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A theoretical interpretation is offered of the experimental observation that the velocity of Bostick plas- 
maids in vacua. directly away from a button source. dependg only upon the energy of the source capaci- 
tors in the button gun circuit. 

When plasmoids are created by a pulsed capa- 
citor discharge across the electrodes of a button 
gun in vacua, experimental observations have 
revealed that the forward velocity of the plasmoids 
depends only upon the electrical energy of the 
source capacitors [l]. It is the purpose of this 
letter to offer a simple interpretation of this ex- 
perimental observation in terms of the traditional 
toroidal model of Bostick plasmoid. 

Because of Bostick’s observation that a plas- 
moid travels from the button source as a plasma 
loop with a magnetic flux trapped within it for 
many microseconds [Z], it follows that the plas- 
ma conductivity must be so high that the energy 
lost in Joule heating of the plasmoid, while it is 
still being formed by the source capacitor dis- 
charge, is negligible compared with the magnetic 
energy stored within the plasma loop. Now, it is 
the asymmetric magnetic forces created by the 
surge current flow that causes the plasma loop to 
expand and thus be projected away from the button 
gun. The magnetic energy W, therefore, is con- 
verted into kinetic energy of motion and we have 
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W=+j- 12gdt+)j L$(Z2)dt 
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where L is the self inductance of the torus, Z is 
the surge current and T is the duration of the 
surge current. By using the first theorem of 

mean value [3], and the boundary conditions: 
Z(T) = Z(0) = 0, it follows that we may define a 
constant current (I) such that W = g (Z>2L( T) for 
any particular discharge. In other words, we 
have replaced the true time dependent current 
Z by a rectangular pulse of duration T. Now, the 
self inductance L of a torus is given by: [4] 

L = 1.257r(ln8.v,/ro - 2 + ~6) x 10-8 henry, (1) 
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where Y is the major radius of the torus in meters, 
To is the minor radius, /.L is the permeability of 
the material of the torus and 6 is found from 
tables [4]. For a constant current (I), we find 
6 = 0.25 and n = 1 for a plasma. It follows, 
therefore, from eq. (1) that the energy imparted 
to the plasmoid is given by: 

where 

w = + Q R(Zj2 ) (2) 

R =r(T) and cy = 1.257 (0.32 + ln(R/Ro) X 10m6 

and R, = r,(T) . 

Now, if p is the mass per unit length (line 
density) of the plasma loop, then we may use the 
first theorem of mean value to write 

W=r(p)Rd2 (3) 

where h = (ar/8t)tzT. Hence, from eqs. (2) and (3): 
the forward velocity Z? of the plasmoid is given by 

R = (Z>d_ (4) 

Now, if the undirectional current pulse can be 
approximated by the first half cycle of a sine wave, 
with peak value IO, then (Z) = JEiz [5] where E 
is the capacitor energy, L is the inductance of 
the circuit and we have interpreted (I) as being the 
root mean square current. Hence, because the 
plasmoid velocity has been shown experimentally 
to be a function of the energy alone, it follows 
from eq. (4) that -is a constant for a given 
discharge circuit. We deduce, from the formula 
for L therefore. that(p) and hence p, is a very 
slowly varying parameter in the source voltage 
range of interest (5kV - 15kV) [1,2]. If, now, we 
examine published high speed photographs of 
plasmoids [2 

IS 
we may estimate R/R, N 2 so that 

(Y N 1.5 X lo- henry/m. Using this value of a! and 
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some published order of magnitude values of Zo 
and A - sav I, = 5kA and R = 5 x 104 m/‘sec [21 - 
eq. (4) sho&“that 0) = 2.5 x 10-9 kg/m. It L J 
follows, that the mass of any plasmoid is 2n(~)R 
and if we estimate R =&T where T is the duration 
of the discharge (N 0.31~. set) then the radius of 
the torus R z 2.5 cm and hence the plasmoid mass 
is abut 2 pg. If now the plasmoid is composed 
mainly of the ionized atoms of the electrode ma- 
terial (tungsten) [1,2], then these figures imply 
that there are approximately 0.7 x 1016 ions in 
such a plasmoid. This number correlates well 

well with Bostick’s original estimate of 1015 to 
1018 ions in a plasmoid [l]. 
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The ambiguity associated with the powder neutron diffraction analysis implies that a helical magnetic- 
spin alignment reported for MnAu2. for example. is not the unique structure. 

A number of ordered magnetic structures have been analyzed by means of neutron diffraction using 
powered crystals. However, because the individual powder reflection is frequently of multiplet, the 
unique structure is not always obtainable from the powder data. It appears that this ambiguity has not 
been fully realized particularly in the sinusoidally and incommensurably modulated moment structure. 
Here, the well-established diffraction equation is reformulated and the MnAu2 structure [l] is examined 
as a typical example. 

wen the incident neutron beam is unpolarized, the observed intensity of the elastically and coherent- 
ly scattered neutron by an ordered magnetic spin aggregate in a crystal is proportional to 

(1) 

where besides the customary notations, b is the scattering vector and jb j = 2sin @,‘A; fj is the amplitude 
form factor of a yagnetic gectrof of the j-th atom at Rj = &, + r jt p being the position vector of the 
L-th unit cell; Qj =e(e Sj ) - Sj , e being the unit vector of b and sj representing the ordered mo- L 
ment of the j-th atom in the L-th unit cell. Now, a single-term Fourier expression is employed for Sj 
as follows: 

$ = P1U1cos27+1pRL + cP1) + P2U2cos2a(T2pRL + 02) + P3U3CoS2dT3p~L+ L’s), (2) 

where the unit vectors, ~1, u2 and ~3, are chosen to be parallel to the unit-cell vectors, a1, a2 and a3, 
respectively; p is the propagation unit vector; ~0’s are the phase terms. We therefore obtain 

* Based on work performed under the auspices of the U.S. Atomic Energy Commission. 
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