

Patent Translate

Powered by EPO and Google

Notice

This translation is machine-generated. It cannot be guaranteed that it is intelligible, accurate, complete, reliable or fit for specific purposes. Critical decisions, such as commercially relevant or financial decisions, should not be based on machine-translation output.

DESCRIPTION JPH05107376A

[0001]

FIELD OF THE INVENTION This invention relates to a method for generating energy by using a palladium or palladium alloy cathode in a conventional water electrolysis process, and by generating heat from a nuclear fusion reaction catalyzed by polynuclear hydrogen atoms on the surface of the cathode.

.....

【発明の分野】本発明は、通常の水の電解方法においてパラジウムまたはパラジウム合金陰極を使用し、該陰極表面において生起する多核体の水素原子を触媒とする核融合反応による発熱によってエネルギーを発生せしめる方法に係る。

[0002]

PRIOR ART It has been known that nuclear fusion reactions can be induced by electrolyzing heavy water using a palladium rod pretreated with deuterium gas as the cathode, platinum as the anode, and LiOD added to the electrolyte, and it is believed that the deuterium (D) in the heavy water causes the nuclear fusion reaction.

【従来技術】これまで、予め重水素ガスで処理したパラジウム棒を陰極とし、白金を陽極として使用し、電解質にLiODを添加して重水の電解を行うことにより核融合反応が生起し得ることが知られており、これは重水中の重水素(D)が核融合反応を生起するものと考えられている。

[0003]

In contrast, normal water electrolysis is carried out using nickel electrodes etc. mainly to produce hydrogen and oxygen, but no neutrons, tritium, etc. are detected at the cathode during electrolysis, and it is said that no nuclear fusion reaction occurs and no exothermic reaction occurs at all.

.....

これに対し、通常の水の電解は主として水素、酸素の製造のためにニッケル電極等を使用して行われているが、陰極にて電解中に中性子、トリチウム等の検出はなく、何等核融合反応は起っておらず、全く発熱反応も起こらないとされている。

[0004]

[Configuration of the Invention] In response to the above-mentioned previous understanding, the present inventors discovered that if water electrolysis is carried out using palladium or a palladium alloy that has been heat-treated in advance in a vacuum at 800°C or higher as the cathode and platinum as the anode, a nuclear fusion reaction catalyzed by polynuclear hydrogen atoms, which occurs on the surface of the cathode even in ordinary water electrolysis, can be induced, and a large amount of energy can be generated, thereby arriving at the present invention.

【発明の構成】上記のようなこれまでの認識に対し、本発明者等は、予め800℃以上の真空中で 熱処理したパラジウムまたはパラジウム合金を陰極とし、白金を陽極として支持電解質を含有する 水の水電解を行えば、通常水の電解においても陰極表面で生起する多核体の水素原子を触媒とする 核融合反応が生起し得、大きなエネルギーを発生させ得ることを見出し、本発明に到達した。

[0005]

That is, the present invention provides an energy generation method, characterized by performing water electrolysis of water containing a supporting electrolyte using palladium or a palladium alloy that has been heat-treated in advance in a vacuum at 800°C or higher as a cathode and platinum as an anode, thereby surrounding the surface of the cathode material with hydrogen atoms and inducing a nuclear fusion reaction catalyzed by the polynuclear hydrogen atoms on the surface and/or inside of the cathode, and generating energy from the heat generated by the reaction.

.....

即ち本発明は、予め800℃以上の真空中で熱処理したパラジウムまたはパラジウム合金を陰極とし、白金を陽極として支持電解質を含有する水の水電解を行い、陰極材料の表面を水素原子で包囲して陰極表面及び/または内部にて多核体の水素原子を触媒とする核融合反応を生起し、該反応による発熱にてエネルギーを発生させることを特徴とするエネルギー発生方法である。

[0006]

The method of the present invention generates energy from the heat of nuclear fusion reactions that occur in so-called light water electrolysis using ordinary water, and is a novel process that can generate large amounts of energy through light water electrolysis, which was previously considered impossible.

.-----

上記本発明の方法は、通常の水を用いる所謂軽水電解にて生起する核融合反応の発熱によりエネルギーを発生させるものであり、従来不可能とされた軽水電解にて、大きなエネルギーを発生させ得る新規なプロセスである。

When electrolysis is carried out according to the above-described method of the present invention, normal electrode reactions initially occur, i.e., anode: $H2O \rightarrow 2H++1/2O2 \uparrow +2e$ -cathode: $2H++2e-\rightarrow H2 \uparrow$. However, as will be described in detail later in the Examples, after a certain period of time, abnormal heat generation is observed at the cathode.

上記本発明方法の構成に従い電解を行うと、当初は通常の電極反応、即ち、陽極 $H2O \rightarrow 2H+$ $+1/2O2 \uparrow + 2e$ -陰極 $2H++2e-\rightarrow H2 \uparrow$ が生起するが、後に実施例に詳細に記載する通り、ある程度の時間の後、陰極部において異常な発熱が観察される。

The mechanism of the exothermic reaction in light water electrolysis in the present invention has not been fully elucidated, but it is thought that hydrogen atoms surround the surface or interior of the palladium cathode, and the hydrogen acts as a catalyst to cause a nuclear fusion reaction such as $2H + e + H \rightarrow D + i1 + p$ (where H represents a hydrogen atom, e represents an electron, D represents deuterium, i1 represents a single proton, and p represents a proton), and that the heat generated by this nuclear fusion reaction causes abnormal heat generation in the palladium or palladium-silver alloy electrode.

本発明における軽水電解での発熱反応の機構は充分に解明されていないが、陰極のパラジウム表面または内部を水素原子が包囲することにより水素が触媒となり、 $2H+e+H\to D+i1+p$ (式中、Hは水素原子、eは電子、Dは重水素、i1は単一イトン、pは陽子を表す)のような核融合反応が起り、この核融合反応の発熱によりパラジウムまたはパラジウム-銀合金電極部に異常発熱が生ずるものと考えられる。

However, the method of the present invention is not bound by such a theory.

ただし、本発明方法は何等このような理論に拘束されるものではない。

[0007]

In the method of the present invention, palladium or a palladium-silver alloy is used for the cathode.

本発明方法においては、陰極にパラジウムまたはパラジウム-銀合金を使用する。

In order to cause the above-mentioned nuclear fusion reaction, it is essential that the cathode contains palladium. The cathode may consist of palladium alone, but in consideration of the stability of the mechanical strength of the cathode during electrolysis, a cathode consisting of an alloy of palladium and another metal can also be used.

上記核融合反応を生起するためには陰極がパラジウムを含むことが必須であり、陰極はパラジウム のみからなるものであってもよいが、電解中の陰極の機械的強度の安定性を考慮して、パラジウム と他の金属の合金からなる陰極を使用することができる。

A preferred metal that forms an alloy with palladium is silver. In this case, taking into consideration the function of palladium, the silver content in the alloy is preferably 30% by weight or less, and it is preferable to use a palladium-silver alloy in which the composition ratio of palladium to silver is 70/30 to 95/5 by weight.

パラジウムと合金を形成する好ましい金属は銀であり、この場合、パラジウムの機能を考慮すると合金中の銀含有率は30重量%以下が好ましく、パラジウムと銀の組成比が重量で70/30~95/5のパラジウム-銀合金を使用することが好ましい。

In some cases, a silver plate coated with palladium by electroplating or vacuum coating can also be used as the cathode.

また場合によっては、銀板にパラジウムを電気メッキあるいは真空コーティングにより被覆したものも陰極として使用可能である。

[8000]

The palladium or palladium alloy cathode used in the present invention must be heat-treated in advance at a temperature of 800° C. or higher.

また、本発明に用いられるパラジウムまたはパラジウム合金陰極は、予め800℃以上の温度で熱 処理をされていることが必要である。

The purpose of this heat treatment is to desorb components in the air, such as nitrogen molecules, that have been adsorbed on the surface or inside of the palladium or palladium alloy cathode. By carrying out these deaeration treatments before electrolysis, the initiation of an exothermic reaction based on a nuclear fusion reaction caused by the hydrogen catalysis on the surface of the cathode material during water electrolysis is promoted. If the desorption of components in the air is insufficient, the hydrogen atoms are prevented from approaching the palladium atoms during electrolysis, and the desired nuclear fusion reaction does not occur. This heat treatment is achieved by treating the cathode material in a vacuum heating furnace at 800° C. or higher and at a vacuum of 10 -4 Torr or higher before electrolysis. The effect of this heat treatment is greater when it is carried out at a higher temperature for a longer period of time, but of course it must be carried out at a temperature lower than the melting point of the cathode material. When carried out at 800°C, the desired effect can be obtained by treating for several to 10 hours. Furthermore, after desorption of the components in the air, it is also preferable to replace the air with hydrogen in a hydrogen atmosphere. This hydrogen substitution can be carried out by filling the furnace with hydrogen at an appropriate pressure after the heat treatment.

この熱処理はパラジウムまたはパラジウム合金陰極表面または内部に吸着された窒素分子等の空気中の成分を脱着することを目的とする。これらの脱空気処理を電解前に行うことにより、水電解において陰極材表面での水素触媒作用による核融合反応に基く発熱反応の開始が促進される。空気中の成分の脱着が不十分であると、電解中に水素原子のパラジウム原子への接近が妨げられ、所望の核融合反応が生起しない。この熱処理は、陰極材料を電解前に真空加熱炉中にて、800℃以上、10-4Torr以上の真空度で処理することによって達成される。この熱処理は、より高温でより長時間行うことにより効果が大きくなるが、当然、陰極材料の融点よりも低い温度で行わなければならず、800℃で行う場合数時間~10時間程度処理することにより所望の効果が得られる。更にこの空気中の成分の脱着の後、水素雰囲気中で水素置換することも好ましい。この水素置換は、加熱処理後の炉に水素を適当な圧力で充填すること等により行うことができる。

[0009]

The shape of the cathode is not particularly limited, but it may be a rod or plate shape as used in ordinary electrolysis.

陰極の形状は特に限定されないが、通常の電解に使用されるような、棒状または板状のものとする ことができる。

A platinum anode is used as the anode. The shape of the platinum anode is not particularly limited, but it is preferably arranged so as to surround a cathode made of palladium or a palladium alloy. When a rod-shaped cathode is used, it is preferable to use an anode made of

platinum wire arranged so as to spirally surround the rod-shaped cathode at regular intervals.

When a plate-shaped cathode is used, it is preferable to use an anode made of two platinum plates arranged in parallel on two surfaces of the plate-shaped cathode.

陽極としては白金陽極が使用される。 白金陽極の形状も特に限定されないが、パラジウムまたはパラジウム合金からなる陰極を取り囲むようにして設けることが好ましく、棒状の陰極を使用した場合、該棒状の陰極の周囲を一定の間隔でスパイラル状に取り巻くように設けられた白金ワイヤからなる陽極を使用することが好ましく、板状の陰極を使用した場合、該板状の陰極の2つの表面に平行に設けた2枚の白金板からなる陽極を使用することが好ましい。

[0010]

A supporting electrolyte is added to the water to be electrolyzed in order to ensure electrical conductivity.

電解される水には、電気伝導性を確保するため支持電解質を添加する。

The type of supporting electrolyte is not particularly limited as long as it can achieve its purpose, but is preferably an alkali metal salt or hydroxide, more preferably selected from NaCl, KCl, LiCl, NaOH, KOH and LiOH. The current density used for electrolysis is not

particularly limited as long as it can induce the above-mentioned nuclear fusion reaction, but electrolysis is preferably carried out at a cathode current density of 10 A/dm@2 or more, more preferably 20 A/dm@2 or more.

.....

支持電解質の種類はその目的を達成し得る限り特に限定されないが、好ましくはアルカリ金属の塩または水酸化物であり、より好ましくは、NaCl、KCl、LiCl、NaOH、KOH及びLiOHから選択される。電解に使用する電流密度は上記のような核融合反応を生起し得る限り特に限定されないが、好ましくは陰極電流密度を10A/dm2以上、より好ましくは20A/dm2以上として電解を行うものである。

[0011]

In the method of the present invention, it is also preferable to surround the cathode with a diaphragm in order to separate the oxygen generated at the anode from the hydrogen generated at the cathode, and then carry out water electrolysis.

また本発明方法においては、陽極で発生する酸素と、陰極で発生する水素を分離するために陰極を 隔膜で包囲し、水電解を行うことも好ましい。

Usable diaphragm materials include fluorine-based cation exchange membranes (such as Nafion 117 and 423, which are polyperfluorosulfonic acid membranes manufactured by DuPont (USA)), porous fluororesin membranes (such as Teflon membranes manufactured by

Nichias Corporation and Gore-Tex membranes manufactured by Junkosha Co., Ltd.), porous polypropylene membranes (such as Juraguard manufactured by Polyplastics Co., Ltd.), porous ceramic membranes (such as β -alumina membranes manufactured by NGK Spark Plug Co., Ltd.), and asbestos membranes (including not only simple asbestos membranes but also those reinforced with Teflon fiber, elastomer, etc.). The hydrogen separated by providing these membranes can be used in fuel cells, and it is expected that the present invention can also be used in a hybrid system of light water electrolysis and fuel cells.

......

隔膜材料としては、フッ素系陽イオン交換膜(米国デュポン社製のポリパーフルオロスルホン酸膜であるナフィオン117、423等)、多孔性フッ素樹脂膜(ニチアス(株)製テフロン隔膜、(株)潤工社製ゴアーテックス隔膜等)、多孔性ポリプロピレン膜(ポリプラスチックス(株)製ジュラガード等)、多孔性セラミックス膜(日本特殊陶業(株)製β-アルミナ膜等)、アスベスト隔膜(単なるアスベスト隔膜以外に、テフロン繊維、エラストマー等で補強されたものも含む)が使用可能である。 尚、これらの隔膜を設けることにより分離された水素は燃料電池に使用することができ、軽水電解-燃料電池のハイブリッドシステムとして使用することも期待できる。

[0012]

Furthermore, by carrying out electrolysis under pressure according to the method of the present invention, it is possible to extract the energy of the abnormal heat generated by the nuclear fusion reaction as high-temperature steam of 100°C or higher.

また本発明の方法による電解を加圧状態で行うことにより、上記核融合反応による異常発熱のエネルギーを100℃以上の高温スチームとして取り出すことが可能である。

In this case, it is preferable to perform electrolysis by treating the electrolytic cell as a closed system, extracting gas generated by electrolysis to the outside of the system via a pressure regulating valve, pressurizing the inside of the electrolytic cell with the pressure regulating valve, and simultaneously placing the entire electrolytic apparatus in a sealed pressurized container and pressurizing it with nitrogen gas, and maintaining equal pressure inside and outside the electrolytic cell with the pressure regulating valve. Furthermore, in this case, it is also preferable to provide a gas-liquid separator outside the sealed pressure vessel and introduce the gas coming out of the electrolytic cell into this to liquefy part of the water vapor and recycle it to the electrolytic cell. Furthermore, since there is a risk of explosion if hydrogen and oxygen come into contact under pressure, the cathode and anode must be separated by a diaphragm, and the hydrogen and oxygen must be removed separately from the system.

.....

この場合、電解槽を閉鎖系として圧力調製弁を介して電解により発生したガスを系外に取り出すようにして該圧力調製弁により電解槽内を加圧状態にすると同時に、電解装置全体を密閉型加圧容器内に入れて窒素ガスで加圧し、電解槽内外で圧力調整弁により等圧になるようにして電解を行うことが好ましい。 さらにこの場合、密閉型加圧容器外に気液分離装置を設け、電解槽から出た気体をこれに導入することにより水蒸気の一部を液化し、電解槽にリサイクルすることも好ましい。

また加圧状態で水素と酸素が接触すると爆発する危険があるので、陰極と陽極は隔膜で分離し、水 素と酸素を別々に系外へ取り出す必要がある。

[0013]

When the method of the present invention is carried out, as described above, the nuclear fusion reaction is thought to occur a certain amount of time after the start of electrolysis.

However, it has been recognized that the nuclear fusion reaction is more likely to occur if the electrolysis system is stimulated by cooling or the like after a certain amount of time has passed since the start of electrolysis.

本発明方法の実施した場合、上記したように前記核融合反応は電解開始後ある程度の時間経過した後に生起するものと考えられるが、電解開始後ある程度の時間が経過したときに、冷却すること等により電解系に刺激を与えると前記核融合反応が生起しやすくなることが認められている。

Cooling for this purpose can be carried out, for example, by immersing the electrolytic cell in ice water.

このような目的の冷却は、例えば電解セルを氷水中に浸漬すること等により行うことができる。

[0014]

FIG. 1 shows an example of an electrolysis apparatus for carrying out the method of the present invention.

図1に本発明の方法を実施するための電解装置の例を示す。

The apparatus shown in FIG. 1 has a rod-shaped cathode and an anode made of platinum wire spirally wound around the rod-shaped cathode at regular intervals. In FIG. 1, 1 is a cathode made of a palladium or palladium alloy rod, 2 is a platinum wire anode, 3 is water to which a supporting electrolyte has been added, 4 is a thermometer, 5 is an internal cell, 6 is a water level, 7 is a thermocouple, 8 is a glass electrolytic cell, and 9 is hydrogen and oxygen.

図1に示した装置は、棒状の陰極と、該棒状の陰極の周囲を一定の間隔でスパイラル状に取り巻くように設けられた白金ワイヤからなる陽極を有する装置である。図1において、1はパラジウムまたはパラジウム合金棒からなる陰極、2は白金ワイヤ陽極、3は支持電解質を添加した水、4は温度計、5は内部セル、6は水位、7はサーモカップル、8はガラス電解セル、9は水素及び酸素を示す。

[0015]

Other apparatuses and conditions for electrolysis used in the method of the present invention will be understood by those skilled in the art of electrolysis.

その他の本発明方法に使用する装置、電解等の条件は通常の電解工業の知識により理解され得るであるう。

The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples. A palladium rod (5 mm in diameter, 5 cm in length, which had been degassed in advance in a vacuum heating furnace at 10 Torr and 800° C. for 10 hours prior to electrolysis) was used as the cathode, and a platinum wire (0.3 mm in diameter) was used as the anode. As shown in Figure 1, the anode platinum wire was spirally placed around the palladium rod, spaced approximately 1.5-2 cm apart. A glass electrolytic cell was charged with 2.91% saline solution (6 g of NaCl dissolved in 200 g of deionized water), and a palladium cathode was placed so that the entire palladium rod was submerged in the saline solution. A direct current of 0.9 A (cathode current density: 10.9 A /dm) was passed through the cell, and electrolysis was carried out at a solution temperature of 41 to 42°C. During electrolysis, deionized water was replenished to maintain a constant water level. During electrolysis, the electrolytic cell was immersed in a water bath to control the liquid temperature.

以下、本発明の詳細について実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 陰極にパラジウム棒(直径 $5\,\mathrm{mm}$ 、長さ $5\,\mathrm{cm}$ 、電解に先立ち、予め真空加熱炉中で $1\,0\text{-}5\,\mathrm{T}\,\mathrm{o}\,\mathrm{r}\,\mathrm{r}$ 、 $8\,0\,0\,^\circ\mathrm{C}$ で $1\,0$ 時間の脱ガス処理したもの)、陽極に白金ワイヤ(直径 $0\,\mathrm{cm}$

3 mm)を使用した。図1に示したように、陽極白金ワイヤをパラジウム棒の周囲に約1.5~2 c m離して、スパイラル状に設置した。ガラス製電解セルに2.91%食塩水(NaCl6gを脱イオン水200gに溶解したもの)を入れ、パラジウム棒全体が食塩水中に没するようにパラジウム陰極を設置して、直流0.9Amp(陰極電流密度10.9A/dm2)を通電し、液温41~42℃で電解を行った。電解中は常に一定の水位になるように脱イオン水を補給した。また電解中は電解セルを水浴中に浸漬して液温をコントロールした。

[0016]

After energizing the electrolysis for 9 days under these conditions, the electrolysis was temporarily interrupted, and the entire electrolytic cell was immersed in ice water at 0°C for approximately 8 hours to cool it down. After the electrolysis was resumed, the palladium rod suddenly began to heat up to 300-340°C from the 10th day, and the liquid temperature gradually rose to above 90°C.

このような状態で9日間通電した後、一旦電解を中断し、電解セル全体を約8時間0 $^{\circ}$ Cの氷水に浸漬して冷却せしめた後電解を再開したところ、10日目から急激にパラジウム棒が発熱して 300 $^{\circ}$ 340 $^{\circ}$ Cになり、液温が次第に上昇して90 $^{\circ}$ C以上になった。

Water electrolysis was carried out under the same conditions as in Example 1, except that caustic soda was used instead of sodium chloride as the electrolyte, and 2.0% caustic sodacontaining water (4.1 g of caustic soda dissolved in 100 g of deionized water) was used. As a

result, from the 10th day after the start of electrolysis, the cathode palladium rod suddenly began to heat up to 300 to 330°C, and the liquid temperature gradually rose to 90°C or higher.

実施例1において、電解質として食塩の代りに苛性ソーダを使用した2.0%苛性ソーダ含有水 (苛性ソーダ4.1gを脱イオン水100gに溶解したもの)を使用して、その他の条件は実施例 1と同様に水電解を行った結果、電解開始10日目から陰極パラジウム棒が急激に発熱して 300~330°Cになり、液温が次第に上昇して90°C以上に達した。

[0017]

Example 3 In Example 2, an alloy rod composed of palladium/silver in a weight ratio of 90/10 was used instead of the palladium cathode rod, and other conditions were the same as in Example 2. A direct current of 1 A (cathode current density: 12.1 A/dm²) was applied and water electrolysis was carried out. As a result, from the 9th day after the start of electrolysis, the cathode rod suddenly began to heat up to 300 to 330°C, and the solution temperature gradually rose to above 90°C.

.....

実施例3実施例2において、パラジウム陰極棒の代りにパラジウム/銀=90/10重量比から成る合金棒を用い、その他の条件は実施例2と同様に直流1A(陰極電流密度12.1A/dm2)を通電し、水電解を行った結果、電解開始9日目から陰極棒が急激に発熱して $300\sim330$ ℃になり、液温が次第に上昇して90 ℃以上になった。

[0018]

Example 4 In Example 2, the palladium cathode rod was surrounded by a cylindrical bag-
shaped (diameter 15 mm, length 10 cm with a bottom attached) polyperfluorosulfonic acid
membrane (Nafion 423 manufactured by DuPont), and a platinum wire was placed in a spiral
shape on the outside of the polyperfluorosulfonic acid membrane to perform electrolysis.
実施例4実施例2において、パラジウム陰極棒を円筒袋状(直径15m/m、長さ10cmで底面
を付けたもの)のポリパーフルオロスルホン酸膜(デュポン社製ナフィオン423)で包囲し、ポ

generated from the cathode was separated from oxygen gas and collected.

The polyperfluorosulfonic acid membrane was connected to a Teflon tube, and hydrogen gas

リパーフルオロスルホン酸膜の外側に白金ワイヤーをスパイラル状に設置して電解を行った。

ポリパーフルオロスルホン酸膜をテフロンチューブに連結し、陰極から発生した水素ガスを酸素ガスと分離して回収した。

From the 10th day after the start of electrolysis, the palladium rod began to generate heat, reaching 300 to 330°C, and the liquid temperature also gradually rose, reaching 90°C or higher.

電解開始10日目から、パラジウム棒が発熱して300~330℃に達すると共に液温も次第に上 昇し、90℃以上になった。

[0019]

Example 5 In Example 2, water electrolysis was carried out under the same conditions as in Example 2, except that the applied current was increased to 2 A (cathode current density: 24.3 A/dm²). As a result, from the fifth day after the start of electrolysis, the palladium rod cathode began to generate heat and the temperature rose rapidly to 300 to 340°C, and the solution temperature also gradually rose to 90°C or higher.

実施例5実施例2において、通電流を2A(陰極電流密度24.3A/dm2)に増流し、その他の条件は実施例2と同様に水電解を行った結果、電解開始5日目から陰極パラジウム棒が発熱して300~340℃に急激に上昇すると共に液温も次第に上昇し、90℃以上になった。

[0020]

Example 6 An electrolytic cell having the same shape and dimensions as the electrolytic cell used in Example 4, but made of stainless steel, was used, and the internal pressure could be increased by removing the generated gas through a pressure regulating valve. A porous Teflon diaphragm was used instead of Nafion 423, and the entire electrolytic apparatus was enclosed in a pressurized airtight container pressurized with nitrogen gas, so that the inside and

outside of the electrolytic cell were in an equal pressure state, and electrolysis was carried out in the same manner as in Example 4.

実施例6実施例4で使用した電解槽と同じ形状、寸法を有するが、ステンレスからなり、圧力調整 弁を介して発生したガスを取り出すようにして内部圧力を上昇させることができる電解槽を用い、 ナフィオン423の代りに多孔性テフロン隔膜を使用し、電解装置全体を窒素ガスで加圧した加圧 密閉容器内に封入し、電解槽の内外が等圧の加圧状態になるようにして実施例4と同様の電解を 行った。

As in Example 4, abnormal heat generation was observed at the cathode from the 10th day after the start of electrolysis, and steam at 210°C was obtained when the pressure in the electrolytic cell and the pressurized sealed vessel was 20 kg/cm².

実施例4と同様に電解開始後10日目から陰極部において異常発熱が観察され、電解槽内及び加圧 密閉容器内の圧力が20kg/cm2のとき210 $^{\circ}$ Cのスチームを取り出すことができた。

[0021]

According to the method of the present invention, a nuclear fusion reaction can be induced by electrolysis of ordinary water, and it can be applied to, for example, obtaining a large amount of energy by directly electrolyzing seawater, and the method of the present invention is an extremely promising energy supply method.

【発明の効果】本発明の方法によれば、通常水の電解により核融合反応を生起することができ、例 えば海水を直接電解することにより多量のエネルギーを得ること等への応用が可能であり、本発明 方法は極めて有望なエネルギー供給方法である。