

J. Gen. Appl. Microbiol.

doi 10.2323/jgam.2018.08.002

©2019 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation

1 **Title**

2 Combination of heterotrophic nitrifying bacterium and duckweed (*Lemna gibba* L.) enhances
3 ammonium nitrogen removal efficiency in aquaculture water via mutual growth promotion

4
5 (Received February 1, 2018; Accepted August 9, 2018; J-STAGE Advance publication date: January 25, 2019)

6

7 **Authors**

8 Min Shen^{a#}, Zhifeng Yin^{a,b#}, Dan Xia^{a,b}, Qingxin Zhao^b, Yijun Kang^{a,b*}

9 ^a *Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng, Jiangsu, P. R. China.*

10 ^b *College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Jiangsu, P. R.*
11 *China.*

12

13 **Running title**

14 NH₄⁺-N removal from aquaculture water

15

16 **Corresponding author**

17 Yijun Kang

18 College of Marine and Bio-engineering, Yancheng Teachers University, Yancheng, Yancheng,
19 Jiangsu 224002, E-mail: yjkang@yctu.edu.cn, Tel/Fax: +86 515 88258236

20

21 # These authors contributed equally to this work.

22 **Abstract**

23 We created a combined system using duckweed and bacteria to enhance the efficiency of ammonium
24 nitrogen (NH_4^+ -N) and total nitrogen (TN) removal from aquaculture wastewater. Heterotrophic
25 nitrifying bacterium was isolated from a sediment sample at an intensive land-based aquaculture
26 farm. It was identified as *Acinetobacter* sp. strain A6 based on 16S rRNA gene sequence (accession
27 number MF767879). The NH_4^+ -N removal efficiency of the strain and duckweed in culture media
28 and sampled aquaculture wastewater at 15°C was over 99% without any accumulation of nitrite or
29 nitrate. This was significantly higher than strain A6 or duckweed alone. Interestingly, the presence of
30 NO_3^- increased NH_4^+ -N removal rate by 35.17%. Strain A6 and duckweed had mutual growth
31 promoting-effects despite the presence of heavy metals and antibiotics stresses. In addition, strain A6
32 colonized abundantly and possibly formed biofilms in the inner leaves of duckweed, and possessed
33 indoleacetic acid (IAA)- and siderophore-producing characteristics. The mutual growth promotion
34 between strain A6 and duckweed may be the reason for their synergistic action of N removal.

35

36 **Keywords:** *Acinetobacter* sp., ammonium nitrogen, aquaculture wastewater, duckweed, removal

37 **Introduction**

38 To meet the requirements of aquatic products in China, over 6,000 kha of freshwater is required
39 (a datum collected from the State Statistics Bureau, see <http://www.chyxx.com/>). To obtain high
40 aquaculture output, up to 6,500 of fish or 10,000 shrimp are needed per 667 m² based on our
41 investigations. As a result, high-protein feeds are needed in these aquatic systems. Urea, liquid cow
42 manure, or even pig manure and chicken manure with high N content are often supplemented during
43 this process (Lin and Yi 2003; Moav et al. 1977; Soletto et al. 2005; Zoccarato et al. 1995).
44 Budget-wise, about 87% of N comes from feed, while only 1% is released by denitrification
45 (Acosta-Nassar et al. 2010). This results in the generation of substantial amounts of polluted effluent
46 containing unconsumed feed and feces, and thus, leads to an increase in environmental pollution
47 (Crab et al. 2007; Read and Fernandes 2003). In these kinds of aquatic systems, levels of ammonia-N
48 (NH₃-N), nitrite, and dissolved oxygen (DO) drastically affect aquaculture production (Crab et al.
49 2007; Zoccarato et al. 1995). Of these factors, NH₃-N is a critical concern; as it leads to an increase
50 in nitrite and a decrease in DO due to the nitrification (Grommen et al. 2002; Kim et al. 2008; Ruiz et
51 al. 2003). In addition, it is toxic for aquatic organisms (Romano and Zeng 2013; Thompson et al.
52 2002). The presence of NH₃-N is inevitable, especially during intensive aquaculture, as they are
53 generated from feed residues and manure supplements. Thus, there has been a lot of research trying
54 to develop integrated pond systems using duckweed (Steen et al. 1999; Zimmo et al. 2003) or
55 combined systems with other aquatic organisms such as algae (van der Steen et al. 1998), and
56 cyanobacteria (Duong and Tiedje 1985). Using the duckweed treatment system, not only NH₃-N, but
57 also bacterial pathogens (El-Shafai et al. 2007; Steen et al. 1999), some antibiotics (Iatrou et al.

58 2017), and chemical contaminants (Gatidou et al. 2017; Türker et al. 2017; Wang et al. 2017) could
59 be removed to increase water quality.

60 Despite the advantages of using duckweed for the removal of NH₃-N from aquacultures, the
61 growth of duckweed is inhibited to a certain extent under high concentrations of NH₄⁺ and NH₃-N, as
62 well as salt (Caicedo et al. 2000; Liu et al. 2017). Thus, it is necessary to find aquatic organisms that
63 can promote duckweed growth and/or increase their resistance to these environmental stresses. To
64 date, only a few studies have reported on this topic. Stout et al. (2010) reported that certain bacteria
65 had roles in promoting *Lemna minor* plant growth by enhancing root growth, with minor effects on
66 enhancing plant cadmium uptake. Hence, isolating and identifying bacteria that are capable of
67 promoting duckweed growth and eliminating NH₃-N may be a feasible way to overcome the present
68 concerns for aquaculture.

69 Duckweed is intolerant to high concentrations of NH₃ and NO₂⁻, low DO and pH beyond its
70 optimal range (Crab et al. 2007). We isolated a heterotrophic nitrifying bacterium that had the ability
71 to remove NH₄⁺-N and tested its synergistic effects on NH₄⁺-N removal with *Lemna gibba*.
72 Co-culture had a mutual growth promotion activity, which may be the possible mechanism for their
73 optimal efficiency in removing NH₄⁺-N. In addition, we provide an aquatic safety assessment to
74 aquatic fish in this study.

75

76 **Materials and methods**

77 **Isolation and identification of heterotrophic nitrifying bacteria**

78 During a periodic cleanup of sediment at an intensive land-based aquaculture in
79 Dongfanglvzhou, Dafeng, Jiangsu Province in Feb., 2016, we took five sediment samples from

80 different ponds and mixed them into one. The aquaculture farm had operated for four years
81 continuously without any sediment cleaning.

82 In the laboratory, 10 g of sediment was added to 90 mL of enrichment medium (pH 7.2)
83 containing 0.05 g of $(\text{NH}_4)_2\text{SO}_4$, 0.07 g of KH_2PO_4 , 0.05 g of $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 0.05 g of $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$
84 and 0.1 mL of a trace mineral solution (Huang et al. 2013; Yang et al. 2011). The culture solution
85 was incubated at 15°C (a relatively low temperature of aquaculture water in Jiangsu) on a rotary
86 shaker at 160 rotations per minute (rpm). Every 7 days, 1 mL of the enrichment culture was
87 transferred to a fresh enrichment medium and this process was repeated four times. Afterwards, 0.1
88 mL of culture solution was spread onto an agar plate containing 0.77 g of NH_4Cl , 1.0 g of
89 $\text{CH}_3\text{CH}_2\text{ONa}$, 0.05 g of $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 0.2 g of K_2HPO_4 , 0.12 g of NaCl , 0.01 g of MnSO_4 and 0.01
90 g of FeSO_4 (per liter) (Huang et al. 2013). Purified isolates were obtained by repeated streaking on
91 agar plates. A total of 24 isolates were separately inoculated in the abovementioned media without
92 agar and incubated at 15°C. Their ability to remove $\text{NH}_4\text{-N}$ (initial concentration of 200 mg/L) was
93 measured using the Nessler's reagent colorimetric method (He et al. 2016). NO_2^- and total nitrogen
94 (TN) was measured using the ultraviolet spectrophotometric method (He et al. 2016) and the
95 potassium persulfate digestion ultraviolet spectrophotometric method (HJ 535-2009). After screening,
96 bacteria capable of eliminating $\text{NH}_4^+\text{-N}$ rapidly without nitrite residues were selected for further
97 study. The bacterial strain, named A6, was suspended in 20% glycerol solution and placed at -80°C
98 for long-term storage.

99 The cell morphology of strain A6 was obtained using a scanning electron microscope (SEM)
100 (Quanta200, Holland). Briefly, after an overnight culture of strain A6 in Luria–Bertani (LB) medium
101 (10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl) at 28°C on a rotary shaker at 160 rpm, cells were

102 harvested by centrifugation, and washed 3 times and resuspended in sterile distilled water. Twenty
103 microliters of suspension was spread onto a microscope slide and air dried. Afterwards, the sample
104 was coated with gold under vacuum followed by microscopic examinations using SEM at 15 kV.

105 The physiological and biochemical characteristics of strain A6 were analyzed based on the
106 method described in Dong and Cai. (2001). Genomic DNA of strain A6 was extracted using the
107 DNA extraction kit (Tiangen, China). An almost full-length 16S rRNA gene was then amplified
108 using universal primer pairs, forward primer 27f (5'-AGAGTTGATCATGGCTCAG-3') and
109 reverse primer 1492r (5'-TACGGTTACCTTGTACGACTT-3') (Heuer et al. 1997). The amplified
110 product was submitted to Sangon (Shanghai, China) for sequencing, and was performed using the
111 automated sequencer ABI3730xl DNA Analyzer (Applied Biosystems). The sequence was compared
112 with reference sequences in GenBank using Basic Local Alignment Search Tool (BLAST)
113 (<http://blast.ncbi.nlm.nih.gov/Blast.cgi>). The sequence was deposited in Genbank with an accession
114 number MF767879. A phylogenetic tree was constructed using MEGA 5 using the neighbor joining
115 method (Tamura et al. 2011).

116 **Effect of strain A6 on nitrogen removal using different nitrogen sources**

117 To assess if strain A6 has the capacity for both nitrification and denitrification, NH_4^+ , NO_3^- , and
118 $\text{NH}_4^+ + \text{NO}_3^-$ were selected as the initial nitrogen sources, and their reduction over time were
119 measured (He et al. 2016). A 500 mL conical flask containing 200 mL of culture medium was
120 autoclaved at 121°C for 20 min. There were three replicates for each treatment. Strain A6 that was
121 previously cultured in LB at 15°C in a shaker at 160 rpm for 18 h was centrifuged at 5,000 rpm at
122 4°C. Cells were then washed with sterile double distilled water (ddH₂O) three times and
123 re-suspended in sterile ddH₂O at a final concentration of 10^7 cfu/mL. The 2% seed inoculum was

124 then added into each flask of culture media containing the different N sources. Each flask was
125 incubated at 15°C in a shaker at 160 rpm. Every 24 h, samples were taken and the following were
126 measured; cell density, NH_4^+ , NO_3^- , and TN concentrations. All treatments and determinations were
127 performed in triplicate. In addition, to further prove the ability of nitrification and denitrification,
128 *amoA*, *hao*, *nxrA*, *narG*, *napA*, *nirK*, *nirS*, *nrfA*, *norB*, and *nosZ* were amplified and sequenced. The
129 gene specific primer pairs are shown in Table S1.

130 **Collection and disinfection of duckweed (*Lemna gibba*)**

131 Duckweeds were originally collected from a pond in Yancheng Teachers University, Jiangsu
132 Province. In the laboratory, duckweed was surface-sterilized with 5% sodium hypochlorite for 5 min.
133 Following treatment, the duckweed was rinsed with sterile ddH₂O at least five times. The duckweed
134 was identified as *Lemna gibba* based on its morphology as determined by Prof. Yanqiu Yu from the
135 Yancheng Teachers University (Les et al. 2002).

136 **Synergistic effect of strain A6 and duckweed on NH₄-N removal from aquaculture wastewater**

137 Duckweed with, or without, strain A6 was cultured in sterile aquaculture wastewater collected
138 from Dongfanglvzhou, Dafeng, Jiangsu Province. Since high ammonium concentrations (>20 mg/L
139 NH₄-N) have a negative impact on the growth rate of duckweed (Caicedo et al. 2000), NH₄-N was
140 added and adjusted to 10 mg/L with ammonium chloride based on a previous study (Grommen et al.
141 2002). Four treatments groups consisting of the control (neither duckweed nor strain A6), strain A6
142 only (initial concentration 10³ cfu/mL, see the below-mentioned experiment), duckweed only (initial
143 abundance around 160 frond numbers), and duckweed + strain A6, were used to assess the efficiency
144 of ammonia removal from aquaculture wastewater. The experiment was conducted with glass fish
145 tanks (40 cm length × 30 cm width × 30 cm height). Each tank contained 20 L of aquaculture

146 wastewater. The inoculation method was similar to the above-mentioned process. The fish tanks
147 were maintained indoors under the following conditions; 16/8 h light/dark cycle at 15°C. Each fish
148 tank had a rotor that worked at a rate of 30 min every 6 h. Water samples were taken at one-day
149 intervals and NH_4^+ , NO_3^- , and TN concentrations were measured for time course analysis. All
150 treatments and determinations were performed in triplicate.

151 **The mutual growth-promoting effects of strain A6 and duckweed**

152 To determine if strain A6 could enhance the tolerance of duckweed against heavy metals and
153 antibiotics in aquaculture wastewater, 1000 μM of Pb^{2+} , 340 μM of Cr^{6+} , 780 μM of Cu^{2+} , 0.05 mg/L
154 of oxytetracycline, and 0.05 mg/L of gentamicin (the median lethal concentration for strain A6) were
155 added to the abovementioned aquaculture wastewater in fish tanks. Strain A6 was inoculated into the
156 wastewaters at an initial concentration of 10^3 cfu/mL. Duckweed was added to half the tanks with the
157 culture conditions being similar to the previous experiments. Water samples were taken at regular
158 intervals of 24 h and bacterial cell growth was determined spectrophotometrically by measuring the
159 $\text{OD}_{600\text{ nm}}$. After 96 h of incubation at 15°C, duckweed were harvested and placed on absorbent paper
160 to remove surface water. Afterwards, the duckweed was immediately weighed to determine the fresh
161 weights.

162 Next, we investigated if strain A6 had growth-promoting effects on duckweed and we
163 determined the optimal inoculum dose of strain A6. Serial inoculum doses of strain A6 of 0 (blank
164 control), 10^2 , 10^3 , 10^4 , and 10^5 cfu/mL, were selected for the experiments. The initial concentration
165 of duckweed in each tank was around 160 frond numbers, and subsequent frond numbers were
166 counted and recorded every day.

167 **Effect of duckweed extract on biofilm formation of strain A6**

168 After disinfection, 10 g of duckweed were mixed with 10 mL of 0.1 M phosphate buffer (pH 7.2)
169 in a sterile grinding bag and placed in an ice box, followed by grinding using a wooden dowel. The
170 extracts were then centrifuged at 5,000 rpm for 10 min at 4°C, and the supernatants were further
171 filtered using a 0.22- μ m-filter membrane. Half of the extracts were then autoclaved at 121°C for 15
172 min. The two duckweed extracts were referred to as “filtration” and “autoclaving” and were used in
173 the following amounts; 0% (control), 5%, 10%, and 20% for biofilm formation of strain A6. The
174 crystal violet staining method was used for measuring biofilm formation (Kang et al. 2014; O'Toole
175 and Kolter 1998).

176 **Observation of biofilm formation of strain A6 on duckweed**

177 Twenty milliliters of sterile aquaculture wastewater were poured into two Petri dishes (Φ 90 cm).
178 One of which was mixed with strain A6 cell solution (10^7 cfu/mL) at a final concentration of 10^3
179 cfu/mL. Afterwards, wastewaters were covered with 50 individual duckweeds, and then incubated at
180 room temperature for 24 h under a natural light-dark cycle.

181 The duckweeds were then harvested and placed on sterile Whatman filter paper to remove
182 surface water. Afterwards, they were fixed with 2.5% of glutaraldehyde, followed by washing with a
183 0.1 M phosphate buffer for 15 min (total of 3 washes). Samples were then dehydrated sequentially
184 using 50%, 70%, 80% of ethanol solution, ethanol and amyl acetate (2:1, v/v), ethanol and amyl
185 acetate (1:1, v/v), and amyl ester for 30 min each. Afterwards, the inner and outer surfaces of the
186 roots and leaves were examined using a scanning electron microscopy (Quanta200, Holland) at 25
187 kV. A total of three independent experiments were set up and only one representative picture is
188 shown in the corresponding results.

189 **Characteristics related to duckweed growth promotion**

190 Production of indole acetic acid (IAA) and siderophores, possibly related to duckweed growth
191 promotion, were determined based on the methods developed by Glickmann and Dessaux (1995) and
192 Schwyn and Neilands (1987), respectively. For IAA measurement, strain A6 was incubated in LB
193 containing 0.5 g/L L-tryptophan at 25°C for 48 h. Two milliliters of culture solution was then
194 centrifuged at 10,000 rpm for 15 min, and the supernatant was mixed with 2 mL of Salkowski
195 reagent (4.5 g FeCl₃ in 1 L of 10.8 M H₂SO₄). After color development for 30 min at room
196 temperature in the dark, the optical density was measured at 530 nm. IAA production was calculated
197 based on a standard curve using serial concentrations of IAA. For siderophore measurement, strain
198 A6 was inoculated on a chrome azurol S agar plate (Schwyn and Neilands 1987) and cultured at
199 25°C for 48-72 h. Strain A6 was capable of producing siderophores if bacterial colonies were
200 surrounded by green-yellow haloes.

201 **Data analysis**

202 Raw data were analyzed using SPSS Statistics for Windows Version 24.0 (SPSS, IBM, Somers,
203 NY, USA) to calculate means, standard errors (SE), as well as differences between treatments using
204 Duncan's multiple range tests. The significance level was set at a *p*-value of 0.05. The figures
205 presented were produced using Sigma Plot for Windows Version 10.0 (Systat Sofware, San Jose, CA,
206 USA).

207

208 **Results and discussion**

209 **Isolation and identification of a heterotrophic nitrifying bacterium**

210 A total of 24 bacterial strains were isolated from sediment samples by an enrichment process.
211 Their ability to remove NH₄⁺-N was tested. One isolate, named strain A6, showed the highest

212 efficacy and was selected for identification and later study. Strain A6 was Gram-negative,
213 non-spore-forming, catalase-positive, indole-negative, oxidase-negative, no flagellum and
214 non-motile, and nitrate reduction-negative. The SEM image of strain A6 (Fig. 1A) indicated that it
215 was cocci or a short rod with a width of approximately 1.2 μm .

216 The partial 16S rRNA gene (1306 bp) of strain A6 was amplified and sequenced. Using BLAST,
217 strain A6 was identified as being closely related to members of the genus *Acinetobacter*, of which
218 *Acinetobacter johnsonii* strain EPS-11 (KY848819) had the highest similarity (100%). The resulting
219 phylogenetic tree consisted of a partial 16S rRNA gene sequence of strain A6 and some members of
220 *Acinetobacter* (Fig. 1B), which further revealed that strain A6 was clustered with species from
221 *Acinetobacter*. Consequently, strain A6 was identified to be an *Acinetobacter* species. To date,
222 several isolates belonging to *Acinetobacter* sp. have been reported to be capable of eliminating
223 ammonia from both aquaculture wastewater and industrial effluents (Fan et al. 2015; Huang et al.
224 2013; Sarioglu et al. 2012; Zhao et al. 2010a), demonstrating the potential future use of this isolate
225 for wastewater treatment.

226 **Ammonia elimination by strain A6 from three different nitrogen sources**

227 At 15°C, about 70% of NH_4^+ -N was eliminated from the media containing NH_4^+ -N after 72 hrs,
228 which was substantially faster compared with *A. calcoaceticus* STB1 isolated by Sarioglu et al.
229 (Sarioglu et al. 2012). At 120 h, most of the NH_4^+ -N was eliminated by strain A6 with no
230 accumulation of NO_2^- -N (not shown in Fig. 2) and NO_3^- -N (Fig. 2A), which was consistent with that
231 of *Microbacterium* sp. strain SFA13 (Zhang et al. 2013) and *Pseudomonas tolaasii* Y-11 (He et al.
232 2016). This indicated that strain A6 could be used as an inoculant for removing ammonia without
233 any negative impacts for aquaculture. The ammonium elimination was mainly due to bacterial

234 assimilation (Zhao et al. 2010a). The loss of TN suggests that some ammonium may be converted to
235 gaseous nitrogen during the nitrification process. The nitrification rate of strain A6 at 15°C was
236 1.45 ± 0.18 mg NH_4^+ -N/L/h, which was lower compared with *Bacillus methylotrophicus* L7 (2.14 mg
237 NH_4^+ -N/L/h) (Zhang et al. 2012) and *P. tolaasii* Y-11 (2.04 mg NH_4^+ -N/L/h) (He et al. 2016), but
238 similar to that of *P. alcaligenes* AS-1 (1.15 mg NH_4^+ -N/L/h) (Su et al. 2006) and *Pseudomonas* sp.
239 ADN-42 (1.38 mg NH_4^+ -N/L/h) (Jin et al. 2015), and higher than *Bacillus* sp. LY (0.43 mg
240 NH_4^+ -N/L/h) (Zhao et al. 2010b) and *Acinetobacter* sp. Y16 (0.092 ± 0.006 mg NH_4^+ -N/L/h) (Huang
241 et al. 2013).

242 When NO_3^- -N was the sole nitrogen source, the exponential growth phase began at 48 h (Fig.
243 2B), demonstrating a slower growth rate compared with the media with NH_4^+ -N only or a mixture of
244 NH_4^+ -N and NO_3^- -N (Fig. 2C). This indicated that i) strain A6 could perform aerobic denitrification
245 with nitrate nitrogen, and ii) strain A6 utilized NH_4^+ -N preferentially compared with NO_3^- -N. This
246 became more evident when strain A6 was cultured with a mixture of NH_4^+ -N and NO_3^- -N. Strain A6
247 preferred to use NH_4^+ -N first, and then use NO_3^- -N when NH_4^+ -N was exhausted after 96 h (Fig. 2C).
248 Within 120 h, 93.04% of NO_3^- -N could be removed by strain A6. The nitrate removal rate of strain
249 A6 at 15°C was 1.45 ± 0.10 mg NO_3^- -N/L/h, which was almost equal to the ammonium removal rate.
250 The nitrate removal rate was higher compared with *Rhodococcus* sp. CPZ24 (0.93 mg NO_3^- -N/L/h at
251 30°C) (Chen et al. 2012), but lower than that of *P. tolaasii* Y-11 (1.99 mg NO_3^- -N/L/h) (He et al.
252 2016). The total loss of TN with NO_3^- -N was similar to that of NH_4^+ -N, suggesting that an equivalent
253 amount of gaseous nitrogen was released during the nitrification and denitrification processes. No
254 nitrite was detected during the measurement period, while NH_4^+ -N increased gradually to 19.46 mg
255 at 168 h, which is similar to several previous reports (He et al. 2016; Jin et al. 2015). Ammonium

256 originates from death cells containing organic nitrogen, and may contribute to NH_4^+ -N accumulation
257 during the later growth phases. However, whether strain A6 can conduct dissimilatory nitrate
258 reduction to the ammonium process under possibly a micro-anaerobic environment (referring to the
259 later growth phase) is still unknown and needs to be determined.

260 Simultaneous nitrification and denitrification (SND) accomplished by one particular strain of
261 bacterium highlights its advantages in nitrogen polluted wastewater (Jin et al. 2015) compared to the
262 traditional SND process performed by several different bacterial strains (Xia et al. 2008). Strain A6
263 seemed to be capable of performing simultaneous heterotrophic nitrification and aerobic
264 denitrification, which was reflected in the loss of NH_4^+ -N and NO_3^- -N within 7 days (Fig. 2C).
265 However, the processes of nitrification and denitrification are not totally simultaneous. Strain A6
266 preferred to use NH_4^+ -N first, and then use NO_3^- -N when NH_4^+ -N was exhausted at 96 h, which was
267 similar to that observed in *P. tolaasii* Y-11 (He et al. 2016). The situation of exhausting NH_4^+ -N and
268 having a stationary phase at 96 h with a lower DO may contribute to the use of NO_3^- -N. From our
269 transcriptome experiments (data is not shown because they are not related), we found that the prior
270 use of NH_4^+ -N by strain A6 was not affected by the nitrate reductase gene, but may be possibly
271 related to the up-regulation of the carbonic anhydrase gene in the medium containing NH_4^+ -N.
272 NO_3^- -N suppress the activity of carbonic anhydrase (Glass and Silverstein 1998) and transcriptional
273 activity of the encoded gene (data not shown), which suggests that the carbonic anhydrase gene is of
274 relevance. The nitrification rate of strain A6 with both NH_4^+ -N and NO_3^- -N was 1.96 ± 0.02 mg
275 NH_4^+ -N/L/h, which was higher compared with NH_4^+ -N only. Comparatively, the nitrification rate of
276 A6 was similar to that of *P. tolaasii* Y-11 (He et al. 2016) but lower compared with *P. versutus* LYM
277 (Zhang et al. 2015). This may be due to the possible activation of NH_4^+ -N assimilation related genes

278 by NO_3^- -N. The nitrate removal rate of strain A6 in this medium was 3.55 ± 1.51 mg NO_3^- -N/L/h from
279 96 h to 120 h. This stagnation in the rate may be due to the accumulation of NO_3^- -N converted from
280 NH_4^+ -N during the latter phases. At the initial TN of 480.01 mg/L, the removal efficiency was only
281 $23.65\pm2.47\%$, suggesting that gaseous nitrogen was possibly released during the latter phases in the
282 medium with NH_4^+ -N and NO_3^- -N.

283 We qualitatively identified several genes that are involved in the heterotrophic nitrification-
284 aerobic denitrification process. The results showed that *amoA*, *hao*, *nxrA*, *napA*, and *nirS* were
285 found to be positive (Fig. S1). This further proved that strain A6 was capable of performing
286 nitrification and denitrification. There are still key experiments that are needed to determine
287 accurately the pathway of nitrogen metabolism by strain A6; however, this is beyond the current
288 scope of this study.

289 **Rate of ammonium removal by the combination of strain A6 and duckweeds**

290 Several studies have suggested the importance of bacteria for duckweed growth and ammonium
291 removal (Duong and Tiedje 1985; Körner and Vermaat 1998; Stout et al. 2010; Xu and Shen 2011).
292 However, an intensive study using a specific bacteria combined with duckweed is lacking. To better
293 understand and reinforce the ammonium elimination performance of strain A6, duckweed was used
294 as the supporting material to conduct experiments on aquaculture wastewater. We found that both
295 strain A6 and duckweed could significantly remove NH_4^+ -N, NO_3^- -N, and TN (Fig. 3). The
296 efficiency of ammonium removal by duckweed plus strain A6 was $99.18\pm0.22\%$ at Day 10, which
297 was compared to duckweed ($83.84\pm5.51\%$) and strain A6 ($70.94\pm10.03\%$) alone. Most of the TN
298 (98%) in swine-waste-polluted duckweed ponds is removed once every year (Mohedano et al. 2012).
299 Residual ammonia was 0.41 mg N/L with removal efficiencies of 98% (El-Shafai et al. 2007). Using

300 the combined system containing strain A6 and duckweed, we obtained a comparable result within 10
301 days compared with the previous studies. Grommen et al. (2002) demonstrated that using nitrifying
302 bacteria can shorten the start-up period of a bio-filter, which was confirmed in this study.

303 The levels of NO_3^- -N in the control treatment group increased with time (Fig. 3B), and was
304 opposite to the time course for NH_4^+ -N. This may be attributed to the nitrification process. In
305 addition, it was found that there was ~20% of TN loss in the control treatment group on Day 10 (Fig.
306 3C), suggesting that the nitrification process still occurred and that some N was released as gaseous
307 nitrogen (likely NO, see Fig. S1). For the strain A6 treatment group, an obvious change in NO_3^- -N
308 levels were observed with time, indicating that from day 6 some denitrifying bacteria may function
309 in DO-decreasing conditions. The elimination rate of NO_3^- -N by duckweed was much slower
310 compared with NH_4^+ -N. This suggested that duckweeds may utilize NH_4^+ -N preferentially compared
311 with NO_3^- -N.

312 On Day 10, the TN elimination efficacies of the control, strain A6, duckweed, and strain A6 plus
313 duckweed, treatment groups were 31.65%, 68.64%, 57.07%, and 96.31%, respectively (Fig. 3C). It
314 has been demonstrated that 80% of N removal was through plant uptake, 5% by sedimentation and
315 15% by unknown factors (El-Shafai et al. 2007). In another study, it was found that in
316 duckweed-based ponds, nitrification/denitrification by microorganisms was the major mechanism for
317 N removal (Zimmo et al. 2003). An earlier study indicated that duckweed was directly responsible
318 for 30–47% of the total N-loss through the uptake of ammonium (Körner and Vermaat 1998). Our
319 results showed that nitrifying bacteria had a stronger effect on TN removal compared with duckweed,
320 which may be due to the much larger specific surface-area of strain A6 compared with duckweed,
321 and thus could assimilate more nutrients, including ammonium. The differences in the studies

322 mentioned above could be explained by distinct pond systems and water conditions. Differences in
323 environmental conditions and treatment efficiencies have been observed in algae-based ponds and
324 duckweed-based pond systems (Zimmo et al. 2002).

325 **Mutual growth-promoting effects between strain A6 and duckweed**

326 To understand the factors that may be responsible for the enhanced ammonium and TN removal
327 efficiencies of the combined system with strain A6 and duckweed, the mutual effects of strain A6
328 and duckweed under stressed conditions were determined. Results showed that heavy metals, such as
329 Pb, Cr(VI), and Cu, and antibiotics including oxytetracycline and gentamicin, could significantly
330 inhibit the propagation strain A6 (Fig. 4A), and the co-culture of duckweed could mitigate the
331 repressive effects of these heavy metals except for Cu (Fig. 4B). Stout et al. (2010) demonstrated that
332 even in the presence of cadmium-tolerant bacteria, they could not enhance duckweed uptake of
333 cadmium. Organic acids and phytochelatins released by plants could help chelate heavy metals and
334 reduce the detrimental effects for the growth of bacterial strain (Ghosh and Singh 2005). In addition,
335 duckweed have the ability to degrade antibiotics (Iatrou et al. 2017), which may be a reason for the
336 growth promotion observed in strain A6. Moreover, some heat-sensitive substances from duckweed
337 could significantly promote the biofilm formation of strain A6 (Fig. 5), which could be a factor
338 responsible for the enhanced growth promotion observed even in the presence of heavy metals and
339 antibiotics stressed conditions (Harrison et al. 2004; Teitzel and Parsek 2003). In addition, the
340 attached biofilm may have nitrogen removal capability (Körner et al. 2003). Strain A6 had
341 growth-promoting effects on duckweed at a concentration of 10^3 cfu/mL (Fig. 4C). At this dose,
342 strain A6 also relieved the negative impact of several heavy metals and antibiotics on duckweed
343 growth (Fig. 4D). In addition, production of IAA and siderophores, possibly involved in duckweed

344 growth promotion were examined. Our results demonstrated that strain A6 could produce both IAA
345 (9.47 μ g/mL) and siderophores (Fig. 6). This was consistent with several other bacterial isolates
346 belonging to *Acinetobacter* sp. (Dorsey et al. 2004; Gulati et al. 2009; Srivastava and Singh 2014;
347 Yamamoto and Sakakibara 1994). At 15°C, strain A6 also produced IAA (7.26 μ g/mL) and
348 siderophores (data not shown), indicating that the strain is functional in real environmental
349 conditions. Because of the water-soluble nature of IAA (Arancon et al. 2006) and siderophores
350 (Baret et al. 1995), it was inferred that strain A6 could exert growth-promoting effects more
351 noticeably in water compared to soil. Several publications have shown that pathogens like *E. coli*
352 could be removed by duckweed (Awuah et al. 2001; Steen et al. 1999). It is known that
353 siderophore-producing rhizobacteria can promote plant growth by providing available iron to plants
354 (Ghavami et al. 2016) and also by depriving iron from iron-dependent pathogens (Miethke and
355 Marahiel 2007).

356 Using SEM technology, we observed the colonization of strain A6 on/in duckweed (Fig. 7).
357 Strain A6 colonized in the inner leaves compared to the roots or surfaces. Strain A6 possibly formed
358 biofilm in the inner leaf and thus exerted more growth-promoting effects on leaf proliferation (Fig.
359 4D) compared to root elongation (data not shown). Interestingly, strain A6 lacks flagella (Fig. 1A)
360 which is important for biofilm formation (O'Toole and Kolter 1998). We inferred that strain A6 may
361 be assimilated and transported into the inner leaves via root flow, and then, like other *Acinetobacter*
362 sp., exhibit twitching motility (Bitrian et al. 2013) for biofilm formation.

363 **Conclusions**

364 To increase the efficiencies of ammonium and TN elimination in aquaculture wastewater, a
365 heterotrophic nitrifying bacterium, identified as *Acinetobacter* sp., was isolated and used in a

366 co-culture system with duckweed. The ammonium removal efficiency in culture media and sampled
367 aquaculture wastewater at 15°C was over 99%, with no accumulation of nitrite and nitrates. This was
368 significantly higher compared with bacterium or duckweed alone. *Acinetobacter* sp. strain A6 and
369 duckweed had mutual growth-promoting effects under chemical stress conditions. Strain A6 possibly
370 colonized in the inner duckweed leaves, and displayed IAA- and siderophore-producing
371 characteristics. This may be the mechanism of their synergistic efficiency regarding N removal.

372 **Acknowledgements**

373 This work was supported by the National Natural Science Foundation of China (41773103,
374 41501256), the Agricultural Innovation Project of Yancheng (YK2015027), the “Qing Lan” Project
375 Foundation of Jiangsu Province, the 333 Talents Project of Jiangsu Province, the Natural Science
376 Foundation of the Education Committee of Jiangsu Province (15KJD210001), and the Opening
377 Program of Jiangsu Provincial Key Laboratory of Coastal Wetland Bio-resource and Environmental
378 Protection (JLCBE13006).

379 **References**

380 Acosta-Nassar, M.V., Morell, J.M., and Corredor, J.E. (2010) The nitrogen budget of a tropical
381 semi-intensive freshwater fish culture pond. *J. World Aquac. Soc.* **25**, 261-270.

382 Arancon, N.Q., Edwards, C.A., Lee, S., and Byrne, R. (2006) Effects of humic acids from
383 vermicomposts on plant growth *Eur. J. Soil Biol.* **42**, S65-S69.

384 Awuah, E., Anohene, F., Asante, K., Lubberding, H., and Gijzen, H. (2001) Environmental
385 conditions and pathogen removal in macrophyte- and algal-based domestic wastewater
386 treatment systems. *Water Sci. Technol.* **44**, 11-18.

387 Baret, P., Beguin, C.G., Boukhalfa, H., Caris, C., Laulhere, J.-P., Pierre, J.-L., and Serratrice, G.
388 (1995) O-TRENSOX: A Promising water-soluble iron chelator (both FeIII and FeII)
389 potentially suitable for plant nutrition and iron chelation therapy. *J. Am. Chem. Soc.* **117**,
390 9760-9761.

391 Bitrian, M., González, R.H., Paris, G., Hellingwerf, K.J., and Nudel, C.B. (2013)
392 Blue-light-dependent inhibition of twitching motility in *Acinetobacter baylyi* ADP1: additive
393 involvement of three BLUF-domain-containing proteins. *Microbiology* **159**, 1828-1841.

394 Caicedo, J.R., Van der Steen, N.P., Arce, O., and Gijzen, H.J. (2000) Effect of total ammonia
395 nitrogen concentration and pH on growth rates of duckweed (*Spirodela polyrhiza*). *Water Res.*
396 **34**, 3829-3835.

397 Chen, P., Li, J., Li, Q.X., Y, W., Li, S., Ren, T., and Wang, L. (2012) Simultaneous heterotrophic
398 nitrification and aerobic denitrification by bacterium *Rhodococcus* sp. CPZ24. *Bioresour.*
399 *Technol.* **116**, 266-270.

400 Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., and Verstraete, W. (2007) Nitrogen removal
401 techniques in aquaculture for a sustainable production *Aquaculture* **270**, 1-14.

402 Dong, X.Z., and Cai, M.Y., 2001. Common bacterial system identification manual. Science Press,
403 Beijing.

404 Dorsey, C.W., Tomaras, A.P., Connerly, P.L., Tolmasky, M.E., Crosa, J.H., and Actis, L.A. (2004)
405 The siderophore-mediated iron acquisition systems of *Acinetobacter baumannii* ATCC 19606
406 and *Vibrio anguillarum* 775 are structurally and functionally related. *Microbiology* **150**,
407 3657-3667.

408 Duong, T.P., and Tiedje, J.M. (1985) Nitrogen fixation by naturally occurring duckweed-
409 cyanobacterial associations. *Can. J. Microbiol.* **31**, 327-330.

410 El-Shafai, S.A., El-Gohary, F.A., Nasr, F.A., van der Steen, N.P., and Gijzen, H.J. (2007) Nutrient
411 recovery from domestic wastewater using a UASB-duckweed ponds system *Bioresour.*
412 *Technol.* **98**, 798-807.

413 Fan, L., Chen, J., Liu, Q., Wu, W., Meng, S., Song, C., Qu, J., and Xu, P. (2015) Exploration of three
414 heterotrophic nitrifying strains from a tilapia pond for their characteristics of inorganic
415 nitrogen use and application in aquaculture water. *J. Biosci. Bioeng.* **119**, 303-309.

416 Gatidou, G., Oursouzidou, M., Stefanatou, A., and Stasinakis, A.S. (2017) Removal mechanisms of
417 benzotriazoles in duckweed *Lemna minor* wastewater treatment systems. *Sci. Total Environ.*
418 **596-597**, 12-17.

419 Ghavami, N., Alikhani, H.A., Pourbabaei, A.A., and Besharati, H. (2016) Effects of two new
420 siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. *J.*
421 *Plant Nut.* **40**, 736-746.

422 Ghosh, M., and Singh, S.P. (2005) A review on phytoremediation of heavy metals and utilization of
423 its byproducts. *Appl. Ecol. Env. Res.* **3**, 1-18.

424 Glass, C., and Silverstein, J.A. (1998) Denitrification kinetics of high nitrate concentration water: pH
425 effect on inhibition and nitrite accumulation. *Water Res.* **32**, 831-839.

426 Glickmann, E., and Dessaix, Y. (1995) A critical examination of the specificity of the salkowski
427 reagent for indolic compounds produced by phytopathogenic bacteria. *Appl. Environ.*
428 *Microbiol.* **61**, 793-796.

429 Grommen, R., Van Hauteghem, I., Van Wambeke, M., and Verstraete, W. (2002) An improved
430 nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems.
431 *Aquaculture* **211**, 115-124.

432 Gulati, A., Vyas, P., Rahi, P., and Kasana, R.C. (2009) Plant growth-promoting and
433 rhizosphere-competent *Acinetobacter rhizosphaerae* strain BIHB 723 from the cold deserts of
434 the Himalayas *Curr. Microbiol.* **58**, 371-377.

435 Harrison, J.J., Ceri, H., Stremick, C.A., and Turner, R.J. (2004) Biofilm susceptibility to metal
436 toxicity. *Environ. Microbiol.* **6**, 1220-1227.

437 He, T., Li, Z., Sun, Q., Xu, Y., and Ye, Q. (2016) Heterotrophic nitrification and aerobic

438 denitrification by *Pseudomonas tolaasii* Y-11 without nitrite accumulation during nitrogen
439 conversion. *Bioresour. Technol.* **200**, 493-499.

440 Heuer, H., Krsek, M., Baker, P., Smalla, K., and Wellington, E.M. (1997) Analysis of actinomycete
441 communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic
442 separation in denaturing gradients. *Appl. Environ. Microbiol.* **63**, 3233-3241.

443 Huang, X., Li, W., Zhang, D., and Qin, W. (2013) Ammonium removal by a novel oligotrophic
444 *Acinetobacter* sp. Y16 capable of heterotrophic nitrification-aerobic denitrification at low
445 temperature. *Bioresour. Technol.* **146**, 44-50.

446 Iatrou, E.I., Gatidou, G., Damalas, D., Thomaidis, N.S., and Stasinakis, A.S. (2017) Fate of
447 antimicrobials in duckweed *Lemna minor* wastewater treatment systems. *J. Hazard. Mater.*
448 **330**, 116-126.

449 Jin, R., Liu, T., Liu, G., Zhou, J., Huang, J., and Wang, A. (2015) Simultaneous heterotrophic
450 nitrification and aerobic denitrification by the marine origin bacterium *Pseudomonas* sp.
451 ADN-42. *Appl. Biochem. Biotechnol.* **175**, 2000-2011.

452 Körner, S., and Vermaat, J.E. (1998) The relative importance of *Lemna gibba* L., bacteria and algae
453 for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater. *Water
454 Res.* **32**, 3651-3661.

455 Körner, S., Vermaat, J.E., and Veenstra, S. (2003) The capacity of duckweed to treat wastewater:
456 ecological considerations for a sound design. *J. Environ. Qual.* **32**, 1583-1590.

457 Kang, Y., Shen, M., Yang, X., Cheng, D., and Zhao, Q. (2014) A plant growth-promoting
458 rhizobacteria (PGPR) mixture does not display synergistic effects, likely by biofilm but not
459 growth inhibition. *Microbiology* **83**, 666-673.

460 Kim, J.H., Guo, X., and Park, H.S. (2008) Comparison study of the effects of temperature and free
461 ammonia concentration on nitrification and nitrite accumulation. *Process Biochem.* **43**,
462 154-160.

463 Les, D.H., Crawford, D.J., Landolt, E., Gabel, J.D., and Kimball, R.T. (2002) Phylogeny and
464 systematics of Lemnaceae, the duckweed family. *Systematic Botany* **27**, 221-240.

465 Lin, C.K., and Yi, Y. (2003) Minimizing environmental impacts of freshwater aquaculture and reuse
466 of pond effluents and mud. *Aquaculture* **226**, 57-68.

467 Liu, C., Dai, Z., and Sun, H. (2017) Potential of duckweed (*Lemna minor*) for removal of nitrogen

468 and phosphorus from water under salt stress. *J. Environ. Manage.* **187**, 497-503.

469 Miethke, M. and Marahiel, M.A. (2007) Siderophore-based iron acquisition and pathogen control.

470 *Microbiol. Mol. Biol. Rev.* **71**, 413-451.

471 Moav, R., Wohlfarth, G., Schroeder, G.L., Hulata, G., and Barash, H. (1977) Intensive polyculture of

472 fish in freshwater ponds. I. Substitution of expensive feeds by liquid cow manure.

473 *Aquaculture* **10**, 25-43.

474 Mohedano, R.A., Costa, R.H.R., Tavares, F.A., and Filho, P.B. (2012) High nutrient removal rate

475 from swine wastes and protein biomass production by full-scale duckweed ponds. *Bioresour.*

476 *Technol.* **112**, 98-104.

477 O'Toole, G.A., and Kolter, R. (1998) Flagellar and twitching motility are necessary for *Pseudomonas*

478 *aeruginosa* biofilm development. *Mol. Microbiol.* **30**, 295-304.

479 Read, P., and Fernandes, T. (2003) Management of environmental impacts of marine aquaculture in

480 Europe. *Aquaculture* **226**, 139-163.

481 Romano, N., and Zeng, C. (2013) Toxic effects of ammonia, nitrite, and nitrate to decapod

482 crustaceans: A review on factors influencing their toxicity, physiological consequences, and

483 coping mechanisms. *Rev. Fish. Sci. Aquac.* **21**, 1-21.

484 Ruiz, G., Jeison, D., and Chamy, R. (2003) Nitrification with high nitrite accumulation for the

485 treatment of wastewater with high ammonia concentration. *Water Res.* **37**, 1371-1377.

486 Sarioglu, O.F., Suluyayla, R., and TurgayTekinay (2012) Heterotrophic ammonium removal by a

487 novel hatchery isolate *Acinetobacter calcoaceticus* STB1. *Int. Biodeterior. Biodegrad.* **71**,

488 67-71.

489 Schwyn, B., and Neilands, J.B. (1987) Universal chemical assay for the detection and determination

490 of siderophores. *Anal. Biochem.* **160**, 47-56.

491 Soletto, D., Binaghi, L., Lodi, A., Jcm, C., and Converti, A. (2005) Batch and fed-batch cultivations

492 of *Spirulina platensis* using ammonium sulphate and urea as nitrogen sources. *Aquaculture*

493 **243**, 217-224.

494 Srivastava, S., and Singh, N. (2014) Mitigation approach of arsenic toxicity in chickpea grown in

495 arsenic amended soil with arsenic tolerant plant growth promoting *Acinetobacter* sp. *Ecol.*

496 *Eng.* **70**, 146-153.

497 Steen, P.V.D., Brenner, A., Buuren, J.V., and Oron, G. (1999) Post-treatment of UASB reactor

498 effluent in an integrated duckweed and stabilization pond system. *Water Res.* **33**, 615-620.

499 Stout, L.M., Dodova, E.N., Tyson, J.F., and Nüsslein, K. (2010) Phytoprotective influence of
500 bacteria on growth and cadmium accumulation in the aquatic plant *Lemna minor* *Water Res.*
501 **44**, 4970-4979.

502 Su, J.J., Yeh, K.S., and Tseng, P.W. (2006) A strain of *Pseudomonas* sp. isolated from piggery
503 wastewater treatment systems with heterotrophic nitrification capability in Taiwan. *Curr.*
504 *Microbiol.* **53**, 77-81.

505 Türker, O.C., Yakar, A., and Gür, N. (2017) Bioaccumulation and toxicity assessment of irrigation
506 water contaminated with boron (B) using duckweed (*Lemna gibba* L.) in a batch reactor
507 system. *J. Hazard. Mater.* **324**, 151-159.

508 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011) MEGA5:
509 molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance,
510 and maximum parsimony methods. *Mol. Biol. Evol.* **28**, 2731-2739.

511 Teitzel, G.M., and Parsek, M.R. (2003) Heavy metal resistance of biofilm and planktonic
512 *Pseudomonas aeruginosa*. *Appl. Environ. Microbiol.* **69**, 2313-2320.

513 Thompson, F.L., Abreu, P.C., and Wasielesky, W. (2002) Importance of biofilm for water quality
514 and nourishment in intensive shrimp culture. *Aquaculture* **203**, 263-278.

515 van der Steen, P., Brenner, A., and Oron, G. (1998) An integrated duckweed and algae pond system
516 for nitrogen removal and renovation. *Water Sci. Technol.* **38**, 335-343.

517 Wang, F., Yi, X., Qu, H., Chen, L., Liu, D., Wang, P., and Zhou, Z. (2017) Enantioselective
518 accumulation, metabolism and phytoremediation of lactofen by aquatic macrophyte *Lemna*
519 *minor*. *Ecotox. Environ. Safe.* **143**, 186-192.

520 Xia, S., Li, J., and Wang, R. (2008) Nitrogen removal performance and microbial community
521 structure dynamics response to carbon nitrogen ratio in a compact suspended carrier biofilm
522 reactor. *Ecol. Eng.* **32**, 256-262.

523 Xu, J., and Shen, G. (2011) Growing duckweed in swine wastewater for nutrient recovery and
524 biomass production. *Bioresour. Technol.* **102**, 848-853.

525 Yamamoto, S., and Sakakibara, N.O. (1994) Isolation and structure elucidation of acinetobactin., a
526 novel siderophore from *Acinetobacter baumannii*. *Arch. Microbiol.* **162**, 249-254.

527 Yang, X.-P., Wang, S.-M., Zhang, D.-W., and Zhou, L.-X. (2011) Isolation and nitrogen removal

528 characteristics of an aerobic heterotrophic nitrifying–denitrifying bacterium, *Bacillus subtilis*
529 A1. *Bioresour. Technol.* **102**, 854-862.

530 Zhang, D., Li, W., Huang, X., Qin, W., and Liu, M. (2013) Removal of ammonium in surface water
531 at low temperature by a newly isolated *Microbacterium* sp. strain SFA13. *Bioresour. Technol.*
532 **137**, 147-152.

533 Zhang, Q.L., Liu, Y., Ai, G.M., Miao, L.L., Zheng, H.Y., and Liu, Z.P. (2012) The characteristics of
534 a novel heterotrophic nitrification-aerobic denitrification bacterium, *Bacillus*
535 *methylotrophicus* strain L7. *Bioresour. Technol.* **108**, 35-44.

536 Zhang, Y., Shi, Z., Chen, M., Dong, X., and Zhou, J. (2015) Evaluation of simultaneous nitrification
537 and denitrification under controlled conditions by an aerobic denitrifier culture. *Bioresour.*
538 *Technol.* **175**, 602-605.

539 Zhao, B., He, Y.L., Hughes, J., and Zhang, X.F. (2010a) Heterotrophic nitrogen removal by a newly
540 isolated *Acinetobacter calcoaceticus* HNR. *Bioresour. Technol.* **101**, 5194-5200.

541 Zhao, B., He, Y.L., and Zhang, X.F. (2010b) Nitrogen removal capability through simultaneous
542 heterotrophic nitrification and aerobic denitrification by *Bacillus* sp. LY. *Environ. Technol.*
543 **31**, 409-416.

544 Zimmo, O.R., Al-Sa'ed, R.M., van der Steen, N.P., and Gijzen, H.J. (2002) Process performance
545 assessment of algae-based and duckweed-based wastewater treatment systems *Water Sci.*
546 *Technol.* **45**, 91-101.

547 Zimmo, O.R., van der Steen, N.P., and Gijzen, H.J. (2003) Comparison of ammonia volatilisation
548 rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater.
549 *Water Res.* **37**, 4587-4594.

550 Zoccarato, I., Benatti, G., Calvi, S.L., and Bianchini, M.L. (1995) Use of pig manure as fertilizer
551 with and without supplement feed in pond carp production in Northern Italy *Aquaculture* **129**,
552 387-390.

553

554

555 **Figure Legends.**

556 **Figure 1. Cell morphology observed by scanning electron microscopy (A) and phylogenetic tree**
557 **of strain A6 (B).**

558

559 **Figure 2. Time course of nitrogen removal in culture media containing ammonium-N only (A),**
560 **nitrate-N only (B), and ammonium-N + nitrate-N (C) at 15°C.** The dashed line in Fig. C indicates
561 the timepoint when strain A6 starts to use nitrate.

562

563 **Figure 3. Time course of the elimination efficiencies of ammonium-N (A), nitrate-N (B), and**
564 **total-N (C) at 15°C with sampled aquaculture wastewater.**

565

566 **Figure 4. Mutual growth-promoting effects of strain A6 and duckweed.** Growth of strain A6 in
567 the absence (A) and presence of duckweed (B); Effect of different inoculation doses of strain A6 on
568 duckweed growth (C); Effect of strain A6 on the growth of duckweed in the presence of chemical
569 stresses (D); different alphabets between treatments denotes significant differences (ANOVA; $p <$
570 0.05, Duncan's test).

571

572 **Figure 5. Effects of duckweed extracts obtained by filtration with 0.22-μm-membrane filter (A)**
573 **or autoclaving (B) on biofilm formation of strain A6.** Different alphabets between treatments
574 denote significant differences (ANOVA; $p < 0.05$, Duncan's test).

575

576 **Figure 6. Cell morphologies of strain A6 observed on the chrome azurol S agar plates after 72**

577 **h and 96 h incubation at 25°C (A) and 15°C (B), respectively.** The green-yellow haloes
578 surrounding bacterial colonies denote siderophore-producing positive.

579

580 **Figure 7. Colonization of strain A6 in/on duckweed observed by scanning electron microscopy.**

581

582 **Figure S1. The putative pathway for heterotrophic nitrification–aerobic denitrification process**
583 **of strain A6.** Arrows with a solid line indicate positive results by PCR; arrows with a dashed line
584 indicate negative results by PCR.

Fig. 1

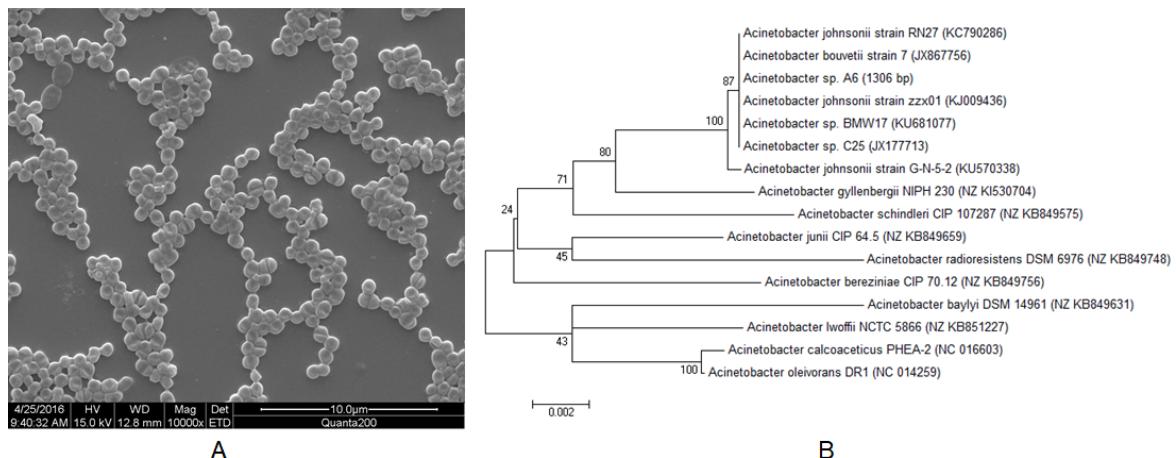


Fig. 2

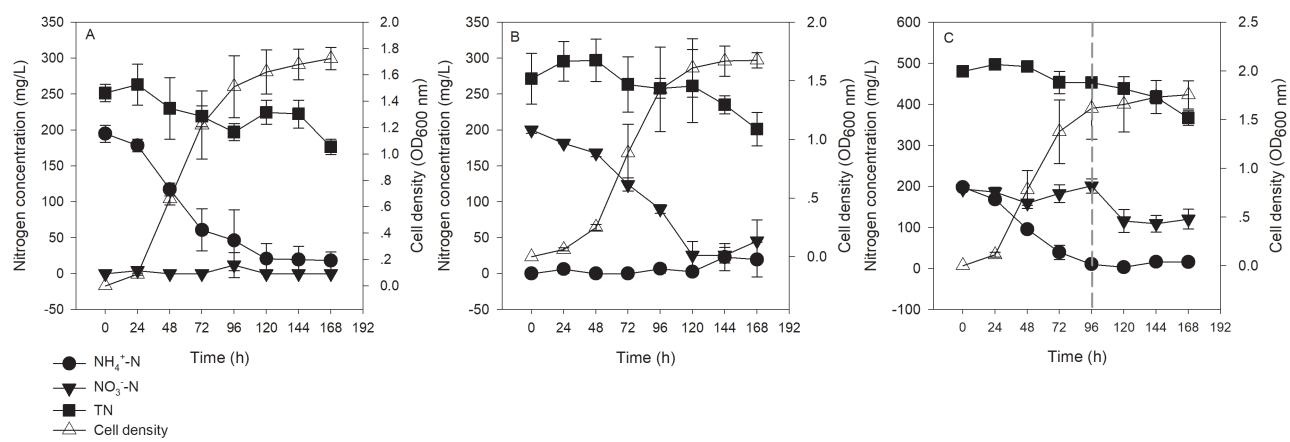


Fig. 3

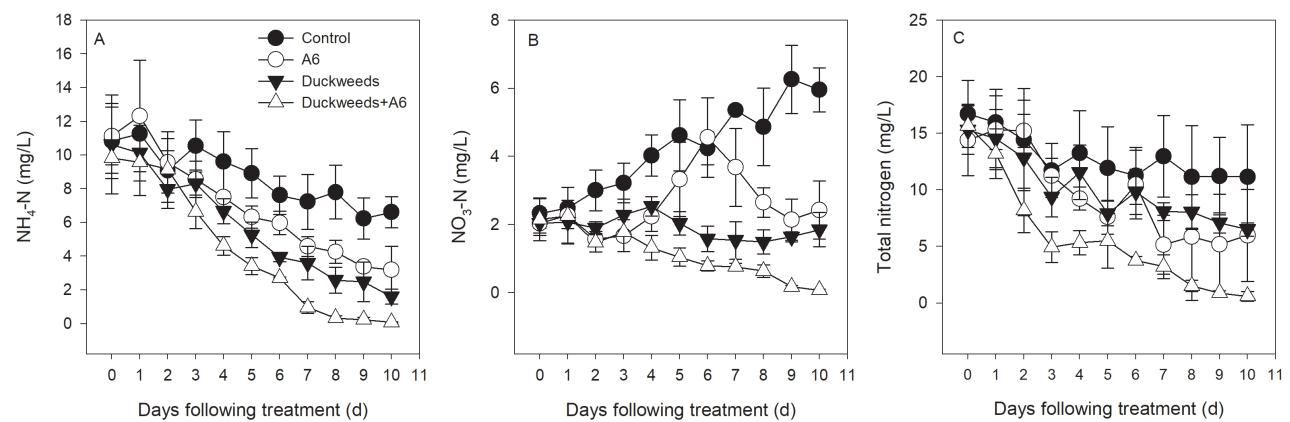


Fig. 4

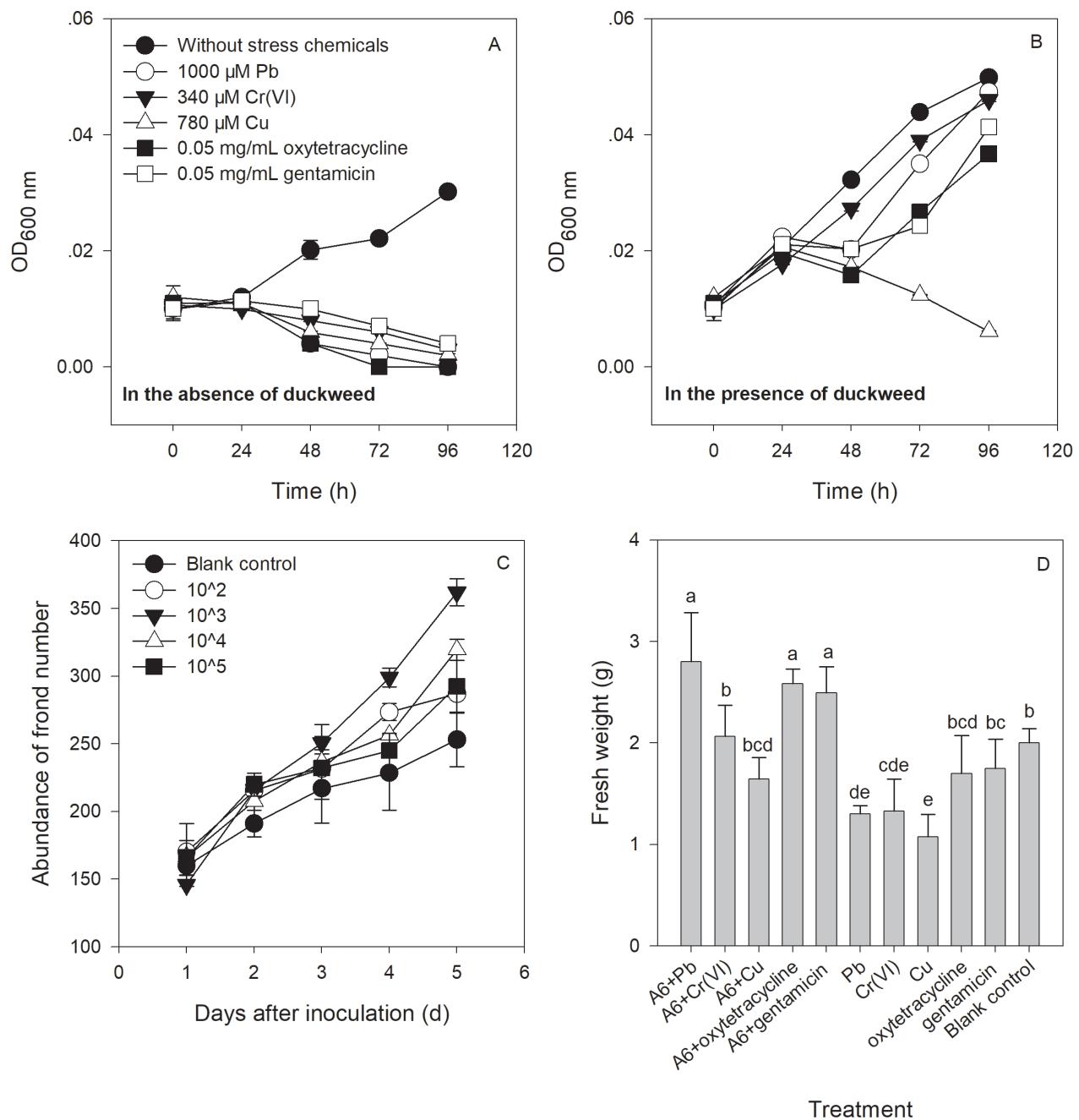


Fig. 5

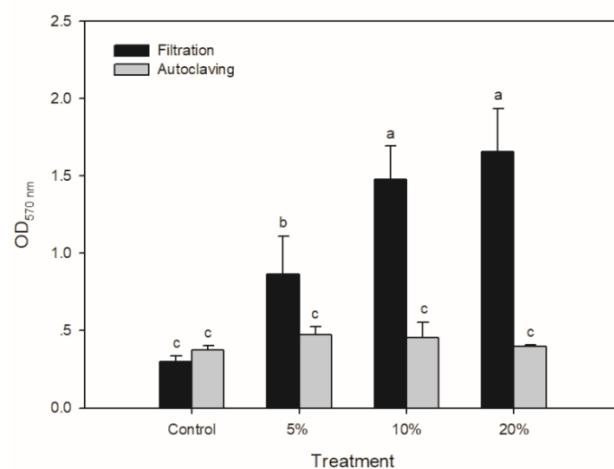
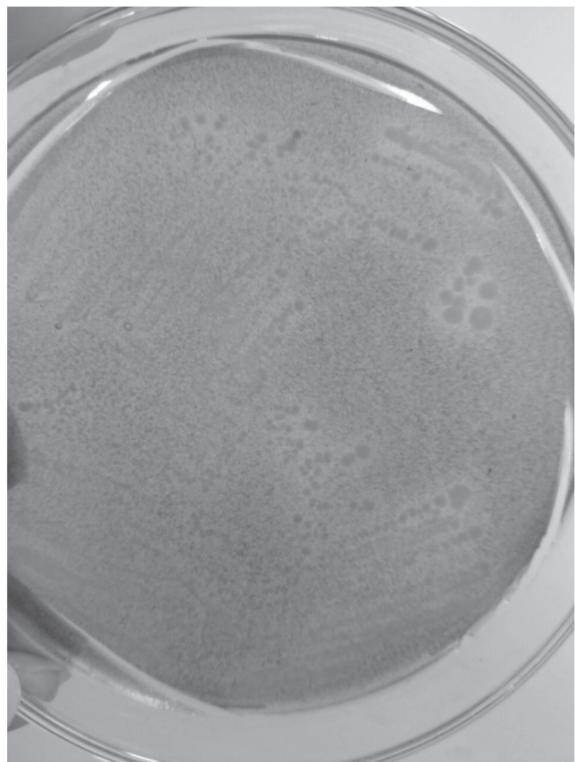
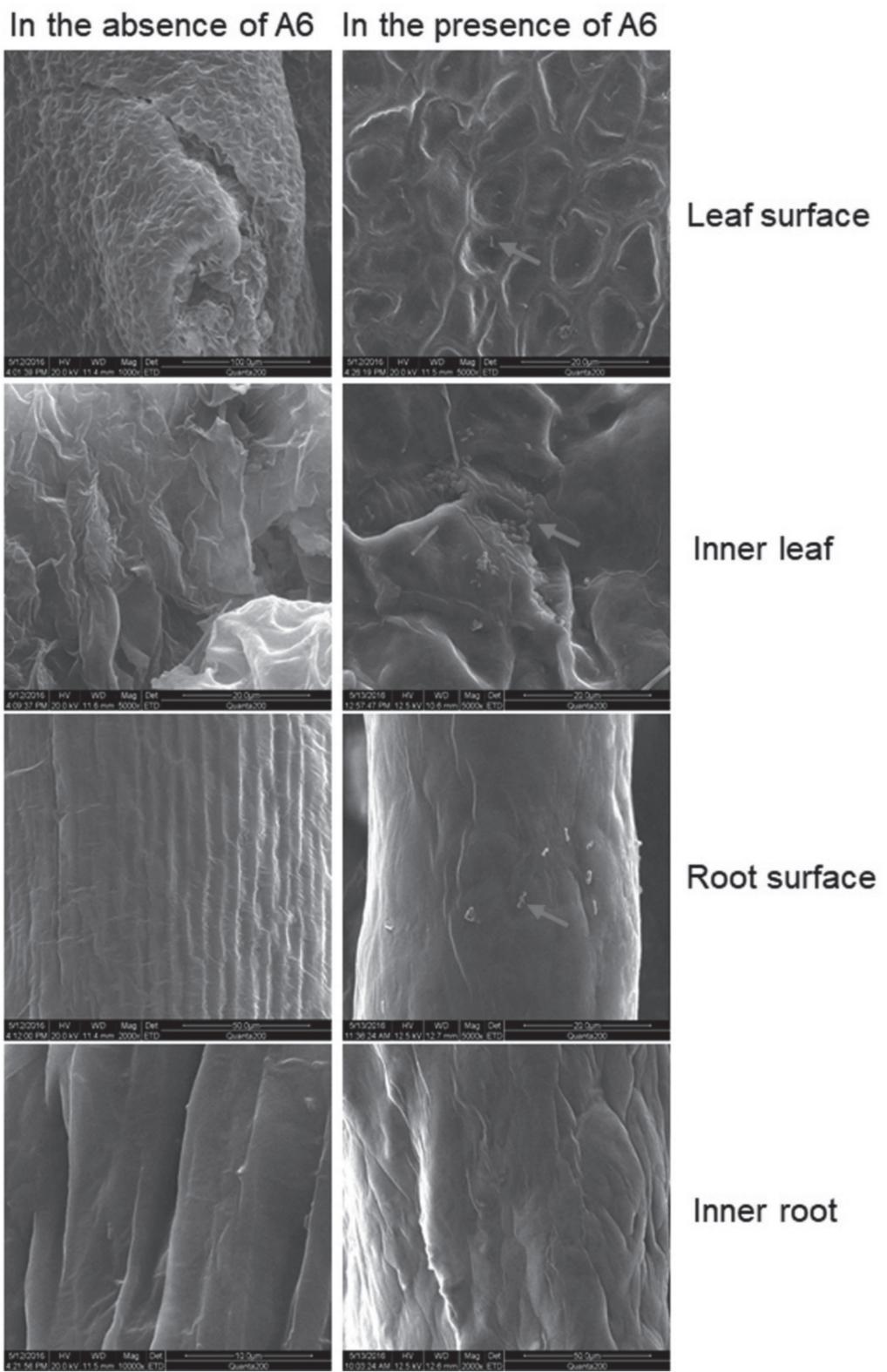



Fig. 6



A

B

Fig. 7

