hens. Poult. Sci. 34:68.

Kratzer, F. H., P. N. Davis, and U. K. Abbott. 1956a. The folic acid requirements of turkey breeding hens. Poult. Sci. 35:711.

Kratzer, F. H., P. N. Davis, and B. J. Marshall. 1956b. The protein and lysine requirements of turkeys at various ages. Poult. Sci. 35:197. Kratzer, F. H., P. Vohra, J. B. Allred, and P. N. Davis. 1958. Effect of zinc upon growth and incidence of perosis in turkey poults. Proc. Soc. Exp. Biol. Med. 98:205.

Kratzer, F. H., R. A. Ernst, B. J. Marquez, P. Schroeder, C. H. Brown, and S. A. Peoples. 1976. The effect of a low energy diet on the concentration of DDT in the adipose tissue of turkeys. Poult. Sci. 55:365.

Kratzer, F. H., S. Bersch, P. Vohra, and R. A. Ernst. 1990. Chemical and biological evaluation of soya-bean flakes autoclaved for different durations. Anim. Feed Sci. Technol. 31:247

Krautmann, B. A., S. M. Hauge, E. T. Mertz, and C. W. Carrick. 1957. The arginine level for chicks as influenced by ingredients. Poult. Sci. 36:935.

Krautmann, B. A., S. M. Hauge, E. T. Mertz, and C. W. Carrick. 1958. Phenylalanine and threonine levels for young chicks. Poult. Sci. 37:535

Krista, L. M., C. W. Carlson, and O. E. Olson. 1961. Some effects of saline water on chicks, laying hens, poults and ducklings. Poult. Sci. 40:938

Kriz, H., and J. Holman. 1969. Histology of onset of skin changes in hypervitaminosis A in chickens. Int. J. Vitam. Res. 39:3.

Krueger, K. K., R. L. Atkinson, J. R. Couch, and W. F. Krueger. 1976. Biotin and early poult growth. Poult. Sci. 55:497.

Krueger, K. K., J. A. Owen, C. E. Krueger, and T. M. Ferguson. 1978. Effect of feed and light regimes during the growing period on subsequent reproductive performance of Broad Breasted White turkeys fed two protein levels. Poult. Sci. 57:27.

Kubena, L. F., R. B. Harvey, T. D. Phillips, D. E. Corrier, and W. E. Huff. 1990. Dimunition of aflatoxicosis in growing chickens by the

dietary addition of a hydrated, sodium calcium aluminosilicate. Poult. Sci. 69:727.

Kubicek, J. J., and T. W. Sullivan. 1973. Dietary chloride requirement of starting turkeys. Poult. Sci. 52:1903.

Kummero, V. E., J. E. Jones, and C. B. Loadholt. 1971. Lysine and total sulfur amino acid requirements of turkey poults, one-day to three weeks. Poult. Sci. 50:752

Kumpost, H. E., and T. W. Sullivan. 1966. Minimum sodium requirement and interaction of potassium and sodium in the diet of young turkeys. Poult. Sci. 45:1334.

Kunishisa, Y., T. Yaname, T. Tanake, I. Fukuda, and T. Nishikava. 1966. The effect of dietary chromium on the performance of chicks. Jpn. Poult. Sci. 3:10.

Kwakkel, R. P., F. L. S. M. DeKoning, M. W. A. Verstegen, and G. Hof. 1991. Effect of method and phase of nutrient restriction during rearing on productive performance of light hybrid pullets and hens. Br. Poult. Sci. 32:747.

Landauer, W. 1956. Niacin antagonists and chick development. J. Exp. Zool. 136:509.

Landauer, W. 1967. The Hatchability of Chicken Eggs as Influenced by Environment and Heredity. Storrs Agricultural Experimental Station Monogr. I. Storrs, Conn.: University of Connecticut.

Langer, B. W., Jr., and F. H. Kratzer. 1967. The vitamin B₁₂-formaldehyde complex as a one-carbon unit precursor in the biosynthesis of methionine in turkey poultry liver homogenates. Poult. Sci. 46:749.

Laovoravit, N., F. H. Kratzer, and R. Becker. 1986. The nutritional value of amaranth for feeding chickens. Poult. Sci. 65:1365.

Larbier, M., R. Ferre, and J. C. Blum. 1979. Influence de l'apport alimentaire de proteines sur les performances de la poule reproductrice et la croissance de la descendance. (The influence of dietary protein level on the egg production of broiler breeder hens and on the growth of offspring.) Arch. Gefluegelkd. 43:263.

Lasiewski, R. C. and W. R. Dawson. 1967. A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69:13.

Latshaw, J. D. 1981. The primary importance of amino acid levels and secondary importance of protein levels in practical layer feeds. Nutr. Rep. Int. 23:71.

Latshaw, J. D., and L. S. Jensen. 1971. Choline level and its effect on egg weight in the Japanese quail. Poult. Sci. 50:790.

Latshaw, J. D., and L. S. Jensen. 1972. Choline deficiency and synthesis of choline from precursors in mature Japanese quail. J. Nutr. 102:749.

Latshaw, J. D., and M. Osman. 1974. A selenium and vitamin E response condition in the laying hen. Poult. Sci. 53:1704.

Latshaw, J. D., and J. F. Ort, and C. D. Diesem. 1977. The selenium requirements of the hen and effects of a deficiency. Poult. Sci. 56:1876.

Latshaw, J. D., G. B. Havenstein, and V. D. Toelle. 1990. Energy level in the laying diet and its effects on the performance of three commercial Leghorn strains. Poult. Sci. 69:1998.

Lau, L.-S., C. W. Gottlieb, L. R. Wasserman, and V. Herbert. 1965. Measurement of serum vitamin B₁₂ level using radioisotope dilution and coated charcoal. Blood 26:202.

Leach, R. M., Jr. 1968. Effect of manganese upon the epiphyseal growth plate in the young chick. Poult. Sci. 47:828.

Leach, R. M. 1974. Studies on the potassium requirement of the laying hen. J. Nutr. 104:684.

Leach, R. M., Jr., and M. C. Nesheim. 1963. Studies on chloride deficiency in chicks . J. Nutr. 81:193.

Leach, R. M., Jr., R. Dam, T. R. Ziegler, and L. C. Norris. 1959. The effect of protein and energy on the potassium requirement of the chick. J. Nutr. 68:89.

Leach, R. M., T. R. Zeigler, and L. C. Norris. 1960. The effect of dietary sulfate on the growth rate of chicks fed a purified diet. Poult. Sci. 39:1577.

Leach, R. M., Jr., K. W. L. Wang, and D. E. Baker. 1979. Cadmium and the food chain: The effect of dietary cadmium on tissue composition in chicks and laying hens. J. Nutr. 109:437.

Lease, J. G., B. D. Barnett, E. J. Lease, and D. E. Turk. 1960. The biological unavailability to the chick of zinc in a sesame meal ration. J. Nutr. 72:66.

Leclercq, B. 1986. Energy requirements of avian species. In Nutrient Requirements of Poultry and Nutritional Research, C. Fisher and K. N. Boorman, eds. Boston, Mass.: Butterworth.

Leclercq, B., and H. de Carville. 1977a. L'alimentation azotee du caneton de Barbarie: Possibilities de reduction du taux protidique de l'aliment au cours de la periode de finition. Ann. Zootech. 27:169.

Leclercq, B., and H. de Carville. 1977b. On the sulfur amino acid requirement of Muscovy ducklings. Arch. Gefluegelkd. 41:270.

Leclercq, B., and H. de Carville. 1979. The lysine requirement of Muscovy ducklings determined with corn-sunflower meal diets. Arch. Gefluegelkd. 43:69.

Leclercq, B., H. de Carville, and G. Guy. 1990. Calcium requirement of male Muscovy ducklings. Br. Poult. Sci. 31:331.

Lee, D. J. W. 1982. Growth, erythrocyte glutathione reductase and liver flavin as indicators of riboflavin status in turkey poults. Br. Poult. Sci. 23:263.

Lee, D. J. W., A. R. Robblee, and R. Blair. 1976. The use of growth and liver aspartate aminotransferase to assess effect of source of nonessential nitrogen on pyridoxine depletion, repletion and requirements of chicks. Br. Poult. Sci. 17:43.

Lee, T. K., K. F. Shim, and E. L. Tan. 1977. Protein requirement of laying Japanese quail in the tropics. Singapore J. Primary Ind. 5:82.

Leeson, S. 1982. Factors affecting biotin specifications of poultry diets. P. 97 in Proceedings of the Guelph Nutrition Conference for Feed Manufacturers. Ontario, Canada: University of Guelph.

Leeson, S., and J. D. Summers. 1975. The nutritive value of Ontario's 1974 corn crop. P. 13 in Proceedings of the Guelph Nutrition Conference for Feed Manufacturers. Ontario, Canada: University of Guelph.

Leeson, S., and J. D. Summers. 1976a. Fat ME-values: The effect of fatty acid saturation. Feedstuffs 48(46):26.

Leeson, S., and J. D. Summers. 1976b. Effect of adverse growing conditions on corn maturity and feeding value for poultry. Poult. Sci. 55:588.

Leeson, S., and J. D. Summers. 1979. Step-up protein diets for growing pullets. Poult. Sci. 58:681.

Leeson, S., and J. D. Summers. 1980. Dietary salt and pullet development. Poult. Sci. 59:935.

Leeson, S., and J. D. Summers. 1984. Influence of nutritional modification on skeletal size of Leghorn and broiler breeder pullets. Poult. Sci. 63:1222.

Leeson, S., and J. D. Summers. 1987b. Effect of immature body weight on laying performance. Poult. Sci. 66:1924.

Leeson, S., and J. D. Summers. 1987b. Effect of dietary calcium levels near the time of sexual maturity on water intake and excreta moisture content. Poult. Sci. 66:1918.

Leeson, S., and J. D. Summers. 1988. Some nutritional implications of leg problems with poult. Br. Vet. J. 144:81.

Leeson, S., and J. D. Summers. 1989. Response of Leghorn pullets to protein and energy in the diet when reared in regular or hot-cyclic environments. Poult. Sci. 68:546.

Leeson, S., K. N. Boorman, D. Lewis, and D. H. Shrimpton. 1977a. Metabolizable energy studies with turkeys. A study of the nitrogen correction factor. Br. Poult. Sci. 18:373.

Leeson, S., J. D. Summers, and T. B. Daynard. 1977b. The effect of kernel maturity at harvest as measured by moisture content, on the metabolizable energy value of corn. Poult. Sci. 56:154

Leeson, S., R. J. Julian, and J. D. Summers. 1986. Influence of prelay and early lay dietary calcium concentration on performance and bone integrity of Leghorn pullets. Can. J. Anim. Sci. 66:1087.

Leong, K. C., L. S. Jensen, and J. McGinnis. 1962. Effect of water treatment and enzyme supplementation on the metabolizable energy of borlay. Pault. Sci. 41:36

barley. Poult. Sci. 41:36.
Lepore, P. D., and H. L. Marks. 1971. Growth rate inheritance in Japanese quail. 5. Protein and energy requirements of lines selected under different nutritional environments. Poult. Sci. 50:1335.

Lepore, P. D., and R. F. Miller. 1965. Embryonic viability as influenced by excess molybdenum in chicken breeder diets. Proc. Soc. Exp. Biol. Med. 118:155.

Lerner, I. M. 1946. The effect of selection for shank length on sexual maturity and early egg production. Poult. Sci. 25:204.

Lessire, M., B. Leclercq, and L. Conan. 1982. Metabolizable energy value of fats in chicks and adult cockerels. Anim. Feed Sci. Technol. 7:365.

Le Van, L. W., H. K. Schnoes, and H. F. DeLuca. 1981. Isolation and identification of 25-hydroxyvitamin D₂ 25-glucuronide: A biliary metabolite of vitamin D₂ in the chick. Biochemistry 20:222.

Lewis, D., and C. G. Payne. 1966. Fats and amino acids in broiler rations. 6. Synergistic relationships in fatty acid utilisation. Br. Poult. Sci. 7:209

Lewis, D., G. H. Smith, and C. G. Payne. 1963. Arginine in poultry nutrition. 1. Dietary requirement for arginine. Br. J. Nutr. 17:415.

Libby, D. A., and P. J. Schaible. 1955. Observations on growth response to antibiotics and arsenic acids in poultry feeds. Science 121:733.

- Liener, I. E. 1980. Toxic Constituents of Plant Foodstuffs. New York: Academic.
- Likuski, H. J. A., and H. G. Dorrell. 1978. A bioassay for rapid determination of amino acid availability values. Poult. Sci. 57:1658.
- Lillie, R. J., and C. A. Denton. 1968. Evaluation of four cereal grain and three protein level combinations for layer performance. Poult. Sci.
- Lillie, R. J., G. F. Combs, and G. M. Briggs. 1950. Folic acid in poultry nutrition. II. Effect of maternal diet and chick diet upon mortality, growth and feathering of progeny. Poult. Sci. 29:122.
- Lin, I. M., and T. F. Shen. 1979. Studies on duck nutrition. 2. Calcium and phosphorus requirements of mule ducklings. Poult. Sci. 58:124. Lin, C. F., J. I. Gray, A. Asghar, D. J. Buckley, A. M. Booren, and C. J. Flegal. 1989. Effects of dietary oils and α-tocopherol supplementation on lipid composition and stability of broiler meat. J. Food Sci. 54:1457.
- Lipstein, B., S. Bornstein, and P. Budowski. 1977. Utilization of choline from crude soybean lethicin by chicks. Poult. Sci. 56:331.
- Lloyd, M. D., C. A. Reed, and J. C. Fritz. 1949. Experience with high protein diets for chicks and poults. Poult. Sci. 28:69
- Lofland, H. B., Jr., H. O. Goodman, T. B. Clarson, and R. W. Prichard. 1963. Enzyme studies in thiamine-deficient pigeons. J. Nutr. 79:188.
- Lofton, J. T., and J. H. Soares, Jr. 1986. The effects of vitamin D₃ on leg abnormalities in broilers. Poult. Sci. 65:749.
- Logani, M. K., D. B. Nhari, P. D. Forbes, and R. E. Davis. 1977. Diester waxes from skin lipids of the feet of biotin depleted and biotin supplemented turkey poults. Lipids 12:626.
- Long, P. H., S. R. Lee, G. N. Rowland, and W. M. Britton. 1984. Experimental rickets in broilers: Gross, microscopic, and radiographic lesions. III. Vitamin D deficiency. Avian Dis. 28:933.
- Longstaff, M., and R. Hill. 1971. The influence of manganese in association with other dietary components on certain shell characteristics. Br. Poult. Sci. 12:169.
- Looi, S. H., and R. Renner. 1974. Effect of feeding "carbohydrate-free" diets on the requirement for vitamin B₁₂. J. Nutr. 104:394.
- Lopen, G. A., R. W. Phillips, and C. F. Nockels. 1973. Body water kinetics in vitamin A-deficient chickens. Proc. Soc. Exp. Biol. Med. 144:54.
- Lowenthal, J., and J. A. MacFarlane. 1965. Vitamin K-like and antivitamin K activity of substituted para-benzoquinones. J. Pharmacol. Exp. Ther. 147:130.
- Lowry, K. R., O. A. Izquierdo, and D. H. Baker. 1987. Efficacy of betaine relative to choline as a dietary methyl donor. Poult. Sci. 66(Suppl. 1):135.
- Lumijarvi, D. H., and P. Vohra. 1976. Studies on the sodium requirements of growing Japanese quail. Poult. Sci. 55:1410. Lyons, M., and W. M. Insko, Jr. 1937. Chondrodystrophy in the chick embryo produced by a mineral deficiency in the diet of the hen. Science 80:328.
- Machlin, L. J., and R. S. Gordon. 1960. The requirement of the chicken for certain unsaturated fatty acids. Poult. Sci. 39:1271.
- Machlin, L. J., and R. S. Gordon. 1962. Etiology of exudative diathesis, encephalomalacia, and muscular degeneration in the chicken. Poult. Sci. 41:473.
- MacLeod, M. G., and T. R. Jewitt. 1988. Maintenance energy requirements of laying hens: a comparison of measurements made by two methods based on indirect calorimetry. Br. Poult. Sci. 29:63
- Maier, D. A., and M. Kirchgessner. 1968. On the vitamin B₆ requirement of broilers. Arch. Gefluegelkd. 32:415.
- Mak, T. K., and P. Vohra. 1982. Thiamin, riboflavin, pyridoxine and niacin requirements of growing quail fed purified diets. Pertanika 5:66.
- Makled, M. N., and O. W. Charles. 1987. Eggshell quality as influenced by sodium bicarbonate, calcium source and photoperiod. Poult. Sci. 66:705
- Manning, B., and J. McGinnis. 1980. The effect of dietary sodium and protein levels on growth and egg production of White Leghorn pullets. Poult. Sci. 59:1633.
- Manoukas, A. G., R. C. Ringrose, and A. E. Teeri. 1968. The availability of niacin in corn, soybean meal and wheat middlings for the hen. Poult. Sci. 47:1826.
- March, B. E., and J. Biely. 1955. Fat studies in poultry. 3. Folic acid and fat tolerance in the chick. Poult. Sci. 34:39.
- March, B. E., and J. Biely. 1956. Folic acid supplementation of high-protein, high-fat diets. Poult. Sci. 35:550.
- March, B. E., and C. MacMillan. 1990. Linoleic acid as a mediator of egg size. Poult. Sci. 69:634.
- March, B. E., E. Wang, L. Seier, J. Sim, and J. Biely. 1973. Hypervitaminosis E in the chick. J. Nutr. 103:371.
- Mariakulandai, A., and J. McGinnis. 1953. The vitamin B₁₂ requirement for hatchability of chicken eggs. Poult. Sci. 32:3.
- Marks, H. L. 1981, role of water in regulating feed intake and feed efficiency of broilers. Poult. Sci. 60:698.
- Marks, H. L. 1987. Water and feed intake, feed efficiency, and abdominal fat levels of dwarf and normal chickens selected under different water:feed ratio environments. Poult. Sci. 66:1895
- Marks, H. L., and G. M. Pesti. 1984. The roles of protein level and diet form in water consumption and abdominal fat pad deposition of broilers. Poult. Sci. 63:1617.
- Marsden, S. J., G. S. McKee, and M. L. Crandall. 1965. Water deprival and replenishment in poults. Poult. Sci. 44:793
- Marusich, W., and J. C. Bauernfeind. 1963. The biological activity of beta-carotene in poultry and rats. Poult. Sci. 42:949.
- Marusich, W. L., E. F. Ogrinz, M. Brand, and M. Nitrovic. 1970. Induction, prevention and therapy of biotin deficiency in turkey poults and semipurified and commercial-type rations. Poult. Sci. 49:412.
- Massey, J. B. 1984. Kinetics of transfer of α-tocopherol between model and native plasma lipoproteins. Biochim. Biophys. Acta 793:387.
- Mateos, G. G., and J. L. Sell. 1980. Influence of graded levels of fat on utilization of pure carbohydrate by the laying hen. J. Nutr. 110:1894.
- Mateos, G. G., and J. L. Sell. 1981. Nature of the extrametabolic effect of supplemental fat used in semipurified diets for laying hens. Poult. Sci. 60:1925
- Mateos, G. G., J. L. Sell, and J. A. Eastwood. 1982. Rate of food passage (transit time) as influenced by level of supplemental fat. Poult. Sci. 61:94
- Mateova, Z., S. Koci, V. Gergelyiova, and R. Svec. 1980. Lysine requirements of broiler goslings. Biol. Chem. Zivocisne Vyroby Vet. 6:555.
- Maurice, D. V., B. L. Hughes, J. E. Jones, and J. H. Weber. 1982. The effect of reverse protein and low protein feeding regimens in the rearing period on pullet growth, subsequent performance and liver and abdominal fat at end of lay . Poult. Sci. 61:2421.
- Maxwell, B. F., and J. B. Lyle. 1957. Restricted water for wet dropping prevention. Poult. Sci. 36:921.

 Maxwell, M. H., C. C. Whitehead, and J. Armstrong. 1988. Haematological and tissue abnormalities in chicks caused by acute and subclinical folate deficiency. Br. J. Nutr. 59:73.
- McAuliffe, T., A. Pietraszek, and J. McGinnis. 1976. Variable rachitogenic effects of grain and alleviation by extraction or supplementation with vitamin D, fat, and antibiotics. Poult. Sci. 55:2142.
- McCarthy, J. T., S. S. Barham, and R. Kumar. 1984. 1,25-dihydroxyvitamin D₃ rapidly alters the morphology of the duodenal mucosa of
- rachitic chicks: Evidence for novel effects of 1,25-dihydroxyvitamin D₃. J. Steroid Biochem. 21:253.

 McCartney, M. G., and H. B. Brown. 1980. Effects of feed restriction on reproductive performance of broiler breeder males. Poult. Sci. 59:2583.
- McCormick, C., J. D. Garlich, and F. W. Edens. 1980. Phosphorus nutrition and fasting: Interrelated factors which affect the survival time of young chickens exposed to high ambient temperature. J. Nutr. 110:784.
- McDaniel, G. R., D. A. Roland, Sr., and M. A. Coleman. 1979. The effect of egg shell quality on hatchability and embryonic mortality. Poult. Sci. 58:10.

- McDonald, M. W. 1978. Feed intake of laying hens. World's Poult. Sci. J. 34:209.
- McGowan, J. P., and A. R. G. Emslie. 1934. Rickets in chickens, with special reference to its nature and pathogenesis. Biochem. J. 28:1503.
- McHowell, C. J., and J. N. Thompson. 1967. Lesions associated with the development of ataxia in vitamin A-deficient chicks. Br. J. Nutr.
- McNab, J. M., and D. W. F. Shannon. 1974. The nutritive value of barley, maize, oats, and wheat for poultry. Br. Poult. Sci. 15:561.
- McNaughton, J. L., and E. J. Day, 1979. Effect of dietary Fe to Cu ratios on hematological and growth responses of broiler chickens. J. Nutr. 109:559.
- McNaughton, J. L., and F. N. Reece. 1980. Effect of moisture content and cooking time on soybean meal urease index, trypsin inhibitor content and broiler growth. Poult. Sci. 59:2300.
- McNaughton, J. L., E. J. Day, and B. C. Dillworth. 1977a. The chick's requirement for 25-hydroxycholecalciferol and cholecalciferol. Poult. Sci. 56:511.
- McNaughton, J. L., L. F. Kubena, J. W. Deaton, and F. N. Reece. 1977b. Influence of dietary protein and energy on the performance of
- commercial egg-type pullets reared under summer conditions. Poult. Sci. 56:1391.

 McNaughton, J. L., J. D. May, F. N. Reece, and J. W. Deaton. 1978. Lysine requirement of broilers as influenced by environmental temperatures. Poult. Sci. 57:57.
- McWard, G. W. 1967. Magnesium tolerance of the growing and laying chicken. Br. Poult. Sci. 8:91.
- McWard, G. W., and H. M. Scott. 1961a. Magnesium requirement of the young chick determined with a magnesium-free diet. Poult. Sci. 40.1174
- McWard, G. W., and H. M. Scott. 1961b. Sodium requirement of the young chick fed purified diets. Poult. Sci. 40:1026.
- Medway, W., and M. R. Kare. 1959. Water metabolism of the growing domestic fowl with special reference to water balance. Poult. Sci. 38:631
- Mehring, A. L. 1965. Effect of level of dietary calcium on broiler-type laying hens. Poult. Sci. 44:240.
- Mehring, A. L., Jr., J. H. Brumbaugh, A. J. Sutherland, and H. W. Titus. 1960. The tolerance of growing chickens for dietary copper. Poult.
- Mendonca, C., and L. S. Jensen. 1989a. Influence of protein concentration on the sulfur-containing amino acid requirement of broiler chickens. Br. Poult. Sci. 30:889.
- Mendonca, C. X., Jr., and L. S. Jensen. 1989b. Influence of valine level on performance of older broilers fed a low protein diet supplemented with amino acids. Nutr. Rep. Int. 40:247.
- Menge, H. 1970. Further studies on the linoleic acid requirements of the hen using purified and practical-type diets. Poult. Sci. 49:1027.
- Menge, H., L. T. Frobish, B. T. Weinland, and E. G. Geis. 1979. Effect of dietary protein and energy on reproductive performance of turkey hens. Poult. Sci. 58:419.
- Mertz, W. 1986. Trace Elements in Human and Animal Nutrition. Vols. 1 and 2. Orlando, Fla.: Academic.
- Metz, A. L., M. M. Walser, and W. C. Olsen. 1985. The interaction of dietary vitamin A and vitamin D related to skeletal development in the turkey poult. J. Nutr. 115:929.
- Meyer, G. B., C. F. Props, A. T. Leighton, Jr., H. P. Van Krey, and L. M. Potter. 1980a. Influence of dietary protein during the pre-breeder period on subsequent reproductive performance of large white turkeys. 1. Growth, feed consumption and female sex-limited reproductive traits. Poult. Sci. 59:352
- Meyer, G. B., C. F. Props, A. T. Leighton, Jr., H. P. Van Krey, and L. M. Potter. 1980b. Influence of dietary protein during the pre-breeder period on subsequent reproductive performance of large white turkeys. 2. Growth, feed consumption and male sex-limited reproductive traits. Poult. Sci. 59:358.
- Migicovský, B. B., and A. R. G. Emslie. 1947. Interaction of calcium, phosphorus and vitamin D. I. Influence of calcium and phosphorus on body weight and bone ash of chicks. Arch. Biochem. 13:175.
- Milby, T. T., and D. H. Sherwood. 1953. The effect of restricted feeding on growth and subsequent production of pullets. Poult. Sci. 32:916. Miles, R. D., and R. H. Harms. 1982. Relationship between egg specific gravity and plasma phosphorus from hens fed different dietary calcium, phosphorus and sodium levels. Poult. Sci. 61:175.
- Miles, R. D., P. T. Costa, and R. H. Harms. 1983. The influence of dietary phosphorus level on laying hen performance, egg shell quality and various blood parameters. Poult. Sci. 62:1033
- Miles, R. D., N. Ruiz, and R. H. Harms. 1986. Response of laying hens to choline when fed practical diets devoid of supplemental sulfur amino acids. Poult. Sci. 65:1760.
- Miller, B. F. 1963. Pendulous crop in pyridoxine deficient chicks. Poult. Sci. 42:795
- Miller, B. F. 1967. Calcium and phosphorus in the diet of Coturnix quail. Poult. Sci. 46:686.
- Miller, D. L., and S. L. Balloun. 1967. Folacin requirements of turkey breeder hens. Poult. Sci. 46:1502.
- Miller, L., G. W. Morgan, and J. W. Deaton. 1988. Cyclic watering of broiler cockerels. Poult. Sci. 67:378. Miller, R. F., L. C. Norris, and G. F. Heuser. 1956. The vitamin B₁₂ requirement of White Leghorn chicks. Poult. Sci. 35:342.
- Miller, W. J., and P. E. Stake. 1974. Uses and limitations of biochemical measurements in diagnosing mineral deficiencies. P. 25 in Proceedings of the Georgia Nutrition Conference. Athens, Ga.: University of Georgia.
- Milligan, J. L., L. J. Machlin, H. R. Bird, and B. W. Heywang. 1951. Lysine and methionine requirement of chicks fed practical diets. Poult. Sci. 30:578.
- Milligan, J. L., G. H. Arscott, and G. F. Combs. 1952. Vitamin B₁₂ requirement of New Hampshires. 2. Influence of maternal ration on requirement of progeny. Poult. Sci. 31:830.
- Milligan, J. L., H. L. Wilke, J. É. Marr, and R. M. Bethke. 1955. Arsenic acid in commercial broiler rations. Poult. Sci. 34:794.
- Minear, L. R., D. L. Miller, and S. L. Balloun. 1972. Protein requirements of turkey breeder hens. Poult. Sci. 51:2040.
- Mitchell, N. S., and K. R. Robbins. 1983. Effect of dietary energy level on the total sulfur amino acid requirement of growing broilers. Tenn. Farm Home Sci. 125:6.
- Mohamed, K., B. Leclercq, A. Anar, H. El-Alaily, and H. Soliman. 1984. A comparative study of metabolisable energy in ducklings and domestic chicks. Anim. Feed Sci. Technol. 11:199.
- Moir, K. W., and J. K. Connor. 1977. A comparison of three fiber methods for predicting the metabolizable energy content of sorghum grain for poultry. Anim. Feed Sci. Technol. 2:197.
- Molitoris, B. A., and D. H. Baker. 1976. The choline requirement of broiler chicks during the seventh week of life. Poult. Sci. 55:220. Monetti, P. G., F. Monge, and F. Marcomini. 1982. Influenza del livello energetico della razione sulle performances riproduttive del fagiano. Zoot. Nutr. Anim. 8:115.
- Monetti, P. G., S. Castaldini, C. Ravaioli, and C. Benassi. 1985. Effetti esercitati dall'impiego di mangimi a diverso tenore proteico sulle prestazioni riproduttive di fagiani in deposizione anticipata. Zoot. Nutr. Anim. 11:155.
- Mongin, P. 1968. Role of acid-base balance in the physiology of egg shell formation. World's Poult. Sci. J. 24:200.
- Mongin, P. 1981. Recent advances in dietary anion-cation balance: Application in poultry. Proc. Nutr. Society 40:285.
- Monroe, R. A., H. Patrick, C. L. Cornar, and O. E. Goff. 1952. Metabolism of vitamin B_{12} . 1. The comparative excretion and distribution in the chick of Co^{60} and vitamin B_{12} labeled with Co^{60} . Poult. Sci. 31:79.
- Moran, E. T., Jr. 1981. Cystine requirement of feather-sexed chickens with sex and age. Poult. Sci. 60:1056.

Moran, E. T., Jr. 1982. Production and carcass quality responses of early and late marketed large toms to added dietary fat during the finishing period. Poult. Sci. 61:919.

Moran, E. T., Jr. 1985a. Digestion and absorption of carbohydrates in fowl and events through perinatal development. J. Nutr. 115:665.

Moran, E. T., Jr. 1985b. Aspects of fat metabolism important to performance in fowl. P. 18 in Proceedings of the Arkansas Nutrition Conference. Fayetteville, Ark.: University of Arkansas.

Moran, E. T. 1989a. Fat feeding value-relationships between analyses and digestion-absorption. P. 13 in Proceedings of the Western Canada Animal Nutrition Conference. Winnipeg, Canada: University of Manitoba.

Moran, E. T., Jr. 1989b. Effect of pellet quality on the performance of meat birds. P. 87 in Recent Advances in Animal Nutrition--1989, W. Haresign and D. J. A. Cole, eds. London: Butterworth.

Moran, E. T., Jr., J. Somers, and E. Larmond. 1973. Full-fat soybeans for growing and finishing large white turkeys. Poult. Sci. 52:1942.

Morck, T. A., and R. E. Austic. 1981. Iron requirements of White Leghorn hens. Poult. Sci. 60:1497

Morehouse, L. G. 1985. Mycotoxins of veterinary importance in the United States. P. 383 in Trichothecenes and Other Mycotoxins: Proceedings of the International Mycotoxin Symposium, Sydney, Australia, 1984, J. Lacey, ed. New York: Wiley.

Mori, S., and J. Okumura. 1984. The valine, leucine and isoleucine requirements of White Leghorn chicks. Br. Poult. Sci. 25:19.

Morris, T. R. 1968. The effect of dietary energy level on the voluntary caloric intake of laying birds. Br. Poult. Sci. 9:285.

Morris, T. R., and R. M. Gous. 1988. Partitioning of the response to protein between egg number and egg weight. Br. Poult. Sci. 29:93.

Morris, T. R., K. Al-Azzawi, R. M. Gous, and G. L. Simpson. 1987. Effects of protein concentration on responses to dietary lysine by chicks. Br. Poult. Sci. 28:185.

Morrison, A. B., and H. P. Sarett. 1958. Studies on zinc deficiency in the chick. J. Nutr. 65:267.

Morrison, A. B., R. Dam, L. C. Norris, and M. L. Scott. 1956. Further evidence on the requirement of the chick for unidentified minerals. J. Nutr. 60:283.

Morrison, W. D., A. W. Tremere, and J. F. Standish. 1974. Response of broiler chicks to various combinations of furazolidone and novastat coccidiostats. Poult. Sci. 53:1106.

Morrison, W. D., A. E. Ferguson, J. R. Pettit, and D. C. Cunningham. 1975. The effects of elevated levels of sodium chloride on ascites and related problems in turkeys. Poult. Sci. 54:146.

Morrissey, R. L., R. M. Cohn, R. N. Empson, Jr., H. L. Greene, O. D. Taunton, and Z. Z. Ziporin. 1977. Relative toxicity and metabolic effects of cholecalciferol and 25-hydroxycholecalciferol in chicks. J. Nutr. 107:1027.

Motiltoris, B. A., and D. H. Baker. 1976. The choline requirement of broiler chicks during the seventh week of life. Poult. Sci. 55:220.

Motzok, I., and H. D. Branion. 1946. The vitamin D requirements of growing ducks. Poult. Sci. 27:482.

Motzok, I., and S. J. Slinger. 1948. Studies on the calcium and phosphorus requirements of Broad Breasted Bronze turkeys. Poult. Sci. 27:486. Moxon, A. L., and W. O. Wilson. 1944. Selenium-arsenic antagonism in poultry. Poult. Sci. 23:149.

Mueller, W. J., R. Schraer, and H. Schraer. 1964. Calcium metabolism and skeletal dynamics of laying pullets. J. Nutr. 84:20.

Mugler, D. J., J. D. Mitchell, and A. W. Adams. 1970. Factors affecting turkey meat color. Poult. Sci. 49:1510.

Muramatsu, T., K. Hiramoto, I. Tasaki, and J.-I. Okumura. 1987. Effect of protein starvation on protein turnover in liver, oviduct and whole body of laying hens. Comp. Biochem. Physiol. 87B:227.

Murillo, M. G., and L. S. Jensen. 1976a. Methionine requirement of developing turkeys from 8-12 weeks of age. Poult. Sci. 55:1414.

Murillo, M. G., and L. S. Jensen. 1976b. Sulfur amino acid requirement and foot pad dermatitis in turkey poults. Poult. Sci. 55:554.

Murillo, M. G., L. S. Jensen, M. D. Ruff, and A. P. Rahn. 1976. Effect of dietary methionine status on response of chicks to coccidial infection. Poult. Sci. 55:642.

Murphy, T. P., K. E. Wright, and W. J. Pudelkiewicz. 1981. An apparent rachitogenic effect of excessive vitamin E intakes in the chick. Poult. Sci. 60:1873.

Mushett, C. W., and W. H. Ott. 1949. Influence of crystalline vitamin B₁₂ on gizzard erosions in chicks. Poult. Sci. 28:850.

Muztar, A. J., S. Leeson, and S. J. Slinger. 1981. Effect of blending and level of inclusion on the metabolizable energy of tallow and tower rapeseed soapstocks. Poult. Sci. 60:265.

Naber, E. C. 1979. The effect of nutrition on the composition of eggs. Poult. Sci. 58:518.

Naber, E. C., and S. P. Touchburn. 1969. Effect of hydration, gelatinization and ball milling of starch on growth and energy utilization by the chick. Poult. Sci. 48:1583.

Naber, E. C., H. R. Bird, and C. L. Moran. 1957. Nucleic acids as growth factors for the folacin deficient chick. Poult. Sci. 36:480.

Naber, E. C., J. D. Latshaw, and G. A. Marsh. 1984. Effectiveness of low sodium diets for recycling of egg production type hens. Poult. Sci. 63:2419.

Nam, C. W., and J. McGinnis. 1981. Chloride requirement of young chicks. Poult. Sci. 60:1702.

Narbaitz, R. 1987. Role of vitamin D in the development of the chick embryo. J. Exp. Zool. Suppl. 1:15.

Narbaitz, R., and B. Fragiskos. 1984. Hypervitaminosis D in the chick embryo: Comparative study on the activity of various vitamin D₃ metabolities. Calcif. Tissue Res. 36:392.

Narbaitz, R., and C. P. W. Tsang. 1989. Vitamin D deficiency in the chick embryo: Effects on pre-hatching motility and on the growth and differentiation of bones, muscles and parathyroid glands. Calcif. Tissue Int. 44:348.

Nathanael, A. S., and J. L. Sell. 1980. Quantitative measurements of the lysine requirements of the laying hen. Poult. Sci. 59:594.

National Bureau of Standards. 1986. The International System of Units (SI). C. H. Page and P. Vigoreaux, eds. Special Publication 330 rev. Washington, D.C.: U.S. Government Printing Office.

National Research Council. 1974. Nutrients and Toxic Substances in Water for Livestock and Poultry. Washington, D.C.: National Academy Press.

National Research Council. 1975. The Effect of Genetic Variance on Nutritional Requirements of Animals. Washington, D.C.: National Academy Press

National Research Council. 1977. Nutrient Requirements of Poultry. 7th rev. ed. Washington, D.C.: National Academy Press.

National Research Council. 1980a. Effects on Human Health of Subtherapeutic Use of Antimicrobials in Animal Feeds. Washington, D.C.: National Academy Press.

National Research Council. 1980b. Mineral Tolerance of Domestic Animals. Washington, D.C.: National Academy Press.

National Research Council. 1981a. Effect of Environment on Nutrient Requirements of Domestic Animals. Washington, D.C.: National Academy Press.

National Research Council. 1981b. Nutritional Energetics of Domestic Animals and Glossary of Energy Terms. 2nd rev. ed. Washington, D.C.: National Academy Press.

National Research Council. 1981c. Poultry. P. 109 in Effect of Environment on Nutrient Requirements of Domestic Animals. Washington, D.C.: National Academy Press.

National Research Council. 1982. United States-Canadian Tables of Feed Composition: Nutritional Data for United States and Canadian Feeds. 3rd rev. ed. Washington, D.C.: National Academy Press.

National Research Council. 1984. Nutrient Requirements of Poultry, Eighth Revised Edition. Washington, D.C.: National Academy Press.

National Research Council. 1987a. Predicting Feed Intake of Food-Producing Animals. Washington, D.C.: National Academy Press.

National Research Council. 1987b. Vitamin Tolerance in Animals. Washington, D.C.: National Academy Press.

Navickis, R. J., B. S. Katzenellenbogen, and A. V. Nalbandov. 1979. Effects of the sex steroid hormones and vitamin D₃ on calcium-binding proteins in the chick shell gland. Biol. Reprod. 21:1153.

Neagle, L. H., L. G. Blaylock, and J. H. Goihl. 1968. Calcium, phosphorus and vitamin D₃ levels and interactions in turkeys to 4 weeks of age. Poult. Sci. 47:174.

Nelson, F. E., L. S. Jensen, and J. McGinnis. 1961. Requirement of developing turkeys for calcium and phosphorus. Poult. Sci. 40:407.

Nelson, F. E., J. K. Lauber, and L. Miroshi. 1964. Calcium and phosphorus requirement for the breeding Coturnix quail. Poult. Sci. 43:1346.

Nelson, T. S. 1976. The hydrolysis of phytate phosphorus by chicks and laying hens. Poult. Sci. 55:2262

Nelson, T. S. 1983. Nutritional Requirement, Biochemistry, and Metabolism of Calcium in Poultry, West Des Moines, Iowa: National Feed Ingredients Association, Nutrition Institute—Minerals.

Nelson, T. S. 1984. Nutritional Requirement, Biochemistry, and Metabolism of Calcium in Poultry. West Des Moines, Iowa: National Feed Ingredients Association, Nutrition Institute—Minerals.

Nelson, T. S., and L. C. Norris. 1960. Studies on the vitamin K requirement of the chick. J. Nutr. 72:137.

Nelson, T. S., and L. C. Norris. 1961a. Studies on the vitamin K requirement of the chick. II. Effect of sulfa quinoxaline on the quantitative requirements of the chick for vitmain K, menadione and menadione sodium bisulphite. J. Nutr. 73:135.

Nelson, T. S., and L. C. Norris, 1961b. Studies on the vitamin K requirement of the chick. The effect of age and cecetomy on the vitamin K requirement of the chick. Poult. Sci. 40:392.

Nelson, T. S., and A. C. Walker. 1964. The biological evaluation of phosphorus compounds. A summary. Poult. Sci. 43:94. Nelson, T. S., R. J. Young, R. B. Bradfield, J. B. Anderson, L. C. Norris, F. W. Hill, and M. L. Scott. 1960. Studies on the sulfur amino acid requirement of the chick. Poult. Sci. 39:308.

Nesheim, M. C., and M. L. Scott. 1958. Studies on the nutritive effects of selenium for chicks. J. Nutr. 65:601.

Nesheim, M. C., R. M. Leach, Jr., T. R. Zeigler, and J. A. Serafin. 1964. Interrelationships between dietary levels of sodium, chlorine, and potassium. J. Nutr. 84:361.

Nesheim, M. C., M. J. Norvell, E. Ceballos, and R. M. Leach, Jr. 1971. The effect of choline supplementation of diets for growing pullets and laving hens. Poult. Sci. 50:820.

Nestler, R. B. 1946. Vitamin A, vital factor in the survival of Bobwhites. Trans. North Am. Wildl. Conf. 11:176.

Netke, S. P., H. M. Scott, and G. L. Alee. 1969. Effect of excess amino acids on the utilization of first limiting amino acids in chick diets. J. Nutr. 99:75

Neuringer, M., and W. E. Conner. 1986. N-3 fatty acids in the brain and retina: Evidence for their essentiality. Nutr. Rev. 44:285.

Newberne, P. M., J. E. Savage, and B. L. O'Dell. 1960. Pathology of arginine deficiency in the chick. J. Nutr. 72:347.

Ngo, A., and C. N. Coon. 1976. The effect of feeding various levels of dietary glycine in a preexperimental diet to one-day old chicks on their subsequent glycine and serine requirement. Poult. Sci. 55:1672.

Nielsen, F. H. 1986. Other elements: Sb, Ba, B, Br, Cs, Ge, Rb, Ag, Sr, Sn, Ti, Zr, Be, Bi, Ga, Au, In, Nb, Sc, Te, Tl, W. P. 415 in Trace Elements in Human and Animal Nutrition, Vol. 2, W. Mertz, ed. Orlando, Fla.: Academic.

Nir, I., and I. Ascarelli. 1967. The effect of thyroid status and restriction of dietary protein on survival of vitamin A deprived chicks. Br. Poult. Sci. 8:169.

Nitsan, Z., A. Dvorin, and I. Nir. 1983. Protein, essential amino acids and glycine requirements of the growing gosling (Anser ciereneus). Br. Poult. Sci. 50:455.

Nockels, C. F., and R. W. Phillips. 1971. Influence of vitamin A deficiency on tissue glycogen metabolism in growing chickens. Poult. Sci. 50:174.

Nockels, C. F., D. L. Menge, and W. W. Keinholz. 1976. Effect of excessive dietary vitamin E on the chick. Poult. Sci. 55:649. Nockels, C. F., D. L. Ewing, H. Phetteplace, K. A. Ritacco, and K. W. Mero. 1984. Hypotheyrodism: An early sign of vitamin A deficiency in chickens. J. Nutr. 114:1733

Noff, D., A. Simkin, and S. Edelstein. 1982. Effect of cholecalciferol derivatives on the mechanical properties of chick bones. Calcif. Tissue Int. 34:501

Noguchi, T., A. H. Cantor, and M. L. Scott. 1973. Mode of action of selenium and vitamin E in prevention of exudative diathesis in chicks. J. Nutr. 103:1502.

Norris, L. C., F. H. Kratzer, H. J. Lin, A. B. Hellewell, and J. R. Beljan. 1972. Effect of quantity of dietary calcium on maintenance of bone integrity in mature White Leghorn male chickens. J. Nutr. 102:1085.

Nott, H., and G. Combs. 1969. Sodium requirements of the chick. Poult. Sci. 48:660.

Nugara, D., and H. M. Edwards, Jr. 1963. Influence of dietary Ca and P levels on the Mg requirement of the chick. J. Nutr. 80:181. Nys, Y., B. Sauver, A. Oya, and P. Mongin. 1983. Effect of different levels of dietary sodium and phosphorus on 4 or 7 week chick growth performances. Nutr. Rep. Int. 28:325.

Oberleas, D., and A. S. Prasad. 1974. Effect of zinc on thymidine kinase activity and DNA metabolism. In Trace Element Metabolism in Animals, W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds. 2nd ed. Baltimore, Md.: University Park Press.

O'Dell, B. L., P. M. Newberne, and J. E. Savage. 1958. Significance of dietary zinc for the growing chicken. J. Nutr. 65:503.

O'Dell, B. L., B. C. Hardwich, G. Reynolds, and J. E. Savage. 1961. Connective tissue defect in the chick resulting from copper deficiency. Proc. Soc. Exp. Biol. Med. 108:402.

Ogunmodede, B. K. 1977. Riboflavin requirement of starting chickens in a tropical environment. Poult. Sci. 56:231.

Ogunmodede, B. K. 1981. Vitamin A requirements of broiler chicks in Nigeria. Poult. Sci. 60:2622

Ohmdahl, J. L., and H. F. DeLuca. 1973. Regulation of vitamin D metabolism and function. Physiol. Rev. 53:327.

Ohtani, H., S. Saith, H. Ohkawara, Y. Akiba, K. Takahashi, and M. Horiguchi. 1989. Production performance of laying hens fed Ltryptophan. Poult. Sci. 68:323.

Okazaki, T., T. Noguchi, K. Igarashi, Y. Sakagami, H. Sato, K. Mori, H. Naito, T. Masamura, and M. Sugahara. 1983. Gizzoserine, a new toxic substance in fish meal, causes severe gizzard erosion in chicks. Agric. Biol. Chem. 47:2949.

Olcese, O., J. R. Couch, J. H. Quisenberry, and P. B. Pearson. 1950. Congenital abnormalities in the chick due to vitamin B₁₂ deficiency. J. Nutr. 41:423.

Olsen, E. M., J. D. Harvey, D. C. Hill, and H. D. Branion. 1959. Effect of dietary protein and energy levels on the utilization of vitamin A and carotene. Poult. Sci. 38:942.

Olson, G., L. D. Matterson, and J. Tlustohowicz. 1962. Effect of vitamin E and antioxidants on fertility and hatchability as affected by unsaturated fatty acids. Poult. Sci. 41:675.

Opsahl, W., H. Zeronian, M. Ellison, D. Lewis, R. B. Rucker, and R. S. Riggins. 1982. Role of copper in collagen cross-linking and its influence on selected mechanical properties of chick bone and tendon. J. Nutr. 112:708.

O'Rourke, W. F., P. H. Phillips, and W. W. Cravens. 1952. The phosphorus requirements of growing chickens as related to age. Poult. Sci. 31:962.

O'Rourke, W. F., P. H. Phillips, and W. W. Cravens. 1955. The phosphorus requirements of growing chickens and laying pullets fed practical rations. Poult. Sci. 34:47.

Ort, J. F., and J. D. Latshaw. 1978. The toxic level of sodium selenite in the diet of laying chickens. J. Nutr. 108:1114.

Ott, W. H. 1951. Further studies of the activity of crystalline vitamin B₁₂ for chick growth. Poult. Sci. 30:86.

Ott, W. H., A. M. Dickinson, and A. Van Iderstine. 1965. Amprolium. Comparison with oxythiamine and pyrithiamine as antagonists of thiamine in the chick. Poult. Sci. 44:920.

Ouart, M. D., R. H. Harms, and H. R. Wilson. 1987. Effect of graded levels of niacin in corn-soy and wheat-soy diets on laying hens. Poult. Sci. 66:467.

Ousterhout, L. E. 1981. The effects of phased feeding protein and calcium on egg weight and shell quality with four strains of White Leghorn hens. Poult. Sci. 60:1036.

Owings, W. J., and J. L. Sell. 1982. Performance of growing turkey hens as influenced by supplemental dietary fat and different ME: nutrient ratios. Poult. Sci. 61:1897.

Padedes, J. R., and T. P. Garcia. 1959. Vitamin A as a factor affecting fertility in cockerels. Poult. Sci. 38:3.

Pang, C. Y., L. D. Campbell, and G. D. Phillips. 1978. Pathophysiological changes in plasma and body composition of young poults fed a sodium-deficient diet. Can. J. Anim. Sci. 58:597.

Pardue, S. L., J. P. Thaxton, and J. Brake. 1985. Influence of supplemental ascorbic acid on broiler performance following exposure to high environmental temperature. Poult. Sci. 64:1334.

Parker, J. T., M. A. Boone, and J. F. Knechtges. 1972. The effect of ambient temperature upon body temperature, feed consumption and water consumption using two varieties of turkeys. Poult. Sci. 51:659.

Parkhurst, C. R., and P. Thaxton. 1973. Toxicity of mercury in young chicks. 1. Effect on growth and mortality. Poult. Sci. 52:273.

Parrish, D. B., and S. M. Al-Hasani. 1983. Requirements and utilization of vitamin A by Japanese quail. Nutr. Rep. Int. 28:39.

Parsons, C. M. 1990a. Digestibility of Amino Acids in Feedstuffs and Digestible Amino Acid Requirements for Poultry. St. Louis, Mo: Biokyowa. Inc.

Parsons, C. M. 1990b. Digestibility of amino acids in feedstuffs for poultry. P. 22 in Proceedings of the Maryland Nutrition Conference for Feed Manufacturers. College Park, Md.: University of Maryland.

Parsons, C. M., and R. W. Leeper. 1984. Choline and methionine supplementation of layer diets varying in protein content. Poult. Sci. 63:1604.

Parsons, C. M., L. M. Potter, and R. D. Brown, Jr. 1980. True metabolizable energy and amino acid digestibility of dehulled soybean meal. Poult. Sci. 60:2687.

Patel, M. B., and J. McGinnis. 1980. The effect of vitamin B₁₂ on the tolerance of chicks for high levels of dietary fat and carbohydrate. Poult. Sci. 59:2279.

Patrick, H., M. I. Darrow, and C. L. Morgan. 1944. The role of riboflavin in turkey poult nutrition. Poult. Sci. 23:146.

Patterson, E. B., J. R. Hunt, P. Vohra, L. G. Blaylock, and J. McGinnis. 1956. The niacin and tryptophan requirements of chicks. Poult. Sci. 35:499.

Patterson, E. L., R. Milstrey, and E. L. R. Stokstad. 1957. Effect of selenium in preventing exudative diathesis in chicks. Proc. Soc. Exp. Biol. Med. 95:617.

Payne, C. G., P. Gilchrist, J. A. Pearson, and L. A. Hemsley. 1974. Involvement of biotin in the fatty liver and kidney syndrome of broilers. Br. Poult. Sci. 15:489.

Pearson, R. A., and K. M. Herron. 1981. Effects of energy and protein allowances during lay on the reproductive performance of broiler breeder hens. Br. Poult. Sci. 22:227.

Pearson, R. A., and K. M. Herron. 1982. Effects of maternal energy and protein intakes on the incidence of malformations and malpositions of the embryo and time of death during incubation. Br. Poult. Sci. 23:71.

Penz, A. M., Jr., and F. H. Kratzer. 1984. Effect of excess leucine on feather structure and feather composition in the chick. Nutr. Rep. Int. 29:991

Pesti, G. M., and H. M. Edwards, Jr. 1983. Metabolizable energy nomenclature for poultry feedstuffs. Poult. Sci. 63:1275.

Pesti, G. M., and D. L. Fletcher. 1983. The response of male broiler chickens to diets with various protein and energy contents during the growing phase. Br. Poult. Sci. 24:91.

Pesti, G. M., A. E. Harper, and M. L. Sunde. 1979. Sulfur amino acid and methyl donor status of corn-soy diets fed to starting broiler chicks and turkey poults. Poult. Sci. 58:1541.

Pesti, G. M., A. E. Harper, and M. L. Sunde. 1980. Choline/methionine nutrition of starting broiler chicks. Three models for estimating the choline requirement with economic considerations. Poult. Sci. 59:1073.

Pesti, G. M., S. V. Amato, and L. R. Minear. 1985. Water consumption of broiler chickens under commercial conditions. Poult. Sci. 64:803

Pesti, G. M., L. O. Faust, H. L. Fuller, N. M. Dale, and F. H. Benoff. 1986. The nutritive value of poultry by product meal. 1. Metabolizable energy. Poult. Sci. 65:2258.

Pesti, G. M., E. Thomson, and D. J. Farrell. 1990. Energy exchange of two breeds of hens in respiration chambers. Poult. Sci. 69:98.

Petersen, C. F., C. E. Lampman, and O. E. Stamberg. 1947a. Effect of riboflavin content of eggs. Poult. Sci. 26:180.

Petersen, C. F., C. E. Lampman, and O. E. Stamberg. 1947b. Effect of riboflavin intake on hatchability of eggs from battery confined hens. Poult. Sci. 26:187.

Petersen, V. E. 1969. A comparison of the feeding value for broilers of corn, grain sorghum, barley, wheat and oats, and the influence of the various grains on the composition and taste of broiler meat. Poult. Sci. 48:2006.

Peterson, C. F., E. A. Sauter, E. E. Steele, and J. F. Parkinson. 1983. Use of methionine intake restriction to improve egg shell quality by control of egg weight. Poult. Sci. 62:2044.

Peterson, R. P., and L. S. Jensen. 1975a. Induced exudative diathesis in chicks by dietary silver. Poult. Sci. 54:795

Peterson, R. P., and L. S. Jensen. 1975b. Interrelationships of dietary silver with copper in the chick. Poult. Sci. 54:771.

Phelps, R. A. 1966. Cottonseed meal for poultry: From research to practical application. World's Poult. Sci. J. 22:86.

Phillips, P. H., and R. W. Engel. 1938. Neuromalacia associated with low riboflavin diets, a preliminary report. Poult. Sci. 12:463.

Pierson, E. E. M., L. M. Potter, and R. D. Brown, Jr. 1980. Amino acid digestibility of dehulled soybean meal by adult turkeys. Poult. Sci. 59:845.

Planas, J. 1967. Serum iron transport in the fowl and the mammal. Nature 215:289.

Polin, D., E. R. Wynosky, and C. C. Porter. 1962. Amprolium 10. Influence of egg yolk thiamine concentration on chick embryo mortality. Proc. Soc. Exp. Biol. Med. 110:844.

Polin, D., W. H. Ott, E. R. Wynosky, and C. C. Porter. 1963. Estimation of thiamine requirement for optimum hatchability from the relationship between dietary and yolk levels of the vitamin. Poult. Sci. 42:925.

Potter, L. M. 1972. The precision of measuring metabolizable energy in poultry feedstuffs. Feedstuffs 44:28.

Potter, L. M., and J. P. McCarthy. 1985. Varying fat and protein in diets of growing large white turkeys. Poult. Sci. 64:1941.

Potter, L. M., and J. R. Shelton. 1979. Methionine and protein requirements of young turkeys. Poult. Sci. 58:609.

Potter, L. M., and J. R. Shelton. 1980. Methionine and protein requirements of turkeys 8 to 16 weeks of age. Poult. Sci. 59:1268.

Potter, L. M., L. D. Matterson, A. W. Arnold, W. J. Pudelkiewicz, and E. P. Singsen. 1960. Studies in evaluating energy content of feeds for the chick. 1. The evaluation of the metabolizable energy and productive energy of alpha cellulose. Poult. Sci. 39:1166.

Potter, L. M., A. T. Leighton, Jr., and A. B. Chu. 1974. Calcium, phosphorus and Nopgro as variables in diets of breeder turkeys. Poult. Sci.

Potter, L. M., J. R. Shelton, and J. P. McCarthy. 1981. Lysine and protein requirements of growing turkeys. Poult. Sci. 60:2678.

Poupoulis, C., and L. S. Jensen. 1976. Effect of high dietary copper on gizzard integrity of the chick. Poult. Sci. 55:113.

Powell, T. S., and M. H. Gehle. 1975. The effect of dietary tryptophan and niacin levels on broiler breeder pullets. Poult. Sci. 54:1438.

Powell, T. S., H. R. Wilson, and R. H. Harms. 1974. Utilization of phosphorus from corn by the Bobwhite quail. Nutr. Rep. Int. 9:79.

Prinz, M., H. Jeroch, and A. Hennig. 1983. Investigation of the vitamin A requirement of fattening turkeys. 2. The influence of varied doses of vitamin A and the simultaneous supply with crude protein (amino acids) meeting the demand on the content of crude nutrients in the total body as well as nutrient deposition and the utilization parameters. Arch. Tierernaehr, 33:217.

Prinz, M., A. Hennig, and H. Jeroch. 1986. Investigations into the vitamin A requirement of growing fattening turkeys. 3. Influence of varied vitamin A and crude protein supply on the fattening performance and the vitamin A concentration in the liver. Arch. Tierernaehr. 36:79.

Proudfoot, F. G., and H. W. Hulan. 1981. The influence of hatching egg size on the subsequent performance of broiler chickens. Poult. Sci. 60:2167

Proudfoot, F. G., H. W. Hulan, and K. B. McRae. 1988. Performance comparisons of phased protein dietary regimens fed to commercial Leghorns during the laying period. Poult. Sci. 67:1447.

Purdy, R. H. 1986. High oleic acid sunflower: Physical and chemical characteristics. J. Am. Oil Chem. Soc. 63:1062.

Queiroz, A. C., H. S. Rostagno, E. T. Fialho, and J. B. Fonseca. 1978. Energetic and biological evaluation of sorghum grains with different tannin content for chicks. P. 512 in XVI World's Poultry Congress, Rio de Janerio, Section E-10.

Quillen, E. C., G. F. Combs, R. D. Creek, and G. L. Romoser. 1961. Effect of choline on the methionine requirements of broiler chickens. Poult. Sci. 40:639.

Rabbani, A., S. S. Akrabawi, and N. J. Daghir. 1973. Effect of dietary folic acid deficiency on serine-glycine interconversion and the activity of liver serine hydroxymethyl transferase in the chick. Poult. Sci. 52:1962.

Raharjo, Y. C., and D. J. Farrell. 1984. A new biological method for determining amino acid digestibility in poultry feedstuffs using a simple cannula, and the influence of dietary fiber on endogenous amino acid output. Anim. Feed Sci. Technol. 12:29.

Rahman, M. M., R. E. Davies, C. W. Deyoe, B. L. Reid, and J. R. Couch. 1961. Role of zinc in the nutrition of growing pullets. Poult. Sci. 40:195

Ramachandran, V., and G. H. Arscott. 1974. Minimum vitamin requirements and apparent vitamin interrelationships for growth in Japanese quail (Coturnix coturnix japonica). Poult. Sci. 53:1969.

Ratkowski, C., N. Fine, and S. Edelstein. 1982. Metabolism of cholecalciferol in vitamin D intoxicated chicks. Isr. J. Med. Sci. 18:695.

Read, J. W., and L. W. Haas. 1938. Studies on the baking quality of flour as affected by certain enzyme actions. V. Further studies concerning potassium bromate and enzyme activity. Cereal Chem. 15:59.

Record, P. R., R. M. Bethke, and O. H. M. Wilder. 1937. The vitamin A requirements of chicks, with observations on the comparative

efficiency of carotene and vitamin A. Poult. Sci. 16:25

Reid, B. L. 1977. Dietary sodium for laying hens. Poult. Sci. 56:373.

Reid, B. L., and C. W. Weber. 1973. Dietary protein and sulfur amino acid levels for laying hens during heat stress. Poult. Sci. 52:1335.

Reid, B. L., B. W. Heywang, A. A. Kurnick, M. G. Vavich, and B. J. Hullet. 1965. Effect of vitamin A and ambient temperature on the reproductive performance of White Leghorn pullets. Poult. Sci. 44:446.
Reid, B. L., C. W. Weber, and S. I. Savage. 1973. Chelated minerals in poultry nutrition. Feedstuffs 45(5):38.

Renner, R., and F. W. Hill. 1960. The utilization of corn oil, lard and tallow by chickens of various ages. Poult. Sci. 39:849.

Renner, R., and F. W. Hill. 1961. Factors affecting the absorbability of saturated fatty acids. J. Nutr. 74:254.

Reynnells, R. D. 1979. Dietary calcium and Available Phosphorus Requirements of Growing and Adult Ring-Necked Pheasants. Ph.D. dissertation. Michigan State University, East Lansing, Mich.

Richter, G., and M. Prinz. 1980. Investigations of the requirements of young fattening turkeys kept on the ground concerning the energy and crude protein content of the mixed feed. 2. Fattening period. Arch. Tierernaehr. 30:519.

Richter, G., M. Prinz, and A. Hennig. 1980. Investigations of the requirement of turkeys kept on the ground concerning the energy and crude protein content of mixed feed. 1. Starting-off phase. Arch. Tierernaehr. 30:373

Ringrose, A. T., J. H. Martin, and W. M. Insko, Jr. 1939. Manganese requirements of turkey poults. Poult. Sci. 18:409. Ringrose, R. C., A. G. Manoukas, R. hinkson, and A. E. Terri. 1965. The niacin requirement of the hen. Poult. Sci. 44:1053.

Rising, R., P. M. Maiorina, J. Alak, and B. L. Reid. 1989. Indirect calorimetry evaluation of dietary protein and animal fat effects on energy utilization of laying hens. Poult. Sci. 68:258.

Robbins, K. R. 1987. Threonine requirement of the broiler chick as affected by protein level and source. Poult. Sci. 66:1531.

Robbins, K. R., and D. H. Baker. 1980a. Effect of high level copper feeding on the sulfur amino acid need of chicks fed corn-soybean meal and purified crystalline amino acid diets. Poult. Sci. 59:1099.

Robbins, K. R., and D. H. Baker. 1980b. Effect of sulfur amino acid level and source on the performance of chicks fed high levels of copper. Poult. Sci. 59:1246.

Robbins, K. R., D. H. Baker, and H. W. Norton. 1977. Histidine status in the chick as measured by growth rate, plasma free histidine and breast muscle carnosine. J. Nutr. 107:2055.

Robel, E. J. 1977. A feather abnormality in chicks fed diets deficient in certain amino acids. Poult. Sci. 56:1968.

Robenalt, R. C. 1960. The thiamine requirement of young turkey poults. Poult. Sci. 39:354.

Roberson, R. H., and D. W. Francis. 1963a. The effect of energy and protein levels for the ration on the performance of White Chinese geese. Poult. Sci. 42:867

Roberson, R. H., and D. W. Francis. 1963b. The effect of protein level, iodinated casein and supplemental methionine on the performance of White Chinese geese. Poult. Sci. 42:863.

Roberson, R. H., and D. W. Francis. 1966. The lysine requirement of White Chinese goslings. Poult. Sci. 45:324.

Roberson, R. H., and P. J. Schaible. 1958. The zinc requirement of the chick. Poult. Sci. 37:1321.

Roberson, R. H., and P. J. Schaible. 1960. The tolerance of growing chicks for high levels of different forms of zinc. Poult. Sci. 39:893.

Roberts, R. E. 1957. Salt tolerance of turkeys. Poult. Sci. 36:672.

Roche Vitamins and Fine Chemicals. 1988. Egg Yolk Pigmentation with Carophyll. 3rd ed. Publ. 1218. Basel, Switzerland: Hoffmann-La Roche.

Rogers, W. E. J. 1969. Reexamination of enzyme activities thought to show evidence of a coenzyme role for vitamin A. Am. J. Clin. Nutr. 22:1003

Rogler, J. C., and H. E. Parker. 1978. The effects of environmental temperature on the iodine requirements of young chickens. Poult. Sci.

Rogler, J. C., H. E. Parker, F. N. Andrews, and C. W. Carrick. 1959a. The effects of an iodine deficiency on embryo development and hatchability. Poult. Sci. 38:398.

Rogler, J. C., H. E. Parker, F. N. Andrews, and C. W. Carrick. 1959b. Various factors affecting Iodine-131 uptake by embryonic thyroids. Poult. Sci. 38:405.

Roland, D. A., Sr. 1986a. Egg shell quality. III. Calcium and phosphorus requirements of commercial Leghorns. World's Poult. Sci. J. 42:154. Roland, D. A., Sr. 1986b. Egg shell quality. IV. Oystershell versus limestone and the importance of particle size or solubility of calcium source. World's Poult. Sci. J. 42:166.

- Roland, D. A., Jr., R. H. Harms, H. R. Wilson, E. M. Ahmed, P. W. Waldroup, and J. L. Fry. 1968. Influence of various dietary factors on bone fragility of caged layers. Poult. Sci. 47:507.
- Romanoff, A. L., and J. C. Bauernfeind. 1942. Influence of riboflavin deficiency in eggs on embryonic development. Anat. Rec. 82:11.
- Romoser, G. L., W. A. Dudley, L. J. Machlin, and L. Loveless. 1961. Toxicity of vanadium and chromium for the growing chick. Poult. Sci. 40:1171.
- Ross, E. 1977. Apparent inadequacy of sodium requirement in broiler chickens. Poult. Sci. 56:1153.
- Ross, E. 1979. The effect of water sodium on the chick requirements for dietary sodium. Poult. Sci. 58:626.
- Ross, E., and R. H. Harms, 1970. The response of chicks to sodium sulfate supplementation of a corn-soy diet. Poult. Sci. 49:1605.
- Ross, P.A., and J. F. Hurnik. 1983. Drinking behaviour of broiler chicks. Appl. Anim. Ethol. 11:25.
- Roth, J., B. Thorens, W. Hunziker, A. W. Norman, and L. Orci. 1981. Vitamin D-dependent calcium-binding protein: Immunocytochemical localization in chick kidney. Science 214:197.
- Rotruck, J. T., A. L. Pope, H. E. Ganther, A. B. Swanson, D. G. Hafernan, and W. G. Hoekstra. 1973. Selenium: Biochemical role as a component of glutathione peroxidase. Science 179:588.
- Rouse, R. H. 1986. Fats and oils—Know what you are buying. P. 1. in Proceedings of the Five States Poultry Meeting. West Lafayette, Ind.: Purdue University.
- Ruiz, N., and R. H. Harms. 1988a. Riboflavin requirement of broiler chicks fed a corn-soybean diet. Poult. Sci. 67:794.
- Ruiz, N., and R. H. Harms. 1988b. Niacin requirement of turkey poults fed a corn-soybean meal diet from 1 to 21 days of age. Poult. Sci. 67:760.
- Ruiz, N., and R. H. Harms. 1988c. Comparison of the biopotencies of nicotinic acid and nicotinamide for broiler chicks. Br. Poult. Sci. 29:491.
- Ruiz, N., and R. H. Harms. 1989a. Pantothenic acid studies with turkey poults. Nutr. Rep. Int. 40:639.
- Ruiz, N., and R. H. Harms. 1989b. Riboflavin requirement of turkey poults fed a corn-soybean meal diet from 1 to 21 days of age. Poult. Sci. 68:715.
- Ruiz, N., and R. H. Harms. 1990. Research note: The lack of response of broiler chickens to supplemental niacin when fed a corn-soybean meal diet from 3 to 7 weeks of age. Poult. Sci. 69:223.
- Ruiz, N., R. H. Harms, and S. B. Linda. 1990. Niacin requirement of broiler chickens fed a corn-soybean meal diet from 1 to 21 days of age. Poult. Sci. 69:433.
- Russell, W. C., M. W. Taylor, and J. B. Derby, Jr. 1947. The folic acid requirement of turkey poults on a purified diet. J. Nutr. 34:621.
- Rys, R., and J. Koreleski. 1974. The effect of dietary propionic acid on the requirement of chicks for vitamin B₁₂. Br. Poult. Sci. 31:143.
- Said, N. W., and T. W. Sullivan. 1985. A comparison of continuous and phased levels of dietary phosphorus for commercial laying hens. Poult. Sci. 64:1763.
- Sakurai, H. 1979. Influence of level of protein and energy of rearing diet on growth, feed efficiency and egg production of Japanese quail. Jpn. Poult. Sci. 16:305.
- Sakurai, H. 1981. Influence of dietary levels of protein and energy on nitrogen and energy balance for egg production of Japanese quail . Jpn. Poult. Sci. 18:185.
- Salmon, R. E. 1976. The effect of age and sex on the rate of change of fatty acid composition of turkeys following a change of dietary fat source. Poult. Sci. 55:201.
- Salmon, R. E. 1984. Effect of grower and finisher protein on performance, carcass grade and meat yield of turkey broilers. Poult. Sci. 63:1980. Salmon, R. E., and J. B. O'Neil. 1973. The effect of the level and source and a change of source of dietary fat on the fatty acid composition of the depot fat and the thigh and breast of turkeys as related to age. Poult. Sci. 52:302.
- Sanford, T. D., and T. H. Jukes. 1944. Further observations on the vitamin D requirement of turkey poults. Poult. Sci. 23:221.
- Sasse, C. E., and D. H. Baker. 1972. The phenylalanine and tyrosine requirements and their interrelationship for the young chick. Poult. Sci. 51:1531
- Sauveur, B. 1978. Phosphorus requirements in finishing broilers, aged 4 to 8 weeks. Arch. Gefluegelkd. 42:229.
- Sauveur, B., and P. Mongin. 1978. Interrelationships between dietary concentrations of sodium, potassium and chloride in laying hens. Br. Poult. Sci. 19:475.
- Saxena, H. C., G. E. Bearse, C. F. McClary, L. G. Blaylock, and L. R. Berg. 1954. Deficiency of folic acid in rations containing natural feedstuffs. Poult. Sci. 33:815.
- Saylor, W. W. 1986. Evaluation of mixed natural carotenoid products as xanthophyll sources for broiler pigmentation. Poult. Sci. 65:1112.
- Schaible, P. J., and S. A. Bandemer. 1942. The effect of mineral supplements on the availability of manganese. Poult. Sci. 21:8.
- Scheideler, S. E., and J. L. Sell. 1986. Effects of calcium and phase-feeding phosphorus on production traits and phosphorus retention in two strains of laying hens. Poult. Sci. 65:2110.
- Scheidt, K., F. J. Leuenberger, F. J. Vecchi, and M. Glinz. 1985. Absorption, retention and metabolic transformation of carotenoids in rainbow trout, salmon and chicken. Pure Appl. Chem. 57:685.
- Scheiner, J. M., and E. DeRitter. 1968. Vitamin B₆ content of feedstuffs. Agric. Food Chem. 16:746.
- Schexnailder, R., and M. Griffith. 1973. Liver fat and egg production of laying hens as influenced by choline and other nutrients. Poult. Sci. 52:1188.
- Schloffel, H.-J., H. Jeroch, and G. Gebhardt. 1988. Einfluss der energie-und proteinversorgung der broilerhenne auf ihre Legetatigkeit, ihre Lebendmasseentwicklung, ihre Reproduktionsleistung und das Wachstum der Broiler kuken. (Influence of the energy and protein supply of broiler hens on their laying performance, live weight development, reproductive performance and the growth of broiler chickens.) Arch. Anim. Nutr. 38:493.
- Schuler, G. A., and E. O. Essary. 1971. Fatty acid composition of lipids from broilers fed saturated and unsaturated fats. J. Food Sci. 36:431.
- Schutte, J. B., E. J. van Weerden, and H. L. Bertram. 1986. Sulphur amino acid requirement of young turkeys. Paper presented at Seventh European Poultry Conference, World's Poultry Science Association, Paris.
- Scott, M. L. 1953. Prevention of the enlarged hock disorder in turkeys with niacin and vitamin E. Poult. Sci. 32:670.
- Scott, M. L. 1966a. Studies on the interrelationship of selenium, vitamin E and sulfur amino acids in a nutritional myopathy of the chick. Ann. N.Y. Acad. Sci. 138:82.
- Scott, M. L. 1966b. Vitamin K in animal nutrition. Vitam. Horm. 24:633.
- Scott, M. L. 1973. Selenium compounds in nature and medicine. A. Nutritional importance of selenium. P. 629 in Organic Selenium Compounds: Their Chemistry and Biology, D. L. Klayman and W. H. H. Gunther, eds. New York: Wiley-Interscience.
- Scott, M. L. 1977. A discussion of nutritional requirements of broiler breeder hens. In Proceedings of the Cornell Nutrition Conference. Ithaca, N.Y.: Cornell University.
- Scott, M. L., and J. L. Thompson. 1971. Selenium content of feedstuffs and effects of dietary selenium levels upon tissue selenium in chicks and poults. Poult. Sci. 50:1742.
- Scott, M. L., E. R. Holm, and R. E. Reynolds. 1954. Studies on pheasant nutrition. Poult. Sci. 33:1237.
- Scott, M. L., E. R. Holm, and R. E. Reynolds. 1958a. The calcium, phosphorus, and vitamin D requirements of young pheasants. Poult. Sci. 37:1419.

Scott, M. L., E. R. Holm, and R. E. Reynolds. 1958b. A study of the phosphorus requirements of young Bobwhite quail. Poult. Sci. 37:1425.

- Scott, M. L., E. R. Holm, and R. E. Reynolds. 1959. Studies on the niacin, riboflavin, choline, manganese and zinc requirements of young Ring-necked pheasants for growth, feathering and prevention of the leg disorders. Poult. Sci. 38:1344
- Scott, M. L., A. van Tienhoven, E. R. Holm, and M. E. Reynolds. 1960. Studies on the sodium, chlorine, and iodine requirements of young pheasants and quail. J. Nutr. 71:282.
- Scott, M. L., E. R. Holm, and R. E. Reynolds. 1963. Studies on the protein and methionine requirements of young Bobwhite quail and young Ring-necked pheasants. Poult. Sci. 42:676.
- Scott, M. L., E. R. Holm, and R. E. Reynolds. 1964. Studies on the pantothenic acid and unidentified factor requirements of young Ringnecked pheasants and Bobwhite quail. Poult. Sci. 43:1534.
- Scott, M. L., H. W. Bruins, L. E. Ousterhout, W. H. Allaway, and E. E. Cary. 1965. Selenium requirement of young poults receiving practical diets. In Proceedings of the Cornell Nutrition Conference. Ithaca, N.Y.: Cornell University.
- Scott, M. L., G. Olson, L. Krook, and W. R. Brown. 1967. Selenium responsive myopathies of myocardium and of smooth muscle in the young poult. J. Nutr. 91:573.
- Scott, M. L., S. J. Hull, and P. A. Mullenhoff. 1971. The calcium requirements of laying hens and effects of dietary oyster shell upon egg shell quality. Poult. Sci. 50:1055.
- Scott, M. L., M. C. Nesheim, and R. J. Young. 1982. Nutrition of the Chicken. 3rd ed. Ithaca, N.Y.: M. L. Scott.
- Scragg, R. H., N. B. Logan, and N. Geddes. 1987. Response of egg weight to the inclusion of various fats in layer diets. Br. Poult. Sci. 28:15. Seifter, E., G. Rettura, and S. M. Levenson. 1972. Effect of choline deficiency on serum phospholipids in chicks. Poult. Sci. 51:695.
- Sell, J. L. 1988. Fat stability and quality. P. 1 in Proceedings of the Western Canada Animal Nutrition Conference. Winnipeg, Canada: University of Manitoba.
- Sell, J. L. 1990. Turkey growth rate standards. Turkey World 66(1):12.
- Sell, J. L., and W. J. Owings. 1984. Influence of feeding supplemental fat by age sequence on the performance of growing turkeys. Poult. Sci. 63:1184
- Sell, J. L., and W. K. Roberts. 1963. Effects of dietary nitrite on the chick: Growth, liver vitamin A stores and thyroid weight. J. Nutr. 79:171.
- Sell, J. L., R. Hajj, A. Cox, and W. Guenter. 1967. Effect of magnesium deficiency in the hen on egg production and hatchability. Br. Poult.
- Sell, J. L., F. Horani, and R. L. Johnson. 1976. The "extracaloric" effect of fat in laying hen rations. Feedstuffs 48(27):28.
- Sell, J. L., R. J. Hassick, and W. J. Owings. 1981. Supplemental fat and metabolizable-to-energy ratios for growing turkeys. Poult. Sci.
- Sell, J. L., J. A. Arthur, and I. L. Williams. 1982. Adverse effect of dietary vanadium, contributed by dicalcium phosphate, on albumen quality. Poult. Sci. 61:2112.
- Sell, J. L., J. A. Eastwood, and G. G. Mateos. 1983. Influence of supplemental fat on diet metabolizable energy and ingest a transit time in
- laying hens. Nutr. Rep. Int. 28:487. Sell, J. L., R. J. Hasiak, and W. J. Owings. 1985. Independent effects of dietary metabolizable energy and protein concentrations on performance and carcass characteristics. Poult. Sci. 64:1527.
- Sell, J. L., C. Y. Davis, and S. E. Scheideler. 1986a. Influence of cottonseed meal on vanadium toxicity and ⁴⁸vanadium distribution in body tissues of laying hens. Poult. Sci. 65:138.
- Sell, J. L., A. Krogdahl, and N. Hanyu. 1986b. Influence of age on utilization of supplemental fats by young turkeys. Poult. Sci. 65:546.
- Sell, J. L., S. E. Scheideler, and B. E. Rahn. 1987. Influence of different phosphorus phase-feeding programs and dietary calcium level on performance and body phosphorus of laying hens. Poult. Sci. 66:1524.
 Sell, J. L., P. R. Ferket, C. R. Angel, S. E. Scheideler, F. Escribano, and I. Zatari. 1989. Performance and carcass characteristics of turkey
- toms as influenced by dietary protein and metabolizable energy. Nutr. Rep. Int. 40:979.
- Serafin, J. A. 1974. Studies on the riboflavin, niacin, pantothenic acid and choline requirements of young Bobwhite quail. Poult. Sci. 53:1522.
- Serafin, J. A. 1977. Studies on the protein and sulfur amino acid requirements of young Bobwhite quail. Poult. Sci. 56:577
- Serafin, J. A. 1981. Studies on the riboflavin, pantothenic acid, nicotinic acid, and choline requirements of young Embden geese. Poult. Sci. 60:1910.
- Serafin, J. A. 1982. Influence of protein level and supplemental methionine in practical rations for young endangered masked Bobwhite quail. Poult. Sci. 61:988.
- Sheldon, B. W. 1984. Effect of dietary tocopherol on the oxidative stability of turkey meat. Poult. Sci. 63:673.
- Shellenberger, T. E., and J. M. Lee. 1966. Effect of vitamin A on growth, egg production and reproduction of Japanese quail. Poult. Sci.
- Shen, H., J. D. Summers, and S. Leeson. 1981. Egg production and shell quality of layers fed various levels of vitamin D₃. Poult. Sci. 60:1485. Sherwood, D. H., and H. J. Sloan. 1954. Vitamin B₁₂ and choline in corn-soy rations for starting poults. Poult. Sci. 33:105
- Shim, K. F., and E. V. Chen. 1989. Methionine requirement and its effect on the feather loss of laying Japanese quail. Nutr. Rep. Int. 40 (5):1003
- Shim, K. F., and T. K. Lee. 1982. Least-cost ration formulation for Japanese quail (Coturnix coturnix japonica). 2. Layer diet for laying quail. Singapore J. Primary Industries. 10:89.
- Shim, K. F., and T. K. Lee. 1984. Effect of dietary lysine on egg production of laying Japanese quail. Singapore J. Primary Industries 12 (2):88
- Shim, K. F., and T. K. Lee. 1988. Effect of dietary cystine on egg production of laying Japanese Quail. Singapore J. Primary Industries 16 (1):34.
- Shim, K. F., and P. Vohra. 1984. A review of the nutrition of Japanese quail. World's Poult. Sci. J. 40(3):261.
- Shindo, H., T. Komai, and E. Nakajima. 1972. Metabolic fate and mechanism of action of chloroethylthiamine. J. Vitaminol. 18:480.
- Shrivastav, A. K., and B. Panda. 1987. Sulphur amino acid requirement of growing Japanese quail. Indian J. Anim. Sci. 57:1303.
- Shue, G. M. 1967. Vitamin D requirements of young Japanese quail. Fed. Proc., Fed. Am. Soc. Exp. Biol. 56:697
- Sibbald, I. R. 1975. Indirect methods for measuring metabolizable energy in poultry feeds and ingredients. Feed stuffs 49:22.
- Sibbald, I. R. 1976. A bioassay for true metabolizable energy in feeding stuffs. Poult. Sci. 58:303.
- Sibbald, I. R. 1977. The true metabolizable energy values of some feedstuffs. Poult. Sci. 56:380.
- Sibbald, I. R. 1978a. The effect of age of the assay bird on the true metabolizable energy values of feeding stuffs. Poult. Sci. 57:1008.
- Sibbald, I. R. 1978b. The true metabolizable energy values of mixtures of tallow with either soybean oil or lard. Poult. Sci. 57:473.
- Sibbald, I. R. 1979. A bioassay for available amino acids and true metabolizable energy in feeding stuffs. Poult. Sci. 58:668.
- Sibbald, I. R. 1980. Metabolizable energy evaluation of poultry diets. In Recent Advances in Animal Nutrition, W. Haresign and D. Lewis, eds. London: Butterworth.
- Sibbald, I. R. 1982. Measurement of bioavailable energy in poultry feedingstuffs: A review. Can. J. Anim. Sci. 62:983.
- Sibbald, I. R. 1983. The T.M.E. System of Feed Evaluation. Contrib. 1983-20E. Ottawa, Canada: Research Branch, Agriculture Canada.
- Sibbald, I. R. 1986. The T.M.E. System of Feed Evaluation: Methodology, Feed Composition Data and Bibliography. Tech. Bull. 1986-4E. Ottawa, Canada: Agriculture Canada.
- Sibbald, I. R., and J. K. G. Kramer. 1977. The true metabolizable energy values of fats and fat mixtures. Poult. Sci. 56:2079.

- Sibbald, I. R., and J. K. G. Kramer. 1978. The effect of the basal diet on the true metabolizable energy value of fat. Poult. Sci. 57:685.
- Sibbald, I. R., and J. K. G. Kramer. 1980. The effects of fractions of yellow corn on the true metabolizable energy value of beef tallow. Poult. Sci. 57:1505.
- Sibbald, I. R., and S. J. Slinger. 1962. Factors affecting the ME content of poultry diets. 10. Study of the effect of level of dietary inclusion on the ME values of several high protein feeding stuffs. Poult. Sci. 41:1282.
- Sibbald, I. R., and S. J. Slinger. 1963. A biological assay of *ME* in poultry feed ingredients together with findings which demonstrate some of the problems associated with the evaluation of fats. Poult. Sci. 42:313.
- Sibbald, I. R., and M. S. Wolynetz. 1987. Effects of dietary fat level and lysine: Energy ratio on energy utilization and tissue synthesis by broiler chicks. Poult. Sci. 66:1788.
- Sibbald, I. R., S. J. Slinger, and G. C. Ashton. 1961. Factors affecting the metabolizable energy content of poultry feeds. Poult. Sci. 40:303.
- Sibbald, I. R., S. J. Slinger, and G. C. Ashton. 1962. The utilization of a number of fats, fatty materials and mixtures thereof evaluated in terms of metabolizable energy, chick weight gains and gain:feed ratios. Poult. Sci. 41:46.
- Sifri, M., N. J. Daghir, and J. A. Asmar. 1972. Serum aminotransferase activities and plasma free amino acid concentrations as criteria for pyridoxine nutritional status of chicks. Br. J. Nutr. 28:173.
- Sijtsma, S. R., C. E. West, J. H. W. M. Rombout, and A. J. van der Zijpp. 1989. The interaction between vitamin A status and Newcastle disease virus infection in chickens. J. Nutr. 119:932.
- Sim, J. S., D. B. Bragg, and G. C. Hodgson. 1973. Effect of dietary animal tallow and vegetable oil on fatty acid composition of egg yolk, adipose tissue and liver of laying hens. Poult. Sci. 52:51.
- Singh, A., É. P. Reineke, and R. K. Řinger. 1968. Influence of thyroid status of the chick on growth and metabolism, with observations on several parameters of thyroid function. Poult. Sci. 47:212.
- Singh, S. P., and G. A. Donovan. 1973. A relationship between coccidiosis and dietary vitamin A levels in chickens. Poult. Sci. 52:1295.
- Singsen, E. P., R. H. Bunnell, L. D. Matterson, A. Kozeff, and E. L. Tingherr. 1955. Studies on encephalomalacia in the chick. Poult. Sci. 34:262.
- Singsen, E. P., L. D. Matterson, J. Tlustohowicz, and L. M. Potter. 1959. The effect of controlled feeding, energy intake, and type of diet on the performance of heavy-type laying hens. Storrs (Conn.) Agric. Exp. Stn. Bull. 346.
- Singsen, E. P., A. H. Spandorf, L. D. Matterson, J. A. Serafin, and J. J. Tlustohowicz. 1962. Phosphorus in the nutrition of the adult hen. 1. Minimum phosphorus requirements. Poult. Sci. 41:1401.
- Singsen, E. P., J. Nagel, S. G. Patrick, and L. D. Matterson. 1964. The effect of a lysine deficiency on growth characteristics, age at sexual maturity, and reproductive performance of meat-type pullets. Poult. Sci. 43:1362.
- Sinha, R. R. P., and A. K. Verma. 1984. Effect of different levels of dietary protein in Japanese quail (*Coturnix coturnix japonica*). Indian J. Anim. Health 23:77.
- Siregar, A. P., R. B. Cumming, and D. J. Farrell. 1982. The nutrition of meat-type ducks. 1. The effects of dietary protein in isoenergetic diets on biological performance. Aust. J. Agric. Res. 33:857.
- Sklan, D. 1983. Carotene-cleavage activity in chick intestinal mucosa cytosol: Association with a high-molecular-weight lipid-protein aggregate fraction and partial characterization of the activity. Br. J. Nutr. 50:417.
- Sklan, D., and S. Donoghue. 1982. Vitamin E response to high dietary vitamin A in the chick. J. Nutr. 112:759.
- Sklan, D., H. D. Rabinowitch, and S. Donoghue. 1981. Superoxide dismutase: Effect of vitamins A and E. Nutr. Rep. Int. 24:551.
- Sklan, D., T. Yosefov, and A. Friedman. 1989. The effects of vitamin A, β-carotene and canthaxanthin on vitamin A metabolism and immune responses in the chick. Int. J. Vitam. Nutr. Res. 59:245.
- Slagter, P. J., and P. W. Waldroup. 1984. Calculation and evaluation of energy:amino acid ratios for the egg production type hen. Poult. Sci. 63:1810.
- Slaugh, B. T., N. P. Johnston, and J. D. Patten. 1989. Research note: Effect of dietary phosphorus levels on performance of turkey breeder hens. Poult. Sci. 68:319.
- Slinger, S. J., J. J. MacIlraith, and E. V. Evans. 1946. The use of crystalline riboflavin and of supplementary choline in starting and growing rations for turkeys. Poult. Sci. 25:628.
- Slinger, S. J., W. F. Peper, I. Motzok, and I. R. Sibbald. 1961. Studies on the calcium requirements of turkeys. I. Influence of antibiotics during the starting period; interrelationships with reserpine during the growing period. Poult. Sci. 40:1281.
- Smith, J. D., W. H. Burke, and G. M. Speers. 1973. The response of starting turkeys to moderate differences in dietary potassium concentration. Poult. Sci. 52:1344.
- Smith, J. W., and P. B. Hamilton. 1970. Aflatoxicosis in the broiler chicken. Poult. Sci. 49:207.
- Smith, N. K., Jr., and P. W. Waldroup. 1988a. Estimation of the tryptophan requirement of male broiler chickens. Poult. Sci. 67:1174.
- Smith, N. K., Jr., and P. W. Waldroup. 1988b. Investigations of threonine requirements of broiler chicks fed diets based on grain sorghum and soybean meal. Poult. Sci. 67:108.
- Smith, W. K. 1978. The amino acid requirements of laying hens. Models for calculation. 2. Practical application. World's Poult. Sci. J. 34:129. Snell, E. E., and E. Quarles. 1941. Effect of incubation on the vitamin content of eggs. J. Nutr. 22:483.
- Snyder, J. M., W. D. Morrison, and H. M. Scott. 1956. The arginine requirement of chicks fed purified and corn-soya diets. Poult. Sci. 35:852. Soares, J. H., Jr., D. Miller, H. Lagally, B. R. Stillings, P. Bauersfeld, and S. Cuppett. 1973. The comparative effect of oral ingestion of methyl mercury on chicks and rats. Poult. Sci. 52:452.
- Southern, L. L., and D. H. Baker. 1981. Bioavailable pantothenic acid in cereal grains and soybean meal. J. Anim. Sci. 53:403.
- Southern, L. L., and D. H. Baker. 1982. Iron status of the chick as affected by *Eimeria acervulina* infection and by variable iron ingestion. J. Nutr. 112:2353.
- Southern, L. L., and D. H. Baker. 1983a. *Eimeria acervulina* infection in chicks fed deficient or excess levels of manganese. J. Nutr. 113:172. Southern, L. L., and D. H. Baker. 1983b. Zinc toxicity, zinc deficiency and zinc-copper interrelationship in *Eimeria acervulina*-infected chicks. J. Nutr. 113:688.
- Spencer, G. F., S. F. Herb, and P. J. Gormisky. 1976. Fatty acid composition as a basis for identification of commercial fats and oils . J. Am. Oil Chem. Soc. 53:94.
- Spivey-Fox, M. R., and R. M. Jacobs. 1967. Zinc requirements of the young Japanese quail. Fed. Proc. Fed. Am. Soc. Exp. Biol. 26:524.
- Spivey-Fox, M. R., G. Q. Hudson, and M. E. Hintz. 1966. Pantothenic acid requirement of young Japanese quail. Fed. Proc. Fed. Am. Soc. Exp. Biol. 25:721.
- Spratt, R. S., and S. Leeson. 1987. Broiler breeder performance in response to diet protein and energy. Poult. Sci. 66:683
- Spratt, R. S., H. S. Bayley, B. W. McBride, and S. Leeson. 1990a. Energy metabolism of broiler breeder hens. 1. The partition of daily energy intake. Poult. Sci. 69:1339.
- Spratt, R. S., B. W. McBride, H. S. Bayley, and S. Leeson. 1990b. Energy metabolism of broiler breeder hens. 2. Contribution of tissues to total heat production in fed and fasted hens. Poult. Sci. 69:1349.
- Squibb, R. L. 1971. Estimating the metabolizable energy of foodstuffs with an avian model. J. Nutr. 101:1211.
- Squires, M. W., and E. C. Naber. 1992. Vitamin profiles as indicators of nutritional status in the laying hen: Vitamin B₁₂ study. Poult. Sci. 71:2075.

Stadelman, W. J., R. V. Boucher, and E. W. Callenbach. 1950. The effect of vitamin D in the turkey breeder ration on egg production and hatchability and on growth and calcification of the poults. Poult. Sci. 24:146.

Stahl, J. L., M. E. Cook, and M. L. Sunde. 1986. Zinc supplementation: Its effect on egg production, feed conversion, fertility and hatchability. Poult. Sci. 65:2104.

Stansby, M. E. 1981. Reliability of fatty acid values purporting to represent composition of oil from different species of fish. J. Am. Oil. Chem. Soc. 58:13.

Starcher, B., C. H. Hill, and G. Matrone. 1964. Importance of dietary copper in the formation of aortic elastin. J. Nutr. 82:318.

Starcher, B. C., C. H. Hill, and J. G. Madaros. 1980. Effect of zinc deficiency on bone collagenase and collagen turnover. J. Nutr. 110:2095. Staten, F. E., P. A. Anderson, D. H. Baker, and P. C. Harrison. 1980. The efficacy of D, L-pantothenic acid relative to D-pantothenic acid. Poult. Sci. 59:1664

Steigner, J. W. 1990. Growth, reproduction, and nutrition of strains of Japanese quail divergently selected for growth, M.S. thesis. Ohio State University, Columbus.

Steinhart, H., and M. Kirchgessner. 1984. Investigations on the requirement of tryptophan for broilers. Arch. Gefluegelkd. 48:150.

Stevens, V. I., and R. Blair. 1985. Effects of supplementary vitamin D₃ on egg production of two strains of Japanese quail and growth of their progeny. Poult. Sci. 64:510.

Stevens, V. I., R. Blair, R. E. Salmon, and J. P. Stevens. 1984. Effect of varying levels of dietary vitamin D₃ on turkey hen egg production,

fertility and hatchability, embryo mortality and incidence of embryo beak malformations. Poult. Sci. 63:760.

Stevens, V. I., R. Blair, H. L. Classen, and C. Riddell. 1986. Metabolizable energy and available phosphorus as potential contributors to rickets in poults. Nutr. Rep. Int. 34:761.

Stevenson, M. H. 1985. Effects of diets of varying energy concentrations on the growth and carcass composition of geese. Br. Poult. Sci. 26:493

Stillmak, S. J., and M. L. Sunde. 1971. The use of high magnesium limestone in the diet of the laying hen. Poult. Sci. 50:553.

Stoewsand, G. S., and M. L. Scott. 1961. The vitamin A requirements of breeding turkeys and their progeny. Poult. Sci. 40:1255.

Stokstad, E. L. R., and T. H. Jukes. 1987. Sulfonamides and folic acid antagonists: A historical review. J. Nutr. 117:1335.

Stokstad, E. L. R., T. H. Jukes, J. Pierce, A. C. Page, Jr., and A. L. Franklin. 1949. The multiple nature of the animal protein factor. J. Biol. Chem. 180:64.

Storer, N. L., and T. S. Nelson. 1968. The effect of various aluminum compounds on chick performance. Poult. Sci. 47:244. Su, C. J. 1977. Studies on the requirements of calcium and phosphorus for the Taiwan ducks. 1. The effects of different calcium and phosphorus levels on the growing and laying ducks. J. Chin. Soc. Anim. Sci. 6:1.

Sugahara, M., and M. Kandatsu. 1976. Glycine-serine interconversion in the rooster. Agric. Biol. Chem. 40:833.

Sugahara, M., D. H. Baker, and H. M. Scott. 1969. Effect of different patterns of excess amino acids on performance of chicks fed amino acid deficient diets. J. Nutr. 97:29.

Sullivan, T. W. 1960. An estimate of the phosphorus requirement of Broad Breasted Bronze turkeys, 8-20 weeks of age. Poult. Sci. 39:1321.

Sullivan, T. W. 1961. The zinc requirement of Broad Breasted Bronze poults. Poult. Sci. 40:334.

Sullivan, T. W. 1962. Studies on the calcium and phosphorus requirements of turkeys, 8 to 20 weeks of age. Poult. Sci. 41:253.

Sullivan, T. W. 1963. Studies on the potassium requirement of turkeys to 4 weeks of age . Poult. Sci. 42:1072.

Sullivan, T. W. 1964. Studies on the dietary requirement and interaction of magnesium with antibiotics in turkeys to 4 weeks of age. Poult. Sci. 43:401.

Sullivan, T. W., H. M. Heil, and M. E. Armintrout. 1967. Dietary thiamine and pyridoxine requirements of young turkeys. Poult. Sci. 46:1560. Summers, J. D., and S. Leeson. 1978. Dietary selection of protein and energy by pullets and broilers. Br. Poult. Sci. 19:425.

Summers, J. D., and S. Leeson. 1983. Factors influencing early egg size. Poult. Sci. 62:1155

Summers, J. D., and E. T. Moran, Jr. 1972. Interaction of dietary vanadium, calcium, and phosphorus for the growing chicken. Poult. Sci. 51:1760.

Summers, J. D., and A. R. Robblee. 1985. Comparison of apparent amino acid digestibilities in anesthetized versus sacrificed chickens using diets containing soybean meal and canola meal. Poult. Sci. 64:536.

Summers, J. D., W. F. Pepper, and S. J. Slinger. 1959. Sources of unidentified factors for practical poultry diets. 3. The value of fish solubles, dried whey and certain fermentation products for turkeys. Poult. Sci. 38:922

Summers, J. D., W. F. Pepper, S. D. Slinger, and J. D. McConachie. 1967. Feeding meat-type pullets and breeders. 1. Methods for and significance of lowering the live weight of meat-type pullets at point of lay. 2. Evidence on the protein and energy needs of meattype breeders. Poult. Sci. 46:1158.

Summers, J. D., W. F. Pepper, E. T. Moran, and J. D. McConachie. 1968. Protein requirements of fast growing strains of large white and broiler type turkeys. Poult. Sci. 47:536.

Summers, J. D., G. Hurnik, and S. Leeson. 1987. Carcass composition and protein utilization of Embden geese fed varying levels of dietary protein supplemented with lysine and methionine. Can. J. Anim. Sci. 67:159.

Sunde, M. L. 1955. The niacin requirement of chickens from 6 to 11 weeks. Poult. Sci. 34:304. Sunde, M. L. 1972. Zinc requirement for normal feathering of commercial Leghorn-type pullets . Poult. Sci. 51:1316.

Sunde, M. L., and H. R. Bird. 1956. A critical need of phosphorus for the young pheasant. Poult. Sci. 35:424

Sunde, M. L., and H. R. Bird. 1957. The niacin requirement of the young Ring-necked pheasant. Poult. Sci. 36:34.

Sunde, M. L., W. W. Cravens, C. A. Elvehjem, and J. G. Halpin. 1950a. The effect of folic acid on embryonic development of the domestic fowl. Poult. Sci. 29:696

Sunde, M. L., W. W. Cravens, H. W. Bruins, C. A. Elvehjem, and J. G. Halpin. 1950b. The pteroylglutamic acid requirement of laying and breeding hens. Poult. Sci. 29:220.

Sunde, M. L., C. M. Turk, and H. F. DeLuca. 1978. The essentiality of vitamin D metabolites for embryonic chick development. Science 200:1067.

Sundeen, G., J. F. Richards, and D. B. Bragg. 1980. The effect of vitamin A deficiency on some post-mortem parameters of avian muscle. Poult. Sci. 59:2225

Supplee, W. C. 1961. Production of zinc deficiency in turkey poults by dietary cadmium. Poult. Sci. 40:827.

Supplee, W. C. 1964. Observations on the effect of copper additions to purified turkey diets. Poult. Sci. 43:1599.
Supplee, W. C., and G. F. Combs. 1959. Studies of the potassium requirement of turkey poults fed purified diets. Poult. Sci. 38:833.
Supplee, W. C., R. D. Creek, G. F. Combs, and D. L. Blamberg. 1961. The zinc requirements of poults receiving practical diets. Poult. Sci. 40:171

Suttie, J. W. 1987. Recent advances in hepatic vitamin K metabolism and function. Hepatology 7:367. Svacha, A., C. W. Weber, and B. L. Reid. 1970. Lysine, methionine, and glycine requirements of Japanese quail to five weeks of age. Poult. Sci. 49:54.

Sykes, A. H. 1979. Environmental temperature and energy balance in the laying hen. P. 207 in Food Intake Regulation in Poultry. Edinburgh, U.K.: British Poultry Sciences, Ltd.

Takahashi, N., T. Shinki, E. Abe, N. Horuichi, A. Yamaguchi, S. Yoshiki, and T. Suda. 1983. The role of vitamin D in the medullary bone formation in egg-laying Japanese quail and in immature male chicks treated with sex hormones. Calcif. Tissue Int. 35:465

- Tang, K.-N., G. N. Rowland, and J. R. Veltmann, Jr. 1985. Vitamin A toxicity: Comparative changes in bone of the broiler and Leghorn chicks. Avian Dis. 29:416.
- Tarhay, S. L., E. G. Buss, and C. O. Clagett. 1975. Avian riboflavinuria. 10. Quantitative changes of riboflavin binding protein in individual egg tissues during incubation. Poult. Sci. 54:562.
- Taucins, E., A. Svilane, A. Valdamins, A. Buike, R. Farina, and E. Y. Fedorova. 1969. Barium, strontium, and copper salts in chick nutrition. Fizol. Akt. Kompenenty Pitan Zhivotn. 199
- Taylor, M. W., and W. C. Russell. 1947. The provitamin A requirement of growing chickens. Poult. Sci. 26:234-242.
- Teekell, R. A., and A. B. Watts. 1959. Tungsten supplementation of breeder hens. Poult. Sci. 38:791.
- Tenesaca, G., and J. L. Sell. 1981. Influence of an indigestible material on energy excretion by roosters and on true metabolizable energy of corn. Poult. Sci. 60:623.
- Tenerdy, R. T., and C. F. Nockels. 1973. The effect of vitamin E on egg production, hatchability and humoral immune response of chicks. Poult. Sci. 52:778
- Thayer, R. H., G. E. Hubbell, J. A. Kasbohm, R. D. Morrison, and E. C. Nelson. 1974. Daily protein intake requirement of laying hens. Poult. Sci. 53:354
- Thomas, O. P., and S. D. Crissey. 1983. Recent advances in the field of amino acid bioavailability. P. 82 in Proceedings of the Fourth Europe Symposium on Poultry Nutrition, M. Larbier, ed. Tours, France: World's Poultry Science Association.
- Thomas, O. P., P. V. Twining, Jr., and E. H. Bossard. 1977. The available lysine requirement of 7-9 week old sexed broiler chicks. Poult. Sci. 56.57
- Thomas, O. P., E. H. Bossard, M. T. Farran, and C. B. Tamplin. 1985. The effect of different coccidiostats on the methionine requirement of 3-week-old broilers. P. 32 in Proceedings of the Maryland Nutrition Conference for Feed Manufacturers. College Park, Md.: University of Maryland.
- Thomas, O. P., A. I. Zuckerman, M. Farran, and C. B. Tamplin. 1986. Updated amino acid requirements of broilers. P. 79 in Proceedings of the Maryland Nutrition Conference for Feed Manufacturers. College Park, Md.: University of Maryland.
- Thomas, O. P., M. Farran, C. B. Tamplin, and A. I. Zuckerman. 1987. Broiler starter studies. I. The threonine requirements of male and female broiler chicks. II. The body composition of males fed varying levels of protein and energy. P. 38 in Proceedings of the Maryland Nutrition Conference for Feed Manufacturers. College Park, Md.: University of Maryland.
- Thomas, O. P., M. T. Farran, S. A. Kaysi, K. Tamplin, and N. Ranells. 1988. Branched chain amino acid requirements of broilers during the starter period. P. 53 in Proceedings of the Arkansas Nutrition Conference. Fayetteville, Ark.: University of Arkansas.
- Thompson, J. N., and M. L. Scott. 1967. Selenium deficiency in chicks and quail. P. 130 in Proceedings of the Cornell Nutrition Conference. Ithaca, N.Y.: Cornell University.
- Thompson, J. N., and M. L. Scott. 1969. Role of selenium in the nutrition of the chick. J. Nutr. 97:335.
- Thompson, J. N., and M. L. Scott. 1970. Impaired lipid and vitamin E absorption related to atrophy of the pancreas in selenium-deficient chicks. J. Nutr. 100:797.
- Thompson, J. N., J. McC. Howell, G. A. J. Pitt, and C. I. Houghton. 1965. Biological activity of retinoic acid ester in the domestic fowl: Production of vitamin A deficiency in the early chick embryo. Nature (London) 205:1006.
- Thornton, P. A. 1960. Thiamine requirement of growing chicks as influenced by breed differences. Poult. Sci. 39:440.
- Thornton, P. A., and J. V. Shutze. 1960. The influence of dietary energy level, energy source and breed on the thiamine requirement of
- chicks. Poult. Sci. 39:192.

 Thornton, P. A., and W. A. Whittet. 1962. The influence of dietary energy level, energy source, breed, and sex on vitamin A requirement in the chick. Poult. Sci. 41:32
- Tillman, P. B., and G. M. Pesti. 1985. Development of a basal diet to study broiler chicken responses to the sulfur-containing amino acids and sodium sulfate. Poult. Sci. 64:1350
- Timson, B. F., M. S. Chi, and B. K. Bowlin. 1983. The effect of reduced dietary protein on the anterior latissimus dorsi muscle fibers in the single comb White Leghorn pullet. Poult. Sci. 62:223.
- Titus, H. W. 1955. The Scientific Feeding of Chickens. 3rd ed. Danville, Ill.: Interstate.
- Titus, H. W. 1961. The Scientific Feeding of Chickens. 4th ed. Danville, Ill.: Interstate.
- Titus, H. W., and J. C. Fritz. 1971. The Scientific Feeding of Chickens. 5th ed. Danville, Ill.: Interstate.
- Tortuero, F., and M. V. Diez Tardon. 1983. Possibilities in the use of low phosphorus concentrations for broiler diets during the finishing period. Adv. Aliment. Mejora Anim. 24:63.
- Touchburn, S. P., V. D. Chamberlin, and E. C. Naber. 1972. Unidentified factors in turkey nutrition affecting hatchability and progeny growth. Poult. Sci. 51:96.
- Tsigabe, V. K., C. W. Kang, and M. L. Sunde. 1982. The effect of choline supplementation in growing pullet and laying hen diets. Poult. Sci. 61:2060.
- Tsiagbe, V. K., M. E. Cook, A. E. Harper, and M. L. Sunde. 1987. Enhanced immune response in broiler chicks fed methionine supplemented diets. Poult. Sci. 66:1147.
- Tung, H. T., W. E. Donaldson, and P. B. Hamilton. 1972. Altered lipid transport during aflatoxicosis. Toxicol. Appl. Pharmacol. 22:97.
- Turk, D. E. 1965. Effect of diet on the tissue zinc distribution and reproduction in the fowl. Poult. Sci. 44:122.
- Tuttle, W. L., and S. L. Balloun. 1974. Lysine requirements of starting and growing turkeys. Poult. Sci. 53:1698.
- Twining, P. F., R. J. Lillie, E. J. Robel, and C. A. Denton. 1965. Calcium and phosphorus requirements of broiler chickens. Poult. Sci. 44:283.
- Twining, P. V., Jr., O. P. Thomas, E. H. Bossard, and J. L. Nicholson. 1973. The available lysine requirement of 7-9 week old male broiler chicks. Poult. Sci. 52:2280.
- Tyczkowski, J. K., and P. B. Hamilton. 1987. Altered metabolism of carotenoids during aflatoxicosis in young chickens. Poult. Sci. 66: 1184. Ueda, H., S. Yabuta, H.-O. Yokota, and I. Tasaki. 1981. Involvement of feed intake and feed utilization in the growth retardation of chicks given the excessive amounts of leucine, lysine, phenylalanine or methionine. Nutr. Rep. Int. 24:135.
- Uthus, E. O., and F. H. Nielsen. 1985. Effects in chicks of arsenic, arginine, and zinc and their interaction on body weight, plasma uric acid, plasma urea, and kidney arginase activity. Biol. Trace Elem. Res. 7:11.
- 1986. Threonine requirement in broilers. In Alimentation Equilibree Commentri Information, Poultry 252. Rhône, Poulenc, Uzu, G. Commentry, France: AEC.
- Vahl, H. A., and A. Th. van't Klooster. 1987. Effects of excessive vitamin A levels in broiler rations. J. Anim. Physiol. Anim. Nutr. 57:204.
- Valencia, M. E., P. M. Maiorino, and B. L. Reid. 1980. Energy utilization by laying hens. II. Energetic efficiency and added tallow at 18.3 and 35C. Poult. Sci. 59:2071.
- Van Reen, R., and P. B. Pearson. 1953. Magnesium deficiency in the duck. J. Nutr. 51:191.
- Van Wambeke, F., and G. DeGroote. 1986. L'influence du moment de l'alimentation et du remplacement partiel de la craie en poudre par des coquilles d'huitres comme source de calcium sur les resultats de reproduction de deux souches de poules reproductrices du type chair. Rev. l'Agric. 39:137.

Vaughters, P. D., G. M. Pesti, and B. Howarth, Jr. 1987. Effects of feed composition and feeding schedule on growth and development of broiler breeder males. Poult. Sci. 66:134.

- Veen, W. A. G., A. H. M. Grimbergen, and H. P. Stappers. 1974. The true digestibility and caloric value of various fats used in feeds for broilers. Arch. Gefluegelkd. 6:213.
- Veltmann, J. R., Jr., E. Ross, and S. E. Olbrich. 1981. The physiological effects of feeding Warfarin to poultry. Poult. Sci. 60:2603.
- Veltmann, J. R., Jr., L. S. Jensen, and G. N. Rowland. 1987. Partial amelioration of vitamin A toxicosis in the chick and turkey poult by extra dietary vitamin D₃. Nutr. Rep. Int. 35:381.
- Vengris, V. E., and C. J. Mare. 1974. Lead poisoning in chickens and the effect of lead on interferon and antibody production. Can. J. Comp. Med. 38:328.
- Vigo, C., and D. E. Vance. 1981. Effect of diethylstilbesterol on phosphatidylcholine biosynthesis and choline metabolism in the liver of roosters. Biochem. J. 200:321.
- Vogt, H. 1969. Protein requirements of quail chicks in the early stages of rearing. Arch. Gefluegelkd. 33:274.
- Vogt, H. 1970. Choline requirement of quail. Arch. Gefluegelkd. 34:41.
- Vogt, H. 1977. Versuch über den Chloridebedarf im Legenhennenfutter. Arch. Gefluegelkd. 41:125.
- Vohra, P. 1972a. Evaluation of metabolizable energy for poultry. World's Poult. Sci. J. 28(2):204.
- Vohra, P. 1972b. Magnesium requirement for survival and growth of Japanese quail (Coturnix coturnix japonica). Poult. Sci. 51:2103.
- Vohra, P., and F. H. Kratzer. 1959. Specificity of lysine for the growth of turkey poults and prevention of feather depigmentation. Poult. Sci. 38:280.
- Vohra, P. and F. H. Kratzer. 1967. Absorption of barium sulphate and chromic oxide from the chicken gastrointestinal tract. Poult. Sci. 46:1603
- Vohra, P., and F. H. Kratzer. 1968. Zinc, copper and manganese toxicities in turkey poults and their alleviation by EDTA. Poult. Sci. 47:699.
- Vohra, P., and T. Roudybush. 1971. The effect of various levels of dietary protein on the growth and egg production of Coturnix coturnix japonica. Poult. Sci. 50:1081. Vohra, P., T. D. Siopes, and W. O. Wilson. 1979. Egg production and body weight, changes of Japanese quail and Leghorn hens following
- deprivation of either supplementary calcium or vitamin D₃. Poult. Sci. 58:432.
- Waddell, D. G., and J. L. Sell. 1964. Effects of dietary calcium and phosphorus on the utilization of dietary iron by the chick. Poult. Sci. 43:1249.
- Wagner, D. D., and O. P. Thomas. 1978. Influence of diets containing rye or pectin on the intestinal flora of chicks. Poult. Sci. 57:971.
- Waibel, P. E., D. C. Snetsinger, R. A. Ball, and J. H. Sautter. 1964. Variation in tolerance of turkeys to dietary copper. Poult. Sci. 43:504
- Waibel, P. E., L. M. Krista, and R. L. Arnold. 1969. Effect of supplementary biotin on performance of turkeys fed corn-soybean meal type diets. Poult. Sci. 48:1979
- Waldroup, P. W. 1981. Cottonseed meal in poultry diets. Feedstuffs 53(52):21.
- Waldroup, P. W., and K. R. Hazen. 1976. A comparison of the daily energy needs of the normal and dwarf broiler breeder hen. Poult. Sci. 55:1383
- Waldroup, P. W., and V. E. Tollett. 1972. The acceptability of acidulated cottonseed soapstock as an energy supplement for broiler diets. Poult. Sci. 51:1907.
- Waldroup, P. W., C. B. Ammerman, and R. H. Harms. 1962. Comparison of the requirements of battery and floor grown chicks for calcium and phosphorus. Poult. Sci. 41:1433.
- Waldroup, P. W., C. B. Ammerman, and R. H. Harms. 1963a. The relationship of phosphorus, calcium and vitamin D₃ in the diet of broiler-
- type chicks. Poult. Sci. 42:982.
 Waldroup, P. W., C. B. Ammerman, and R. H. Harms. 1963b. Calcium and phosphorus requirements of finishing broilers using phosphorus sources of low and high availability. Poult. Sci. 42:752.
- Waldroup, P. W., J. E. Sterns, C. B. Ammerman, and R. H. Harms. 1965. Studies on the vitamin D₃ requirement of the broiler chick. Poult. Sci. 44:543.
- Waldroup, P. W., B. L. Damron, and R. H. Harms. 1966. The effect of low protein and high fiber diets on the performance of broiler pullets. Poult. Sci. 45:393.
- Waldroup, P. W., D. E. Greene, R. H. Harris, J. F. Maxey, and E. L. Stephenson. 1967. Comparison of corn, wheat, and milo in turkey diets. Poult. Sci. 46:1581.
- Waldroup, P. W., C. M. Hillard, and W. W. Abbott. 1970. Evaluation of corn dried steep liquor concentrate in the diet of broiler chicks. Poult. Sci. 49:1203
- Waldroup, P. W., R. J. Mitchell, and K. R. Hazen. 1974a. The phosphorus needs of finishing broilers in relationship to dietary nutrient density levels. Poult. Sci. 53:1655.
- Waldroup, P. W., J. F. Maxey, and L. W. Luther. 1974b. Studies on the calcium and phosphorus requirements of caged turkey breeder hens. Poult. Sci. 53:886.
- Waldroup, P. W., R. J. Mitchell, and Z. B. Johnson. 1975. The phosphorus needs of young broiler chicks in relationship to dietary nutrient density level. Poult. Sci. 54:436.
- Waldroup, P. W., W. D. Bussell, and Z. B. Johnson. 1976a. Attempts to control body weight gains of growing broiler breeder females with high fiber diets. Poult. Sci. 55:1118.
- Waldroup, P. W., K. R. Hazen, W. D. Bussell, and Z. B. Johnson. 1976b. Studies on the daily protein and amino acid needs of broiler breeder
- hens. Poult. Sci. 55:2342. Waldroup, P. W., Z. B. Johnson, and W. D. Bussell. 1976c. Estimating daily nutrient requirements for broiler breeder hens. Feedstuffs 50:19. Waldroup, P. W., R. Mitchell, J. R. Payne, and K. R. Hazen, 1976d. Performance of chicks fed diets formulated to minimize excess levels of
- essential amino acids. Poult. Sci. 55:1225 Waldroup, P. W., C. J. Mabray, J. R. Blackman, and Z. B. Johnson. 1979. The influence of copper sulfate on the methionine requirement of
- the young broiler chick. Nutr. Rep. Int. 20:303 Waldroup, P. W., W. D. Bussell, and H. B. Burke. 1980. Lysine and methionine needs of growing egg-type pullets. World's Poult. Sci. J.
- 36:85. Waldroup, P. W., B. E. Ramsey, H. M. Hellwig, and N. K. Smith. 1985a. Optimum processing of soybean meal used in broiler diets. Poult.
- Sci. 64:2314. Waldroup, P. W., H. M. Hellwig, G. K. Spencer, N. K. Smith, B. I. Fancher, M. F. Jackson, Z. B. Johnson, and T. L. Goodwin. 1985b. The
- effects of increased levels of niacin supplementation on growth rate and carcass composition of broiler chickens. Poult. Sci. 64:1777. Walter, E. D., and L. S. Jensen. 1963. Effectiveness of selenium and noneffectiveness of sulfur amino acids in preventing muscular dystrophy
- in the turkey poult. J. Nutr. 80:327. Walter, E. D., and L. S. Jense. 1964. Serum glutamic-oxaloacetic transminase levels, muscular dystrophy and certain hematological
- measurements in chicks and poults as influenced by vitamin E, selenium and methionine. Poult. Sci. 48:919.
- Ward, N. E. 1989. Regression estimates of amino acids in ingredients. Feedstuffs 63:26.
- Ward, N. E., J. Jones, and D. V. Maurice. 1985. Inefficacy of propionic acid for depleting laying hens and their progeny of vitamin B₁₂. Nutr. Rep. Int. 32:1325
- Ward, N. E., J. Jones, and D. V. Maurice. 1988. Essential role of adenosylcobalamin in leucine synthesis from B-leucine in the domestic chicken. J. Nutr. 118:159.
- Warner, R. E., D. M. Darda, and D. H. Baker. 1982. Effects of dietary protein level and environmental temperature stress on growth of young Ring-necked pheasants. Poult. Sci. 61:673.
- Warnick, R. E., and J. O. Anderson. 1973. Essential amino acid levels for starting turkey poults. Poult. Sci. 52:445.

- Watkins, B. A. 1988. Influences of biotin deficiency and dietary transfatty acids on tissue lipids in chickens. Br. J. Nutr. 61:91.
- Watkins, B. A. 1991. Importance of essential fatty acids and their derivatives in poultry. J. Nutr. 121:1475.
- Watkins, B. A., and A. M. Rogel. 1989. Progression of biotin deficiency and influence of reduced food intake on fatty acids in the chick. Nutr. Res. 9:57.
- Watkins, B. A., S. D. Bain, and J. W. Newbrey. 1989. Eicosanoic fatty acid reduction in the tibro-tarsus of biotin-deficient chicks, Calcif. Tissue Int. 46:41.
- Watson, L. T., C. B. Ammerman, S. M. Miller, and R. H. Harms. 1971. Biological availability to chicks of manganese from different inorganic sources. Poult. Sci. 50:1693.
- Weber, C. W., and B. L. Reid. 1967. Protein requirements of Coturnix quail to five weeks of age. Poult. Sci. 46:1190.
- Weber, C. W., and B. L. Reid. 1968. Nickel toxicity in growing chicks. J. Nutr. 95:612.
 Weber, C. W., A. R. Doberenz, R. W. G. Wyckoff, and B. L. Reid. 1968. Strontium metabolism in chicks. Poult. Sci. 47:1318.
 Weber, C. W., A. R. Doberenz, and B. L. Reid. 1969. Fluoride toxicity in the chick. Poult. Sci. 48:230-235.
- Wedekind, K. J., and D. H. Baker. 1990. Zinc bioavailability in feed-grade sources of zinc. J. Anim. Sci. 68:684.
- Wedekind, K. J., A. Hortin, and D. H. Baker. 1990. Bioavailability of zinc in a zinc-methionine chelate. Poult. Sci. 6(Suppl. 1):142.
- Weihrauch, J. L., C. A. Brignoli, J. B. Reeves III, and J. L. Iverson. 1977. Fatty acid composition of margarines, processed fats, and oils: A new compilation of data for tables of food composition. Food Technol. 31:80.
- West, J. W., C. W. Carrick, S. M. Hauge, and E. T. Mertz. 1951. The relationship of choline and cystine to the methionine requirement of young chickens. Poult. Sci. 30:880.
- Wethli, E., and T. R. Morris. 1978. Effects of age on the trytophan requirement of laying hens. Br. Poult. Sci. 19:559.
- Wheeler, K. B., and J. D. Latshaw. 1981. Sulfur amino acid requirements and interactions in broilers during two growth periods. Poult. Sci.
- White, H. B., III, J. Armstrong, and C. C. Whitehead. 1986. Riboflavin binding protein. Concentration and fractional saturation in chicken eggs as a function of dietary riboflavin. Biochem. J. 238:671.
- White, H. B., III, C. C. Whitehead, and J. Armstrong. 1987. Relationship of biotin deposition in turkey eggs to dietary biotin and biotinbinding proteins. Poult. Sci. 66:1236.
- Whitehead, C. C. 1980. Performance of laying hens fed on practical diets containing different levels of supplemental biotin during the rearing
- and laying stages. Br. J. Nutr. 44:151.

 Whitehead, C. C. 1981. The response of egg weight to the inclusion of different amounts of vegetable oil and linoleic acid in the diet of laying hens . Br. Poult. Sci. 22:525
- Whitehead, C. C., and D. W. Bannister. 1980. Biotin status, blood pyruvate carboxylase (EC6.4.1.1) activity and performance in broilers under different conditions of bird husbandry and diet processing. Br. J. Nutr. 43:541.
- Whitehead, C. C., and C. Fisher. 1975. The utilization of various fats by turkeys of different ages. Br. Poult. Sci. 16:481.
- Whitehead, C. C., and K. M. Herron. 1988. Fatty acid requirements of breeding turkeys. Br. Poult. Sci. 29:761.
 Whitehead, C. C., and C. J. R. Randall. 1982. Interrelationships between biotin, choline, and other B vitamins and the occurrence of fatty liver and kidney syndrome and sudden death syndrome in broiler chickens. Br. J. Nutr. 48:177.
- Whitehead, C. C., and D. W. F. Shannon. 1974. The control of egg production using a low-sodium diet. Br. Poult. Sci. 15:429.
- Whitehead, C.C., and W.G. Siller. 1983. Experimentally induced fatty liver and kidney syndrome in the young turkey. Res. Vet. Sci. 34:73. Whitehead, C. C., R. A. Pearson, and K. M. Herron. 1985. Biotin requirements of broiler breeders fed diets of different protein content and effect of insufficient biotin on the viability of progeny. Br. Poult. Sci. 26:73.
- Wideman, R. F., Jr., J. A. Closser, W. B. Roush, and B. S. Cowen. 1985. Urolithiasis in pullets and laying hens: Role of dietary calcium and phosphorus. Poult. Sci. 64:2300.
- Wilcox, R. A., C. W. Carlson, W. Kohlmeyer, and G. F. Bastler. 1953. Calcium and phosphorus requirements of poults fed purified diets. Poult. Sci. 32:1030.
- Wilgus, H. S., Jr., L. C. Norris, and G. F. Heuser. 1937. The role of manganese and certain other trace elements in the prevention of perosis. J. Nutr. 14:155.
- Wilgus, H. S., Jr., F. X. Gassner, A. R. Patton, and G. S. Harshfield. 1953. The iodine requirements of chickens. Colo. Agric. Exp. Stn. Bull.
- Wilhelm, L. A., E. I. Robertson, and M. Rhian. 1941. The effect of the level of vitamin D on egg production and hatchability of Bronze turkey hens . Poult. Sci. 20:565.
- Wilkening, M. C., B. S. Schweigert, P.B. Pearson, and R. M. Sherwood. 1947. Studies on the requirement of the chick for tryptophan. J. Nutr. 34:701.
- Willis, G. M., and D. H. Baker. 1980. Lasalocid and sulfur amino acid interrelationship in the chick. Poult. Sci. 59:2538.
- Willis, G. M., and D. H. Baker. 1981a. Eimeria acervulina infection in the chicken: Sulfur amino acid requirement of the chick during acute coccidiosis. Poult. Sci. 60:1892.
- Willis, G. M., and D. H. Baker. 1981b. Phosphorus utilization during Eimeria acervulina infection in the chick. Poult. Sci. 60:1960.
- Wilson, B. J. 1973. Effects of diet form on the performance of table ducklings. Br. Poult. Sci. 14:589.
- Wilson, B. J. 1975. The performance of male ducklings given starter diets with different concentrations of energy and protein. Br. Poult. Sci.
- Wilson, H. R., and R. H. Harms. 1984. Evaluation of nutrient specifications for broiler breeders. Poult. Sci. 63:1400.
- Wilson, H. R., P. W. Waldroup, J. E. Jones, D. J. Duerre, and R. H. Harms. 1965. Protein levels in growing diets and reproductive performance of cockerels. J. Nutr. 85:29.
- Wilson, H. R., J. N. Persons, L. O. Rowland, Jr., and R. H. Harms. 1969. Reproduction in White Leghorn males fed various levels of dietary calcium. Poult. Sci. 48:798.
- Wilson, H. R., L. O. Rowland, Jr., and R. H. Harms. 1971. Use of low protein grower diets to delay sexual maturity of broiler breeding males. Br. Poult. Sci. 12:157.
- Wilson, H. R., M. W. Holland, Jr., and R. H. Harms. 1972. Dietary calcium and phosphorus requirements for Bobwhite chicks. J. Wildl. Manage. 36:965.
- Wilson, H. R., C. R. Douglas, and W. G. Nesbeth. 1977. Feed consumption and protein efficiency of Bobwhite quail in response to dietary energy levels. Poult. Sci. 56:1127.
- Wilson, H. R., E. R. Miller, R. H. Harms, and B. L. Damron. 1980. Hatchability of chicken eggs as affected by dietary phosphorus and calcium. Poult. Sci. 59:1284.
- Wilson, J. L., G. R. McDaniel, and C. D. Sutton. 1987a. Dietary protein levels for broiler breeder males. Poult. Sci. 66:237.
- Wilson, J. L., G. R. McDaniel, C. D. Sutton, and J. A. Renden. 1987b. Semen and carcass evaluation of broiler breeder males fed low protein diets. Poult. Sci. 66:1535.
- Winstead, C. S., C. F. Meinecke, A. Miller, J. N. Beasley, K. Skeeles, and E. L. Stephenson. 1985. Factors related to the incidence of the malabsorption syndrome. Poult. Sci. 64:499.
- Wise, D. R., and A. Ewins. 1980. The effects of dietary calcium concentration on pheasant breeder performance. Br. Poult. Sci. 21:229.

Wiseman, J., D. J. A. Cole, F. G. Perry, B. G. Vernon, and B. C. Cooke. 1986. Apparent metabolizable energy values for fats for broiler chicks. Br. Poult. Sci. 27:561.

Woerpel, H. R., and S. L. Balloun, 1964. Effect of iron and magnesium on manganese metabolism. Poult. Sci. 43:1134.

Wong, P. C., P. Vohra, and F. H. Kratzer. 1977. The folacin requirements of broiler chicks and quail (Coturnix coturnix japonica). Poult. Sci.

Woodard, A. E., P. Vohra, and R. L. Snyder. 1977. Effect of protein levels in the diet on the growth of pheasants. Poult. Sci. 56:1492.

Woodard, A. E., P. Vohra, R. L. Snyder, and C. Kelleher, Jr. 1979. Growth rate in three Gallinaceous species fed diets imbalanced in calcium, phosphorus, and protein. Poult. Sci. 58:687.

Woodham, A. A., and P. S. Deans. 1975. Amino acid requirements of growing chickens. Br. Poult. Sci. 16:269.

Woodham, A. A., and P. S. Deans. 1977. Nutritive value of mixed proteins. 1. In cereals-based diets for poultry. Br. J. Nutr. 37:289.

Wright, K. N. 1968. Determination and quality control of soybean meal. Feedstuffs 42:21.

Wu, H. C., and T. F. Shen. 1978. Studies on duck nutrition. 4. Zinc and manganese requirements of male ducklings and factors affecting requirements. J. Chin. Soc. Anim. Sci. 7:119.

Wu, L. S., C. L. Wu, and T. F. Shen. 1984. Niacin and trytophan requirements of male ducklings fed corn and soy-based diets. Poult. Sci. 63:153

Wyatt, R. D., H. T. Tung, W. E. Donaldson, and P. B. Hamilton. 1973a. A new description of riboflavin deficiency syndrome in chickens. Poult. Sci. 52:237.

Wyatt, R. D., P. B. Hamilton, and H. R. Burmeister. 1973b. The effects of T-2 toxin on broiler chickens. Poult. Sci. 52:1853.

Wyatt, R. D., J. A. Doerr, P. B. Hamilton, and H. R. Burmeister. 1975. Egg production, shell thickness and other physiological parameters of laying hens affected by T-2 toxin. Appl. Microbiol. 29:641.

Xu, G.-L. and A. T. Diplock. 1983. Glutathione peroxidase (EC1.11.1.9), glutathione-S-transferase (EC2.5.1.13), supoxide dismutase (EC1.15.1.1) and catalase (EC1.11.1.6) activities in tissues of ducklings deprived of vitamin E and selenium. Br. J. Nutr. 50:437. Yacowitz, H., R. F. Miller, L. C. Norris, and G. F. Heuser. 1952. Vitamin B₁₂ studies with the hen. Poult. Sci. 31:89.

Yen, J. T., A. H. Jensen, and D. H. Baker. 1976. Assessment of the concentration of biologically available vitamin B-6 in corn and soybean meal. J. Anim. Sci. 42:866.

Yen, J. T., A. H. Jensen, and D. H. Baker. 1977. Assessment of the availability of niacin in corn, soybeans and soybean meal. J. Anim. Sci. 45:269

Yoshida, M., and H. Hoshii. 1982a. Re-evaluation of requirement of calcium and available phosphorus for finishing meat-type chicks. Jpn. Poult. Sci. 19:110.

Yoshida, M., and H. Hoshii. 1982b. Re-evaluation of requirement of calcium and available phosphorus for starting meat-type chicks. Jpn. Poult. Sci. 19:101.

Yoshida, M., and H. Morimoto. 1970. Biological assay of available energy with growing chicks. II. Development of a mini-test applicable to the small amount of sample. Agric. Biol. Chem. 34:683.

Yoshida, M., H. Hashi, and H. Morimoto. 1966. Studies on the vitamin requirements of poultry. Poult. Sci. 45:736.

Young, R. J. 1961. The energy value of fats and fatty acids for chicks. I. Metabolizable energy. Poult. Sci. 40:1225.

Young, R. J. 1965. Fats and fatty acids in animal nutrition. P. 61 in Proceedings of the Maryland Nutrition Conference for Feed Manufacturers. College Park, Md.: University of Maryland.

Young, R. J., and R. L. Garrett. 1963. The effect of environment, diet composition and the ratio of fatty acids in the mixture on the absorption of fatty acids by the chick. P. 71 in Proceedings of the Cornell Nutrition Conference. Ithaca, N.Y.: Cornell University.

Young, R. J., L. C. Norris, and G. F. Heuser. 1955. The chick's requirement for folic acid in the utilization of choline and its precursors betaine and methylaminoethanol. J. Nutr. 55:353.

Young, R. J., A. Ngo, and A. H. Cantor. 1978. Balancing amino acids for poultry to reduce total dietary protein. P. 127 in Proceedings of the Cornell Nutrition Conference. Ithaca, N.Y.: Cornell University.

Yu, R. C., and T. F. Shen. 1984. Leucine, isoleucine and valine requirements of mule ducklings. J. Chin. Soc. Anim. Sci. 13:1.

Zamierowski, M. M., and C. Wagner. 1977. Effect of folacin deficiency on folacin-binding proteins. J. Nutr. 107:1937.

Zeigler, T. R., R. M. Leach, Jr., L. C. Norris, and M. L. Scott. 1961. Zinc requirement of the chick: Factors affecting requirement. Poult. Sci.

Zimmerman, N. G., and D. K. Andrews. 1987. Comparison of several induced molting methods on subsequent performance of single comb White Leghorn hens. Poult. Sci. 66:408.

Zimmerman, R. A., and H. M. Scott. 1965. Interrelationship of plasma amino acid levels and weight gain in the chick as influenced by suboptimal and superoptimal dietary concentrations of single amino acids. J. Nutr. 87:13.

Znaniecka, G., J. Frydrychewicz, and S. Buraczewski. 1975. Zapotrze-bowanie aminokwasow u rosnacych gesi. 2. Wplyw poziomu bialka w paszy oraz plei gasiat na zapotrzebowanie aminokwasow siarkowych. Rocz. Nauk Roln. Ser. B 96:97.

AUTHORS 143

Authors

- **F. Howard Kratzer** is professor emeritus of avian science at the University of California at Davis, from where he received his Ph.D. in animal nutrition. His many concurrent positions include a visiting professorship at the University of Sydney (Australia), and the Federal University of Rio Grande do Sol (Brazil). His research interests are poultry nutrition, amino acid requirements of chickens and turkeys, vitamin needs and functions, minerals and mineral availability, and growth inhibitors.
- **J. David Latshaw** is professor of poultry science at Ohio State University, where he has taught since 1970. He received his Ph.D. in nutrition from Washington State University. Research areas of major interest to him are factors influencing feed intake in poultry, and interaction of diet and growth efficiency.
- **Steven L. Leeson** currently is a professor of poultry science at the University of Guelph (Canada). He received his Ph.D. in poultry nutrition from the University of Nottingham (England). His research areas are feeding programs for leghorn birds, interaction of nutrient supply from feed and body reserves, and energy evaluation of ingredients.
- **Edwin T. Moran, Jr.**, previously a professor at the University of Guelph (Canada), Moran has been professor of animal nutrition at Auburn University since 1986. He received his Ph.D. in animal nutrition from Washington State University. His research experience includes influence of nutrition and management on broiler yields, amino acid availability and performance, and feedstuff evaluation in broiler production.
- Carl M. Parsons currently is assistant professor of animal science at the University of Illinois at Urbana-Champaign. He received his Ph.D. in animal science from Virginia Polytech Institute and State University. Research interests include poultry production and management with emphasis in the field of nutrition, and improved nutritional efficiency for production of poultry meat and eggs, particularly with respect to protein utilization.
- **Jerry L. Sell** (*Chair*) is professor of animal nutrition at Iowa State University, where he has taught since 1976, and from where he received his Ph.D. in poultry nutrition. His major areas of research are energy efficiency of chickens and turkeys, and metabolism of minerals.
- Park W. Waldroup is professor of poultry nutrition at the University of Arkansas at Fayetteville. He received his Ph.D. in nutritional biochemistry from the University of Florida. Among his research interests are studies concerned with nutrient requirements of poultry in terms of nutrient balance and interrelationships of nutrients, and effects of processing on nutritive value of feed.

AUTHORS 144

Index

A	total sulfur amino acids, 28, 38, 41, 43, 45
Absorption	toxicity, 11
in calcium metabolism, 50	turkey requirements, 36, 37-38
high level dietary fat and, 12	Animal products
of vitamin K, 52	as dietary fat source, 11, 12
of xanthophylls, 17	nutrient composition of meat, 72-63, 67
Acid-base balance, 14	as protein source, 70
Aflatoxins, 78-79	Antibiotic additives, 18
Age	Antimicrobial additives, 3, 18, 52
broiler nutrient requirements and, 27	Antioxidants, 50, 51
fat metabolism and, 12	Arginine, 11
metabolizable energy assessment and, 6	broiler chicken requirements, 29
Alfalfa	deficiency, 46
amino acid composition of, 66, 71	documentation of nutrient requirements, 90, 99, 107, 110
amino acid digestibility coefficients, 74	duck requirements, 43
fatty acid composition of, 75	in feeds, 66-68, 71-73
nutrient composition of, 72-63	turkey requirements, 37-38
xanthophylls in, 17	Arsenic, toxicity of, 59
Aluminum, toxicity of, 59	
Amaranth, 53	В
Amino acids	Bakery waste products
biochemical role of, 9	amino acid composition, 66, 72
in broiler breeder diet, 32-33, 34	amino acid digestibility coefficients, 74
in broiler chicken diet, 27-29	metabolizable energy in, 6, 113
conversion to vitamins, 11	nutrient composition of, 72-63
crystalline form, 28, 80	Barium, toxicity of, 59
deficiencies in chickens and turkeys, 46-50	Barley, 8, 9
digestibility, 71, 73-74	amino acid composition of, 71, 73
documentation of nutrient requirements, 85	amino acid digestibility coefficients, 74
duck requirements, 43	fatty acid composition of, 75
egg weight and, 25	metabolizable energy in, 113
in feeds, 61, 66-68, 69, 71-74	nutrient composition of, 72-63
geese requirements, 40-41	Bicarbonate, 14
interactions, 10-11	in egg production, 25
metabolizable energy of, 75	Bioassay techniques for measurement of energy values, 4-6
in nutritional requirement models, 1	Biotin, 15
	biochemical role of, 53
in phase-feeding program, 24	broiler breeder chicken requirements, 33
requirements, 9-10	broiler chicken requirements, 31
supplements, 74	oronor emeken requirements, 51

deficiency, 47, 48, 53-54 documentation of nutrient requirements, 87, 89, 95, 98, 105 in feeds, 63, 65	Calcium biochemical role of, 14 Bobwhite quail requirements, 45
in wheat diet, 69	broiler breeder chicken requirements, 33, 34
Blood meal	broiler chicken requirements, 29, 30
amino acid digestibility coefficients, 74	deficiency, 47, 56
nutrient composition of, 72-63, 66	documentation of nutrient requirements, 85, 88, 93, 98,
Bobwhite quail, 45, 112	102-103, 105, 106, 107, 109, 111, 112
Bone development	duck requirements, 43
in Leghorn-type pullet, 21	excesses of, 14
mineral requirements, 14	in feeds, 72, 64, 78
nutrient deficiencies and, 49, 51, 53, 54, 55, 56, 57	geese requirements, 41
vitamin D in, 50-51	in laying hen diet, 25
Bone meal	in Leghorn-type pullet growth, 22
amino acid composition of, 72	in phase-feeding program, 24
element concentrations in, 78	toxicity to pheasant chicks, 44
Boron, 15	turkey requirements, 38
Breeding diets	vitamin D and, 50, 51
biotin in, 54	Calcium carbonate, 78
broiler chickens, 32-34	Calcium phosphate, 78
iodine in, 57	Calcium sulfate, 78
Japanese quail, 45	Calorie, definition of, 3
Leghorn-type laying chickens, 26	Canola
turkeys, 38, 39	amino acid composition of, 71
zinc in, 57	amino acid digestibility coefficients, 74
Brewer's grains, nutrient composition of, 72-63, 66, 113 Broadbeans, nutrient composition of, 72-63, 66	nutrient composition of, 72-63, 66, 70
Broiler breeder chickens	Carbohydrates metabolizable energy values of, 75, 76-77
	
amino acid/protein requirements, 32-33, 34	sources of, 8-9 β -Carotene
documentation of nutrient requirements, 97-98 energy consumption, 33, 34	as pigmenting agent, 17
feed intake, 32	as vitamin A, 15, 50
hens, 32-33	Carotenoids
males, 33-34	for pigmentation, 17, 50
mineral requirements, 33, 34	Casein
nutrient requirements, 32	amino acid digestibility coefficients, 74
vitamin requirements, 33	nutrient composition of, 72-63, 66
Broiler chickens	Cereal grains
age of, and nutrient requirements, 27	bushel weight ranges, 61, 68
amino acid requirements, 27-29	as carbohydrate source, 8-9
documentation of nutrient requirements, 90-96	metabolizable energy of, 61, 72, 64, 113
energy intake, 8	nutrient composition of, 61-69
fat utilization, 7	Chickens
fatty acid requirements, 32	standard reference diets for, 80-81
feed intake, 26	See also Broiler chickens;
feed utilization vs. weight gain, 26-27	Broiler breeder chickens;
gender differences, 27	Leghorn-type
market weights, 26	chickens;
mineral requirements, 27, 29-31	Symptoms of nutrient deficiency
nutrient interactions in, 27	Chloride
nutritional modeling for, 1	biochemical role of, 14
protein requirements, 27	in egg production, 25
vitamin requirements, 27, 31-32	toxicity, 59
water intake, 16	Chlorine
Buckwheat, nutrient composition of, 72-63, 66	broiler breeder chicken requirements, 33
Bushel weights of grains, 61, 68	deficiency, 47, 57
	documentation of nutrient requirements, 86, 88, 94, 98, 103
C	in feeds, 72, 64, 78
Cadmium, toxicity of, 59	

Choline, 11	feed consumption and, 7-8
broiler chicken requirements, 30, 31	to induce molt, 26
chloride, 15	minerals, 47, 48, 56-57
deficiency, 10, 47, 56	trace element, 14
documentation of nutrient requirements, 87, 89, 95, 104,	vitamins, 47, 48, 50-56
105, 106, 109, 111, 112	water deprivation, 16
in egg production, 25	See also Symptoms of nutrient deficiency
in feeds, 63, 65	Dextrose, 80
geese requirements, 41	Diagnosis of nutrient deficiency, 46
in methionine-cystine requirements, 28	biochemical and physiological measurement in, 47
role of, 55	in embryo development, 46
turkey requirements, 39	Digestibility
Chromium, toxicity of, 59	of amino acids, 71, 73-74
Cobalt, 14	measurement techniques, 73-74
toxicity, 59	of phosphorus, 14
Coconut	of sorghums, 6
amino acid digestibility coefficients, 74	Digestible energy, 4
nutrient composition of, 72-63, 66	Drunken syndrome, 16
Copper, 14	Ducks
biochemical role of, 57	documentation of nutrient requirements, 107-108
broiler chicken requirements, 30	growing systems for, 42
deficiency, 47, 48, 57	nutrient requirements, 42-43
documentation of nutrient requirements, 86, 89, 94, 111	nutrient requirements, 42-43
in feeds, 63, 65, 78	E
toxicity, 58, 59	
Coprophagy, 52, 54	Egg production
Corn	in broiler breeder chickens, 32-33
	calcium metabolism in, 56
amino acid composition of, 71, 73	carotenoid pigments in, 17
amino acid digestibility coefficients, 74	chloride/chlorine in, 25, 33
fatty acid composition of, 75	dietary fat in, 12-13
metabolizable energy in, 113	dietary minerals in, 14, 25
nutrient composition of, 72-63, 66	documentation of Leghorn-type chicken requirements,
xanthophylls in, 17	88-89
Cost factors	linoleic acid in, 13
in egg weight gain, 25	manganese in, 56
protein sources, 10	in pheasants, 44
in setting dietary energy levels, 7	phosphorus in, 33
Cotton/cottonseed meal	potassium in, 56-57
amino acid composition of, 71	pyridoxine in, 55
amino acid digestibility coefficients, 74	rapeseed meal diets and, 70
fatty acid composition of, 75	seasonal variation, 24
gossypol in, 69	shell strength, 25, 33, 56, 57
metabolizable energy in, 113	sodium in, 33, 57
nutrient composition of, 72-63, 66	specific gravity of egg in, 33
as protein supplement, 69	in turkeys, 37, 38
Cystine	vitamin D deficiency in, 51
in broiler chicken diet, 27-28	yolk discoloration, gossypol in, 69
documentation of nutrient requirements, 85, 88, 91-92,	See also Embryo development;
101, 106, 107, 109, 110, 112	Laying hens;
in feeds, 66-68, 71-73	Leghorn-type chickens
methionine interaction, 10, 27-28	Egg white, as protein source, 30
n.	Eicosanoids, 13
D	Electrolytes, 14
Deficiency, nutrient, 2	Embryo development
amino acid/protein, 10-11, 46-50	biotin in, 54
assessment of, 46, 47	choline in, 56
embryo development and, 46	chorioallantois development in, 46
fatty acid. 13	folic acid in, 55

iodine in, 57 manganese in, 56 pantothenic acid in, 54 riboflavin in, 53 symptoms of nutrient deficiency in, 46 thiamin deficiency in, 53 vitamin B ₁₂ in, 55 vitamin D in, 51 vitamin K in, 52 Encephalomalacia, 31 Energy. See also Metabolizable energy carbohydrate sources, 8-9 digestible, 4 disposition of, 4	Feed manufacture/processing amino acid availability and, 73 animal products in, 70 heat treatment of soybean meal, 70 mycotoxin formation, 78 pelleted feeds, 15-16, 35, 42, 53 Feedstuffs amino acid composition of, 66-68, 71-74 analysis of, 2 antimicrobials in, 18 assessing energy in, 3-8 energy values of, prediction equations for, 113-114 fatty acid composition of, 75, 76-77 intake as factor in nutrient concentration in, 22-24 mineral concentrations in, 75-78
fat as source of, 11 gross, 4 net, 4 in setting dietary levels, 7-8 terminology, 3.4	mycotoxins in, 78-79 nutrient composition of, 61-65, 68-70 pigmenting agents in, 17, 50 pyridoxine in, 54 thiamin in, 52-53
terminology, 3-4 Energy requirements	
broiler breeder chickens, 33, 34	vitamin D in, 51 water:feed ratio, 15-16
broiler chickens, 8	,
	Fermentation by-products, 18 Field beans
geese, 40	
Leghorn-type laying hens, 22, 24	amino acid composition of, 71
Leghorn-type pullets, 21	amino acid digestibility coefficients, 74
modeling of, 1	Fish products, 53
turkeys, 37	amino acid composition of, 71, 73
Established requirements, 1	amino acid digestibility coefficients, 74
Estimated requirements, 1	metabolizable energy in, 114
Ether extract, in feeds, 72, 64, 75	nutrient composition of, 72-63, 66-67
T.	as protein source, 70
F	Fluorine
Fats	in feeds, 78
blending of, 12	toxicity, 59
depot fat, 13	Folacin/folic acid
dietary role of, 11	antagonists, 55
in egg weight, 25	broiler chicken requirements, 31
energy values of, 6-7, 12-13, 114	deficiency, 47, 48, 55
in net energy of production, 12-13	documentation of nutrient requirements, 87, 89, 95-96
saturated:unsaturated ratio, 7	104, 105, 106, 111
sources of, 11-12	in feeds, 63, 65
Fatty acids	maximum tolerance, 15
broiler chicken requirements, 27, 32	metabolism, 55
composition in fats, 13	Food and Drug Administration, 18
deficiencies, 13	Formula diets, standard reference, 80-81
dietary irregularities, symptoms of, 54	Fungi in feeds, 78-79
dietary synergism, 5	C ,
essential, 13	G
in feeds, 75-77	Geese
	documentation of nutrient requirements, 106
polyunsaturated, 13, 51-52 Feathers	
	force-feeding, 40
in feeds, 72-63, 70, 74	nutrient requirements, 40-41
growth in pheasants, 44	protein requirements, 40
nutrient deficiencies in abnormalities of, 44, 46, 49, 50,	Gelatin
51, 52, 53, 54, 55, 57	amino acid digestibility coefficients, 74
Feces	nutrient composition of, 72-63, 67
in measuring energy, 4 phosphorus levels, 25	Gizzerosine, 70

Glucose	leucine antagonism, 11
deficiency, 54	turkey requirements, 38
energy value, 4-5	т
Glycine	J
broiler chicken requirements, 29	Japanese quail, 45, 110-111
documentation of nutrient requirements, 90, 99, 110 in feeds, 66-68	Joule, definition of, 3-4
serine interaction, 10	K
Gossypol, 69	
Gross energy, 4	Kilocalorie, definition of, 3
Growth factors, unidentified, 3, 18	L
Growth/weight gain	
amino acids and, 11	Laying hens
antimic delds and, 18	added dietary fat for, 12-13
in broiler breeder chickens, 32, 34	disposition of energy in, 4
egg size and, 32-33	energy intake, 8
egg weight and, 24	nutritional modeling for, 1
in Leghorn-type chickens, 24	vitamin D deficiency in, 51
in Leghorn-type pullets, 19-21, 22	water intake, 16
in market broilers, 26-27	See also Egg production;
in measuring metabolizable energy, 6	Leghorn-type chickens
mineral deficiency and, 56-57	Lead, toxicity of, 59
mineral toxicity and, 58	Leghorn-type chickens
in turkey breeders, 39	ambient temperature in feed intake of, 8, 22
in turkeys, 35	brown-egg-laying, 21, 25-26, 70
iii turkeys, 33	documentation of nutrient requirements of, 85-90
Н	egg-type breeders, 26
	egg weight, factors in, 24-25
High-energy diets, 8	energy requirements, 19-21, 22, 24
Histidine, 11	feed intake levels, 22-24
broiler chicken requirements, 29	maintenance needs, 22
deficiency, 47	mineral requirements, 20, 21, 22, 25
documentation of nutrient requirements, 90, 97, 99, 110	molting hens, 26
in feeds, 66-68	phase feeding, 24
Hominy, nutrient composition of, 72-63, 67	prelay period, 21-22
I	production diet, 22-26
	protein requirements, 19-21, 22-24
Iodine, 14	pullet nutrient requirements, 19-22
biochemical role of, 57	vitamin requirements, 20, 21, 22, 25
broiler chicken requirements, 31	Leucine, 11
deficiency, 47, 48, 57	broiler chicken requirements, 29
documentation of nutrient requirements, 86, 89, 94, 111	deficiency, 46, 50
to induce molt, 26	documentation of nutrient requirements, 85, 90, 97, 100,
toxicity, 59	107, 110
Iron, 14	duck requirements, 43
broiler chicken requirements, 29, 30	in feeds, 66-68
deficiency, 47, 48, 57	isoleucine antagonism, 11
documentation of nutrient requirements, 86, 88, 94, 111	Lighting, to induce molt, 26
in feeds, 63, 65, 78	Limestone, element concentrations in, 78
pigmentation and, 57	Linoleic acid, 13
toxicity, 59	broiler chicken requirements, 32
Isoleucine, 11	deficiency, 47
broiler chicken requirements, 29	documentation of nutrient requirements, 93, 102, 105
deficiency, 46, 50	egg weight and, 24
documentation of nutrient requirements, 85, 88, 90, 100, 110	in feeds, 72, 64
duck requirements, 43	Low-protein diets, 19-21
in feeds, 66-68	

Lupine seeds	apparent, 4
amino acid composition of, 71, 72	carbohydrate values, 75, 76-77
amino acid digestibility coefficients, 74	of cereal grains, 68-69
Lutein, 17	definition of, 4
Lysine, 11	dietary requirements, 8
in broiler chicken diets, 26-27, 29	documentation of nutrient requirements, 98, 109, 112
deficiency, 46, 47	in duck growth, 42
documentation of nutrient requirements, 85, 88, 90-91,	of fats, 12
100, 106, 107, 110	of feed ingredients, 61, 72, 64
duck requirements, 43	in geese, 40
in feeds, 71-73	measurement of, 4-6
geese requirements, 40-41	prediction equations for estimating feed ingredient values,
Leghorn-type chicken requirements, 22-24	113-114
quail requirements, 45	proximate components in estimation of, 6-7
turkey requirements, 37, 38	true, 4, 5, 6, 8
M	turkey feed intake and, 37
	Methionine, 11 in broiler chicken diet, 27-28
Magnesium	cystine interaction, 10
biochemical role of, 14	deficiency, 50
broiler chicken requirements, 29, 30	documentation of nutrient requirements, 85, 88, 91, 97,
in calcium source, 14	100-101, 106, 107, 109, 110, 112
deficiency, 47, 56 documentation of nutrient requirements, 86, 88, 94, 103,	duck requirements, 43
107, 111	egg weight and, 24, 25
in feeds, 63, 65, 78	in feeds, 66-68, 71-73
toxicity, 59	geese requirements, 41
turkey requirements, 38	toxicity, 11
Magnesium oxide, element concentrations in, 78	turkey requirements, 38
Manganese, 14	Milk, nutrient composition of, 72-63, 66
broiler chicken requirements, 29, 30	Millet, nutrient composition of, 72-63, 67
deficiency, 47, 48, 56	Milo, amino acid composition of, 71, 72
documentation of nutrient requirements, 86, 88, 103, 105,	Minerals, 13-14
109, 111	biochemical role of, 14
in feeds, 63, 65, 78	broiler breeder chicken requirements, 33, 34
toxicity, 59	broiler chicken requirements, 27, 29-31
turkey requirements, 38	deficiencies, 47, 48, 56-57
Meat production	documentation of nutrient requirements, 85-86, 88-89,
fish meal in feeds and, 70	93-94, 97, 98, 102-103, 105, 107, 109, 111, 112
See also Broiler chickens;	duck requirements, 43
Broiler breeder chickens;	electrolyte balance, 14
Ducks;	in experimental diets, 15
Geese;	in feeds, 78
Pheasants;	interactions, 14-15, 56, 58
Quail;	Leghorn-type chickens, requirements for, 20, 21, 22, 25, 26
Turkeys	macromineral supplements, 75-78
Meat products as feed	pheasant requirements, 44
amino acid composition of, 71, 72	supplements, 14-15
amino acid digestibility coefficients, 74	toxicity, 58-60 trace elements, 14
element concentrations in, 78	turkey requirements, 38
fatty acid composition of, 75	in water, 16-17
fish products, 37, 53, 72-63, 66-67, 70, 71, 74 metabolizable energy in, 114	Modeling techniques
nutrient composition of, 72-63, 67	for amino acid requirements, 1
Megacalorie, definition of, 3	for energy requirements, 1
Menadione, 15	Molasses, nutrient composition of, 72-63
source of, 52	Molting hens, 26
Menaquinone, 15	Molybdenum, toxicity of, 59
source of, 52	Mycotoxins, 17
Mercury, toxicity of, 58, 59	in feeds, 78-79
Metabolizable energy	in vitamin D metabolism, 51

N	maximum tolerance, 15
Net energy, definition of, 4	turkey requirements, 39
Niacin	Paralysis, in nutrient deficiency, 31
amino acids in synthesis of, 11	Peanuts
biochemical role of, 53	amino acid digestibility coefficients, 74
broiler chicken requirements, 31	fatty acid composition of, 75
deficiency, 47, 48, 53	nutrient composition of, 64-65, 67
documentation of nutrient requirements, 87, 89, 95, 104,	Peas
105, 106, 108, 109, 111, 112	amino acid composition of, 71, 72
in feeds, 63, 65	nutrient composition of, 64-65, 67
geese requirements, 41	Pelleted feeds, 15-16
maximum tolerance, 15	for ducks, 42
Nickel, toxicity of, 59-60	thiamin in, 53
Nitrate, toxicity of, 60	for turkeys, 35, 37
Nitrogen	Perosis, 41, 53, 54, 55, 56
in amino acids, 75	Phase feeding of Leghorn-type chickens, 24
in measurement of metabolizable energy, 4, 5-6	Pheasants, 54
Nutrient requirements	nutrient requirements for, 44, 109
amino acid, 9-10	Phenylalanine, 11
of Bobwhite quail, 45	broiler chicken requirements, 29
of broiler breeder chickens, 32-34	deficiency, 46, 50
of broiler chickens, 26-32	documentation of nutrient requirements, 92, 97, 101-102,
carbohydrates, 8	110
of ducks, 42-43	in feeds, 66-68
energy levels, 7-8	tyrosine interaction, 10
fatty acids, 13	Phosphoric acid, element concentrations in, 78
of geese, 40-41	Phosphorus
of Japanese quail, 44-45	Bobwhite quail requirements, 45
of Leghorn-type breeders, 26	broiler breeder chicken requirements, 33, 34
of Leghorn-type chickens, documentation of, 85-89	broiler chicken requirements, 29, 30
of Leghorn-type hens in egg production, 22-26	deficiency, 47, 56
of Leghorn-type molting hens, 26	digestibility, 14
of Leghorn-type pullets, 19-22	documentation of nutrient requirements, 85, 88, 93-94, 97
minerals, 13-15	98, 103, 105, 106, 107, 109, 111, 112
of ring-necked pheasants, 44	in egg production, 25
of turkeys, 35-39	in feeds, 72, 64, 78
vitamins, 15	geese requirements, 41
	in Leghorn-type pullet growth, 21
0	nutritional role of, 14
Oats	in phase-feeding program, 24
amino acid digestibility coefficients, 74	plant sources, 56
fatty acid composition of, 75	turkey requirements, 38
metabolizable energy in, 113	Phylloquinone, 15
nutrient composition of, 64-65, 67	source of, 52
Ochratoxin A, 79	Phytic acid, 38
Osteocalcin, 50	Pigmentation
Oyster shells, 78	gossypol pigments in cottonseed oil, 69
	mineral deficiency and, 57
P	nutrient deficiency in depigmentation, 46 pigments in feedstuffs, 17, 50
Pantothenic acid	Potassium
broiler chicken requirements, 31	broiler chicken requirements, 29, 30
deficiency, 47, 48, 54	deficiency, 47, 56-57
documentation of nutrient requirements, 87, 89, 95, 104,	documentation of nutrient requirements, 86, 88, 94, 103
105, 106, 108, 109, 111, 112	in feeds, 72, 64, 78
egg-type breeder requirements, 26	nutritional role of, 14
in energy metabolism, 54	Poultry by-products
in feeds, 63, 65	amino acid composition of, 67, 72
geese requirements, 41	unitio uota composition oi, oi, 12

amino acid digestibility coefficients, 74	geese requirements, 41
fatty acid composition of, 75	maximum tolerance, 15
metabolizable energy in, 6, 114	turkey requirements, 39
nutrient composition of, 64-65	Rice, 113
Proline	amino acid composition of, 71
documentation of nutrient requirements, 93	amino acid digestibility coefficients, 74
Proline, broiler chicken requirements, 29	nutrient composition of, 64-65, 67
Protein	Rye, 9
deficiencies, 46	nutrient composition of, 64-65, 67
documentation of nutrient requirements, 97, 98, 99, 105,	
106, 107, 109, 110, 112	S
egg weight and, 24	Safety margin in requirements values, 1, 2
in feeds, 72, 64, 66-68, 69	Safflower, nutrient composition of, 64-65, 67
in measuring metabolizable energy, 5, 6	Salt, 14
in phase-feeding program, 24	water intake and, 16
supplements, 69-70	Selenium, 14, 50
See also Amino acids;	broiler chicken requirements, 31
Protein requirements	deficiency, 47, 48, 51, 52, 57
Protein requirements	documentation of nutrient requirements, 86, 89, 94, 103,
of broiler breeder chickens, 32-33, 34	107, 111
of ducks, 42	in feeds, 63, 65
of geese, 40	sources of, 57
of Leghorn-type laying hens, 22-24, 88	toxicity, 57, 58, 60
of Leghorn-type pullets, 19-21, 85	in vitamin E metabolism, 51
of pheasants, 44	Serine
of quail, 45	broiler chicken requirements, 29
of turkeys, 36, 37	documentation of nutrient requirements, 90, 110
Proximate analysis, 6-7	in feeds, 66-68
Pullets broiler breeder, 32-33	glycine interaction, 10
	Sesame
Leghorn-type, 19-22 Pyridoxine	amino acid digestibility coefficients, 74
broiler chicken requirements, 32	nutrient composition of, 64-65, 67-68
deficiency, 47, 48, 54-55	Silicon, 15
documentation of nutrient requirements, 87, 89, 96, 104,	Silver, toxicity of, 60 Sodium
108, 111	
in feeds, 63, 65	broiler breeder chicken requirements, 33
maximum tolerance, 15	deficiency, 47, 57 documentation of nutrient requirements, 21, 86, 88, 94, 98
in nervous system functioning, 54	103, 109
in nervous system ranoussimg, ex	in egg production, 25
Q	in feeds, 63, 65, 78
Quail, 54	nutritional role of, 14
Bobwhite, 45, 56, 112	toxicity, 60
Japanese, 44-45, 110-111	Sodium carbonate, element concentrations in, 78
supunese, 11 13, 110 111	Sodium chloride
R	documentation of nutrient requirements, 86, 107
Danasaad	to induce molt, 26
Rapeseed metabolizable energy in, 113	toxicity, 60
as protein supplement, 69-70	Sodium chlorine
Riboflavin	documentation of nutrient requirements, 111
biochemical role of, 53	Sodium phosphate, element concentrations in, 78
broiler chicken requirements, 30, 31	Sodium sulfate, element concentrations in, 78
deficiency, 47, 48, 53	Sorghum
documentation of nutrient requirements, 87, 89, 95, 104,	fatty acid composition, 75
105, 108, 109, 111, 112	metabolizable energy of, 6, 113
egg-type breeder requirements, 26	nutrient composition of, 64-65, 68-69
in feeds, 63, 65	tannin content of, 6, 61, 68-69
,,	

Soybeans/soybean meal	pancreatic disorders, 57
amino acid composition of, 71, 72	pendulous crops, 54
amino acid digestibility coefficients, 74	pigmentation disorders, 46, 57
fatty acid composition of, 75	reproductive disorders, 50, 52, 54
metabolizable energy in, 113	rickets, 56
nutrient composition of, 64-65, 68	secretory membrane dysfunction, 50
as protein supplement, 70	skin lesions, 49, 50, 54
toxic elements in, 70	thyroid disorders, 57
urease assays, 70	tongue deformity, 50
Standard reference diets, 80-81	
Strontium, toxicity of, 60	T
Sulfaquinoxaline, 52	Temperature, environmental
Sulfate	feed intake and, 8, 9, 22
in broiler chicken diet, 28	phosphorus in tolerance to, 25
toxicity of, 60	in requirements data, 2
Sulfur amino acids, 63, 65, 78	turkey maintenance energy and, 37
in Bobwhite quail, 45	water intake and, 16
in broiler chickens, 28	Thiamin
in ducks, 43	broiler chicken requirements, 31-32
in geese, 41	deficiency, 47, 48, 52-53
in quail, 45	documentation of nutrient requirements, 87, 89, 96, 104, 11
in turkeys, 38	in feeds, 63, 65
Sunflower	maximum tolerance, 15
amino acid composition of, 71, 72	Threonine, 11
amino acid digestibility coefficients, 74	broiler chicken requirements, 29
metabolizable energy in, 113	documentation of nutrient requirements, 85, 88, 92, 97,
nutrient composition of, 64-65, 68	102, 110
Supplementation	in feeds, 66-68, 71-73
amino acids, 74	D/DL-α-Tocopheryl/Tocopheryl acetate, 15
antibiotics, 18	Toxicity
antimicrobial additives, 18	amino acid, 11
of cereal grain diets, 9	calcium, 44
choline, 55-56	definition, 58
fats, 6-7, 25	gossypol pigments in cottonseed oil, 69
minerals, 14-15	of inorganic elements, 57, 58-60
protein, 69	methionine, 11
selenium, 57	mycotoxin, 78-79
vitamin K, 52	vitamin A, 50
vitamins, 15	vitamin D, 51
of wheat diets, 69	vitamin E, 52
Symptoms of nutrient deficiency	Tricothecenes, 79
adrenal weight increase, 57	Triticale, 113
blood disorders, 49, 52, 53, 55, 57	amino acid composition of, 71
bone abnormalities, 49, 51, 53, 54, 55, 56, 57	nutrient composition of, 64-65, 68
cervical paralysis, 55	Tryptophan
dermatitis, 53, 54	broiler breeder requirements
diarrhea, 49	broiler chicken requirements, 29
encephalomalacia, 51, 52	deficiency, 46
feather abnormalities, 44, 46, 49, 50, 51, 52, 53, 54, 55, 57	documentation of nutrient requirements, 92-93, 102, 107,
foot pad dermatitis, 50	110
gizzard ulcerations, 70	duck requirements, 43
hyperthyroidism, 50	egg weight and, 25
hypocalcemia, 51	in feeds, 66-68, 71-73
immune system function, 50, 55	as niacin source, 11, 53
leg disorders in pheasants, 44	Tungsten, toxicity of, 60
liver function, 46	Turkeys
muscle abnormalities, 46, 51, 57	amino acid requirements, 36, 37-38
nervous system dysfunction, 49, 50, 51, 52, 53, 54	breeding diets, 38, 39

documentation of nutrient requirements, 99-105	deficiency, 47, 48, 50-51, 51
egg production, 37, 38	documentation of nutrient requirements, 86, 89, 94-95,
energy consumption, 37	103, 105, 107, 109, 111
magnesium requirements, 38	maximum tolerance, 15
manganese requirements, 38	metabolism, 50
mineral requirements, 38	nutritional role of, 50
nutrient requirements, 35-36	sources of, 50
nutrient-to-energy ratios in feeds, 8	toxicity, 51
nutritional modeling for, 1	turkey requirements, 38-39
pelleted feeds for, 35, 37	Vitamin E, 15
phosphorus requirements, 38	broiler chicken requirements, 30, 31
protein requirements, 36, 37	deficiency, 47, 48, 51-52
vitamin requirements, 38-39	documentation of nutrient requirements, 95, 103, 105, 108
water intake, 16	documentation of nutrient requirements, 89, 87
zinc requirements, 38	in feeds, 63, 65
See also Symptoms of nutrient deficiency	maximum tolerance, 15
Tyrosine, 11	metabolism, 51
broiler chicken requirements, 29	toxicity, 52
deficiency, 46	turkey requirements, 39
documentation of nutrient requirements, 92, 101, 110	in vitamin A excess, 50
in feeds, 66-68 phenylalanine interaction, 10	Vitamin K, 15 broiler chicken requirements, 31
phenylalanine interaction, 10	deficiency, 47, 48, 52
П	documentation of nutrient requirements, 87, 89, 95, 103, 108
U	maximum tolerance, 15
Urinary energy, 5	nutritional role of, 52
V	sources of, 52
·	turkey requirements, 39
Valine, 11	Vitamins, 15
broiler chicken requirements, 29	amino acids in synthesis of, 11
deficiency, 46	antagonistic interactions, 50
documentation of nutrient requirements, 85, 88, 93, 97,	broiler breeder chicken requirements, 33
102, 107, 110	broiler chicken requirements, 27, 30, 31-32
duck requirements, 43	deficiencies, 47, 48, 50-56
in feeds, 66-68	documentation of nutrient requirements, 86-87, 89, 94-96,
Variation, toxicity of, 58, 60	103-104, 105, 107-108, 111
Vegetable oils, 12, 13 Vitamin A, 15	duck requirements, 43
broiler chicken requirements, 31	geese requirements, 41
deficiency, 47, 48, 50	Leghorn-type chicken requirements, 20, 21, 22, 25, 26
documentation of nutrient requirements, 86, 89, 94, 103,	maximum tolerances, 15
105, 111, 112	pheasant requirements, 44
maximum tolerance, 15	as supplements, 15
toxicity, 50	turkey requirements, 38-39
turkey requirements, 38	
Vitamin B ₁₂ , 15	W
broiler chicken requirements, 31	Water
deficiency, 47, 48, 55	delivery systems, 16
documentation of nutrient requirements, 87, 89, 95, 104	deprivation of, 16
egg-type breeder requirements, 26	intake determinants, 15-16
in feeds, 63, 65	intoxication, 16
role of, 55	medication in, 16
Vitamin C	requirements, 15, 16
bird stress and, 15	total dissolved solids in, 17
maximum tolerance, 15	trace minerals in, 16-17
Vitamin D, 15	Wheat
broiler chicken requirements, 30, 31	amino acid composition of, 71
in calcium metabolism 50, 51	amino acid digestibility coefficients 74

fatty acid composition of, 75	Zearalenone, 79
metabolizable energy of, 69, 113	Zeaxanthin, 17
nutrient composition of, 64-65, 68	Zinc, 14
Whey, nutrient composition of, 64-65, 68	broiler chicken requirements, 29, 30
•	deficiency, 47, 48, 57
X	documentation of nutrient requirements, 86, 88, 94, 103,
Xanthophylls, 17	107, 109, 111
role of, 3	in feeds, 63, 65, 78
, .	to induce molt, 26
Y	pheasant requirements, 44
Yeasts, nutrient composition of, 64-65, 68	toxicity, 60
reasts, nativent composition of, or os, oo	turkey requirements, 38
\mathbf{Z}	

RELATED PUBLICATIONS 157

Other Titles in the Series

0-309-04892-3
0-309-04891-5
0-309-03989-4
0-309-03826-X
0-309-03779-4
0-309-03682-8
0-309-03596-1
0-309-03496-5
0-309-03447-7
0-309-03428-0
0-309-03325-X
0-309-03187-7
0-309-03185-0
0-309-02786-1
0-309-02607-5
_

RELATED PUBLICATIONS

Predicting Feed Intake of Food-Producing Animals, 1987	0-309-03695-X
Vitamin Tolerance of Animals, 1987	0-309-03728-X