

Patent Translate

Powered by EPO and Google

Notice

This translation is machine-generated. It cannot be guaranteed that it is intelligible, accurate, complete, reliable or fit for specific purposes. Critical decisions, such as commercially relevant or financial decisions, should not be based on machine-translation output.

DESCRIPTION JPH05134098A

[0001]

FIELD OF THE INVENTION This invention relates to a method for electrolyzing heavy water using a palladium or palladium alloy cathode to produce various useful elements such as indium and ruthenium while generating heat through a nuclear fusion reaction catalyzed by polynuclear deuterium atoms that occurs on the surface of the cathode.

【発明の分野】本発明は、重水の電解方法においてパラジウムまたはパラジウム合金陰極を使用 し、該陰極表面において生起する多核体の重水素原子を触媒とする核融合反応により発熱と共にイ ンジウム、ルテニウム等種々の有用元素を製造する方法に係る。

[0002]

PRIOR ART It has been known that a nuclear fusion reaction can be induced by electrolyzing heavy water using a palladium rod pretreated with deuterium gas as the cathode, platinum as the anode, and LiOD added to the electrolyte. It is believed that the deuterium (D) in the heavy water causes the following nuclear fusion reaction:

【従来技術】これまで、予め重水素ガスで処理したパラジウム棒を陰極とし、白金を陽極として使用し、電解質にLiODを添加して重水の電解を行うことにより核融合反応が生起し得ることが知られており、これは重水中の重水素(D)が下記のような核融合反応を生起するものとされている。

[0003]

D + D \rightarrow 3He (0.82MeV) + n (2.45MeV)D + D \rightarrow 3T (1.0MeV) + p (3.0MeV)D + D \rightarrow 4He (0.08MeV) + γ (23.8MeV) (n: neutron, p: proton, γ : gamma ray)

D + D \rightarrow 3H e (0.82MeV) + n (2.45MeV) D + D \rightarrow 3T (1.0MeV) + p (3.0MeV) D + D \rightarrow 4H e (0.08MeV) + y (23.8MeV) (n:中性子、p:陽子、y:ガンマ線)

[0004]

It has been reported that abnormal heat generation is observed due to these reactions, but no reports have been made on other reactions or the production of other elements.

これらの反応により異常発熱が観察されることは報告されているが、他の反応及び他の元素の生成については何等報告されていない。

[0005]

[Configuration of the Invention] In response to the above-mentioned previous understanding, the present inventors discovered that when palladium or a palladium alloy that has been heat-treated in advance in a vacuum at 800°C or higher is used as the cathode, and heavy water containing a supporting electrolyte is electrolyzed using platinum as the anode, the surface of the cathode material is surrounded by deuterium atoms, and a nuclear fusion reaction catalyzed by the polynuclear deuterium atoms occurs on the surface and/or inside of the cathode. Along with heat generation due to the hydrogen-catalyzed nuclear fusion reaction, useful elements such as lithium, beryllium, boron, carbon, oxygen, fluorine, neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, argon, potassium, calcium,

titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, and rubidium are produced, and the palladium at the cathode reacts with deuterium or electrons to produce indium and ruthenium, thereby arriving at the present invention.

【発明の構成】上記のようなこれまでの認識に対し、本発明者等は、予め800℃以上の真空中で熱処理したパラジウムまたはパラジウム合金を陰極とし、白金を陽極として支持電解質を含有する重水の電解を行い、陰極材料の表面を重水素原子で包囲して陰極表面及び/又は内部にて多核体の重水素原子を触媒とする核融合反応を生起させると、水素触媒核融合反応による発熱と共にリチウム、ベリリウム、硼素、炭素、酸素、フッ素、ネオン、ナトリウム、マグネシウム、アルミニウム、珪素、リン、硫黄、塩素、アルゴン、カリウム、カルシウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルビジウム等の有用元素が生成され、また陰極のパラジウムが重水素または電子と反応し、インジウム及びルテニウムが生成されることを見出し、本発明に到達した。

[0006]

Therefore, the present invention provides a method for producing the above-mentioned useful atoms together with heat generation by electrolysis of heavy water containing a supporting electrolyte using palladium or a palladium alloy that has been heat-treated in advance in a vacuum at 800°C or higher as a cathode and platinum as an anode, thereby surrounding the surface of the cathode material with deuterium atoms and inducing a nuclear

fusion reaction catalyzed by the polynuclear deuterium atoms on the surface and/or inside of the cathode, and generating heat through the reaction.

従って本発明は、予め800℃以上の真空中で熱処理したパラジウムまたはパラジウム合金を陰極とし、白金を陽極として支持電解質を含有する重水の電解を行い、陰極材料の表面を重水素原子で 包囲して陰極表面及び/又は内部にて多核体の重水素原子を触媒とする核融合反応を生起し、該反応により発熱と共に上記のような有用原子を製造する方法である。

[0007]

When heavy water is electrolyzed according to the above-described configuration of the present invention, the following electrode reactions initially occur: anode D2O \rightarrow 2D+ + 1 /2O2 \uparrow + 2e- cathode 2D+ + 2e- \rightarrow D2 \uparrow . However, as will be described in detail in the Examples below, after a certain period of time, abnormal heat generation is observed at the cathode, and the above-described useful elements are produced by nuclear fusion reaction of deuterium atoms, and indium and ruthenium are produced by reaction of palladium atoms with deuterium or electrons.

上記本発明の構成に従い、重水の電解を行うと、当初は以下の電極反応陽極 D2O ightarrow 2 D+ + 1 /2O2ightarrow + 2 e - 陰極 2 D+ + 2 e - ightarrow D2 ightarrow が生起するが、後に実施例に詳細に記載する通り、ある程度の時間の後、陰極部において異常な発熱が観察されると共に、重水素原子の核融合反応により

上記のような有用元素が生成され、またパラジウム原子が重水素または電子と反応してインジウム 及びルテニウムが生成される。

The mechanism of the nuclear fusion reaction in the heavy water electrolysis of the present invention has not been fully elucidated, but it is thought that deuterium atoms surround the surface or interior of the palladium cathode, and the deuterium acts as a catalyst.

本発明における重水電解での核融合反応の機構は充分に解明されていないが、陰極のパラジウム表面または内部を重水素原子が包囲することにより重水素が触媒となり、

[8000]

 $2D + e + D \rightarrow 4He + i1 + 2n2D + e + D \rightarrow 4H + i1 + d2D + e + D \rightarrow 4n + i2 + d$ (where D is a deuterium atom, e is an electron, 4H is a tetratium, 2n is a diatomic neutron, 4n is a quadruplet neutron, i1 is a single neutron, and i2 is a tetratium atom). A deuterium-catalyzed nuclear fusion reaction such as the one shown below (where r represents a double proton and d represents a deuteron) occurs, and along with the heat generated by this nuclear fusion reaction, useful elements such as lithium, beryllium, boron, carbon, oxygen, fluorine, neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, argon, potassium, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, and

rubidium are produced by a multi-body nuclear fusion reaction via the palladium cathode, as shown in the formula below. It is also thought that the palladium cathode reacts with deuterium or electrons to produce indium and ruthenium.

 $2D + e + D \rightarrow 4He + i1 + 2n2D + e + D \rightarrow 4H + i1 + d2D + e + D \rightarrow 4n + i2 + d$ (式中、Dは重水素原子、eは電子、4Hは四重水素、2nは二重中性子、4nは四重中性子、i1は単一イトン、i2は二重イトン、dは重陽子を表す)のような重水素触媒核融合反応が起り、この核融合反応による発熱と共に、陰極のパラジウムを介した多体核融合反応により下記に例示した式のようにリチウム、ベリリウム、硼素、炭素、酸素、フッ素、ネオン、ナトリウム、マグネシウム、アルミニウム、珪素、リン、硫黄、塩素、アルゴン、カリウム、カルシウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルビジウム等の有用元素が生成され、また陰極のパラジウムが重水素または電子と反応し、インジウム及びルテニウムが生成されるものと考えられる。

However, the method of the present invention is not bound by such a theory.

ただし、本発明方法は何等このような理論に拘束されるものではない。

[0009]

In the method of the present invention, during electrolysis of heavy water, deuterium atoms surrounding the palladium surface of the cathode generate lithium, boron, carbon, nitrogen and oxygen atoms, for example, through the following multi-body nuclear fusion reaction.

.....

本発明方法において、重水の電解時に陰極のパラジウム表面を包囲している重水素原子は、例えば、下記の多体核融合反応によりリチウム、硼素、炭素、窒素、酸素原子を生成する。 $3D \to 6 \text{Li5D} \to 10 \text{B6D} \to 12 \text{C7D} \to 14 \text{N8D} \to 160 \text{ In parallel with the multi-body nuclear fusion}$ reaction of deuterium atoms, palladium atoms react with deuterium atoms or electrons to produce ruthenium and indium.

 $3 \ D \rightarrow 6 \ L \ i \ 5 \ D \rightarrow 10 \ B \ 6 \ D \rightarrow 12 \ C \ 7 \ D \rightarrow 14 \ N \ 8 \ D \rightarrow 16 \ O \ s \ c$ 、上記の重水素原子の多体核融合反応と並行して、パラジウム原子が重水素原子又は電子と反応してルテニウム及びインジウムを生成する。

[0011]

110 P d + 3 D \rightarrow 116 I n \rightarrow 115 I n + n

 $110Pd + 3D \rightarrow 116In \rightarrow 115In + n$

[0012]

In the	method of	the present inv	ention, palla	dium or a pa	alladium-silver	alloy is used	for the
catho	de.						

本発明方法においては、陰極にパラジウムまたはパラジウム-銀合金を使用する。

In order to cause the above-mentioned nuclear fusion reaction, it is essential that the cathode contains palladium. The cathode may consist of palladium alone, but in consideration of the stability of the mechanical strength of the cathode during electrolysis, a cathode consisting of an alloy of palladium and another metal can also be used.

上記核融合反応を生起するためには陰極がパラジウムを含むことが必須であり、陰極はパラジウム のみからなるものであってもよいが、電解中の陰極の機械的強度の安定性を考慮して、パラジウム と他の金属の合金からなる陰極を使用することができる。

A preferred metal that forms an alloy with palladium is silver. In this case, taking into consideration the function of palladium, the silver content in the alloy is preferably 30% by weight or less, and it is preferable to use a palladium-silver alloy in which the composition ratio of palladium to silver is 70/30 to 95/5 by weight.

パラジウムと合金を形成する好ましい金属は銀であり、この場合、パラジウムの機能を考慮すると
合金中の銀含有率は30重量%以下が好ましく、パラジウムと銀の組成比が重量で70/30~
95∕5のパラジウム−銀合金を使用することが好ましい。
In some cases, a silver plate coated with palladium by electroplating or vacuum coating can
also be used as the cathode.
また場合によっては、銀板にパラジウムを電気メッキあるいは真空コーティングにより被覆したも
のも陰極として使用可能である。
[0013]
The palladium or palladium alloy cathode used in the present invention must be heat-treated
in advance at a temperature of 800° C. or higher.

また、本発明に用いられるパラジウムまたはパラジウム合金陰極は、予め800℃以上の温度で熱 処理をされていることが必要である。

The purpose of this heat treatment is to desorb components in the air, such as nitrogen molecules, that have been adsorbed on or inside the palladium or palladium alloy surface.

成分を脱着することを目的とする。						
By carrying out these deaeration treatments before electrolysis, the initiation of the heat-						
generating nuclear fusion reaction due to the deuterium catalytic action on the surface and						
inside of the cathode material during heavy water electrolysis is promoted.						
これらの脱空気処理を電解前に行うことにより、重水電解において陰極材表面及び内部での重水素						
触媒作用による発熱を伴う核融合反応の開始が促進される。						
If the desorption of components in the air is insufficient, the deuterium atoms are prevented						
from approaching the palladium atoms during electrolysis, and the desired nuclear fusion						
reaction does not occur.						
空気中の成分の脱着が不十分であると、電解中に重水素原子のパラジウム原子への接近が妨げら						
れ、所望の核融合反応が生起しない。						
[0014]						
This heat treatment is achieved by treating the cathode material in a vacuum heating furnace						
at 800° C. or higher and at a vacuum of 10 −4 Torr or higher before electrolysis.						

この熱処理はパラジウムまたはパラジウム合金表面または内部に吸着された窒素分子等の空気中の

この熱処理は、陰極材料を電解前に真空加熱炉中にて、800°C以上、10-4Torr以上の真空度で処理することによって達成される。

The effect of this heat treatment is greater when it is carried out at a higher temperature for a longer period of time, but of course it must be carried out at a temperature lower than the melting point of the cathode material. When carried out at 800°C, the desired effect can be obtained by treating for several to 12 hours.

.-----

この熱処理は、より高温でより長時間行うことにより効果が大きくなるが、当然、陰極材料の融点よりも低い温度で行わなければならず、800°Cで行う場合数時間 \sim 12時間程度処理することにより所望の効果が得られる。

Furthermore, after desorption of the components in the air, it is also preferable to replace the components with deuterium in a deuterium atmosphere.

更にこの空気中の成分の脱着の後、重水素雰囲気中で重水素置換することも好ましい。

This deuterium substitution can be carried out by filling the furnace with deuterium at an appropriate pressure after the heat treatment.

この重水素置換は、加熱処理後の炉に重水素を適当な圧力で充填すること等により行うことができ る。

[0015]

The shape of the cathode is not particularly limited, but it may be a rod or plate shape as used in ordinary electrolysis.

.....

陰極の形状は特に限定されないが、通常の電解に使用されるような、棒状または板状のものとする ことができる。

[0016]

A platinum anode is used as the anode.

陽極としては白金陽極が使用される。

The shape of the platinum anode is not particularly limited, but it is preferably arranged so as to surround a cathode made of palladium or a palladium alloy. When a rod-shaped cathode is used, it is preferable to use an anode made of platinum wire arranged so as to spirally surround the rod-shaped cathode at regular intervals. When a plate-shaped cathode is used, it is preferable to use an anode made of two platinum plates arranged in parallel on two surfaces of the plate-shaped cathode.

.....

白金陽極の形状も特に限定されないが、パラジウムまたはパラジウム合金からなる陰極を取り囲むようにして設けることが好ましく、棒状の陰極を使用した場合、該棒状の陰極の周囲を一定の間隔でスパイラル状に取り巻くように設けられた白金ワイヤからなる陽極を使用することが好ましく、板状の陰極を使用した場合、該板状の陰極の2つの表面に平行に設けた2枚の白金板からなる陽極を使用することが好ましい。

[0017]

There are no particular restrictions on the purity of the heavy water to be electrolyzed, but in view of the object of the present invention, it is clear that higher purity is preferable, and it is preferable to use heavy water with a purity of 99.5% or more.

電解される重水の純度は特に限定されないが、本発明方法の目的からみて純度が高い方が好ましい ことは明らかであり、好ましくは純度が99.5%以上の重水を使用する。

[0018]

A supporting electrolyte is added to the heavy water to be electrolyzed in order to ensure electrical conductivity.

電解される重水には、電気伝導性を確保するため支持電解質を添加する。

The type of supporting electrolyte is not particularly limited as long as it can achieve its purpose, but is preferably an alkali metal salt or hydroxide, more preferably selected from NaCl, KCl, LiCl, NaOD, KOD, and LiOD.

支持電解質の種類はその目的を達成し得る限り特に限定されないが、好ましくはアルカリ金属の塩または水酸化物であり、より好ましくは、NaCl、KCl、LiCl、NaOD、KOD及びLiODから選択される。

[0019]

The current density used for electrolysis is not particularly limited as long as it can induce the above-mentioned nuclear fusion reaction, but electrolysis is preferably carried out at a cathode current density of 10 A/dm@2 or more, more preferably 20 A/dm@2 or more.

電解に使用する電流密度は上記のような核融合反応を生起し得る限り特に限定されないが、好ましくは陰極電流密度を10A/dm2以上、より好ましくは20A/dm2以上として電解を行うものである。

[0020]

In the method of the present invention, it is also preferable to surround the cathode with a diaphragm in order to separate the oxygen generated at the anode from the deuterium generated at the cathode, and then carry out heavy water electrolysis.

また本発明方法においては、陽極で発生する酸素と、陰極で発生する重水素を分離するために陰極 を隔膜で包囲し、重水電解を行うことも好ましい。

Usable diaphragm materials include fluorine-based cation exchange membranes (such as Nafion 117 and 423, which are polyperfluorosulfonic acid membranes manufactured by DuPont USA), porous fluororesin membranes (such as Teflon membranes manufactured by Nichias Corporation and Gore-Tex membranes manufactured by Japan Gore-Tex Corporation), porous polypropylene membranes (such as Juraguard manufactured by Polyplastics Co., Ltd.), porous ceramic membranes (such as β -alumina membranes manufactured by NGK Spark Plug Co., Ltd.), and asbestos membranes (including not only simple asbestos membranes but also those reinforced with Teflon fiber, elastomer, etc.).

.....

隔膜材料としては、フッ素系陽イオン交換膜(米国デュポン社製のポリパーフルオロスルホン酸膜であるナフィオン117、423等)、多孔性フッ素樹脂膜(ニチアス(株)製テフロン隔膜、(株)ジャパンゴアテックス(株)製ゴアテックス隔膜等)、多孔性ポリプロピレン膜(ポリプラスチックス(株)製ジュラガード等)、多孔性セラミックス膜(日本特殊陶業(株)製β-アルミ

ナ膜等)、アスベスト隔膜(単なるアスベスト隔膜以外に、テフロン繊維、エラストマー等で補強 されたものも含む)が使用可能である。

The deuterium separated by providing these membranes can be used in fuel cells, and it is expected that the system can be used in a hybrid system of heavy water electrolysis and fuel cells.

尚、これらの隔膜を設けることにより分離された重水素は燃料電池に使用することができ、重水電 解-燃料電池のハイブリッドシステムとして使用することも期待できる。

[0021]

Furthermore, by carrying out electrolysis under pressure according to the method of the present invention, it is possible to extract the energy of the abnormal heat generated by the nuclear fusion reaction as high-temperature steam of 100°C or higher.

また本発明の方法による電解を加圧状態で行うことにより、上記核融合反応による異常発熱のエネルギーを100℃以上の高温スチームとして取り出すことが可能である。

In this case, it is preferable to perform electrolysis by treating the electrolytic cell as a closed system, extracting gas generated by electrolysis to the outside of the system via a pressure regulating valve, pressurizing the inside of the electrolytic cell with the pressure regulating valve, and simultaneously placing the entire electrolytic cell in a sealed pressure vessel and

pressurizing it with nitrogen gas, and maintaining equal pressure inside and outside the electrolytic cell with the pressure regulating valve.

.....

この場合、電解槽を閉鎖系として圧力調整弁を介して電解により発生したガスを系外に取り出すようにして該圧力調整弁により電解槽内を加圧状態にすると同時に、電解槽全体を密閉型加圧容器内に入れて窒素ガスで加圧し、電解槽内外で圧力調整弁により等圧になるようにして電解を行うことが好ましい。

Furthermore, in this case, it is also preferable to provide a gas-liquid separator outside the sealed pressure vessel upstream of the pressure regulating valve, and introduce the gas from the electrolytic cell into this separator to liquefy and separate a portion of the heavy water vapor and recycle it to the electrolytic cell.

.-----

更にこの場合、密閉型加圧容器外で圧力調整弁の前段に気液分離器を設け、電解槽から出た気体を これに導入することにより重水蒸気の一部を液化分離し、電解槽にリサイクルすることも好まし い。

Furthermore, there is a risk of explosion if deuterium and oxygen come into contact under pressure, so the cathode and anode must be separated by a diaphragm, and the deuterium and oxygen must be removed separately from the system.

また加圧状態で重水素と酸素が接触すると爆発する危険があるので、陰極と陽極は隔膜で分離し、 重水素と酸素を別々に系外へ取り出す必要がある。

[0022]

When the method of the present invention is carried out, as described above, it is believed that the nuclear fusion reaction occurs a certain amount of time after the start of electrolysis. However, it has also been recognized that the nuclear fusion reaction is more likely to occur if the electrolysis system is stimulated by cooling or the like after a certain amount of time has passed since the start of electrolysis.

本発明方法を実施した場合、上記したように前記核融合反応は電解開始後ある程度の時間経過した後に生起するものと考えられるが、電解開始後ある程度の時間が経過したときに、冷却すること等により電解系に刺激を与えると前記核融合反応が生起しやすくなることも認められている。

Cooling for this purpose can be carried out, for example, by immersing the electrolytic cell in ice water.

このような目的の冷却は、例えば電解セルを氷水中に浸漬すること等により行うことができる。

[0023]

FIG. 1 shows an example of an electrolysis apparatus for carrying out the method of the present invention.

図1に本発明の方法を実施するための電解装置の例を示す。

The apparatus shown in FIG. 1 has a rod-shaped cathode and an anode made of platinum wire spirally wound around the rod-shaped cathode at regular intervals. In FIG. 1, 1 is a cathode made of a palladium or palladium alloy rod, 2 is a platinum wire anode, 3 is water to which a supporting electrolyte has been added, 4 is a thermometer, 5 is an internal cell, 6 is a water level, 7 is a thermocouple, 8 is a glass, silica, Teflon, or stainless steel electrolytic cell, and 9 is deuterium and oxygen.

図1に示した装置は、棒状の陰極と、該棒状の陰極の周囲を一定の間隔でスパイラル状に取り巻くように設けられた白金ワイヤからなる陽極を有する装置である。図1において、1はパラジウムまたはパラジウム合金棒からなる陰極、2は白金ワイヤ陽極、3は支持電解質を添加した水、4は温度計、5は内部セル、6は水位、7はサーモカップル、8はガラス、シリカ、テフロンまたはステンレス電解セル、9は重水素及び酸素を示す。

[0024]

Other apparatuses and conditions for electrolysis used in the method of the present invention will be understood by those skilled in the art of electrolysis.

その他の本発明方法に使用する装置、電解等の条件は通常の電解工業の知識により理解され得るであるう。

The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.

以下、本発明の詳細について実施例により説明するが、本発明はこれらの実施例に限定されるものではない。

[0025]

Example 1 A palladium rod (diameter 5 mm, length 5 cm, which had been degassed in a vacuum heating furnace at 6×10 Torr and 800° C for 10 hours prior to electrolysis) was used as the cathode, and a platinum wire (diameter 0.3 mm) was used as the anode.

実施例1陰極にパラジウム棒(直径5 mm、長さ5 c m、電解に先立ち、予め真空加熱炉中で 6×10 -5 T o r r 、800 °Cで10 時間の脱ガス処理したもの)、陽極に白金ワイヤ(直径0.3 mm)を使用した。

As shown in Figure 1, the anode platinum wire was spirally placed around the palladium rod, spaced approximately 1.5-2 cm apart. A glass electrolytic cell was charged with 2.91 wt %

saline solution (6 g of NaCl dissolved in 200 g of deionized heavy water (purity of 99.9% or higher)), and a palladium cathode was placed so that the entire palladium rod was submerged in the heavy water. A direct current of 0.85 A (cathode current density: 10.3 A/dm2) was passed through the cell, and electrolysis was carried out at a liquid temperature of 40°C by appropriately replenishing the electrolytic cell with heavy water to maintain a constant water level. During electrolysis, the electrolytic cell was immersed in a water bath to control the liquid temperature.

.....

図1に示したように、陽極白金ワイヤをパラジウム棒の周囲に約1.5~2cm離して、スパイラル状に設置した。ガラス製電解セルに2.91重量%食塩水(NaCl6gを脱イオンした重水(純度99.9%以上)200gに溶解したもの)を入れ、パラジウム棒全体が重水中に没するようにパラジウム陰極を設置して、直流0.85Amp(陰極電流密度10.3A/dm2)を通電し、液温40°Cで、適宜電解セルに重水を補給し常に一定の水位になるようにして電解を行った。また電解中は電解セルを水浴中に浸漬して液温をコントロールした。

[0026]

Nuclear emulsion plates were prepared by coating one or both sides of 20 cm x 25 cm x 1 mm methacrylic resin plates with autoradiography emulsion EM Type MA-7B (manufactured by Fuji Photo Film Co., Ltd.) to a film thickness of 50 to 100 μ m on each side. Seven days after the start of electrolysis, four plates were stacked, two with the emulsion coated on one side and

two with the emulsion coated on both sides, and placed close to the electrolytic cell with their surfaces perpendicular to a line passing through the center of the electrolytic cell so that their surfaces were parallel to the line. Nine more plates coated with emulsion on both sides were also stacked perpendicularly and placed on a line passing through the center of the electrolytic cell at an angle of 150° from the line on which the four plates were placed, separated from the electrolytic cell by a 50 mm thick lead plate, so that their surfaces were also parallel to the line.

......

20cm×25cm×1mmのメタクリル樹脂板の片面又は両面に富士写真フィルム(株)製オートラジオグラフィー用乳液 Ε MタイプMA-7 Bを各面に50~100μmの膜厚になるように塗布した原子核乾板を用意し、電解開始後7日目に、片面に乳液を塗布したもの及び両面に乳液を塗布したもの各2枚、合計4枚を重ね、乾板面を垂直にして電解セルの中心を通る直線上に乾板面が該直線に平行になるように電解セルに近接して配置し、さらに両面に乳液を塗布した乾板9枚を重ねて垂直にし、前記4枚の乾板を配置した直線とは150°の角度をなす電解セルの中心を通る直線上に電解セルとは厚さ50mmの鉛板を隔ててやはり乾板面が該直線と平行になるように配置した。

[0027]

In addition, for background purposes, one sheet coated with emulsion on one side and one sheet coated with emulsion on both sides were placed at a distance of 2 km from the laboratory.

また、バックグラウンド用として実験室から2km離れた所に乳液を片面に塗布したもの、両面に 塗布したもの各1枚を同時に配置した。

[0028]

After energizing the electrolysis for 9 days under these conditions, the electrolysis was temporarily interrupted, and the entire electrolytic cell was immersed in ice water at 0°C for approximately 8 hours to cool it down. After that, electrolysis was resumed. On the 10th day, the palladium rod suddenly began to heat up to 300-340°C, and the liquid temperature in the cell also gradually rose to above 90°C.

このような状態で9日間通電した後、一旦電解を中断し、電解セル全体を約8時間0°Cの氷水に浸漬して冷却せしめた後電解を再開したところ、10日目から急激にパラジウム棒が発熱して 300~340°Cになり、セル内の液温も次第に上昇して90°C以上になった。

[0029]

After 15 hours of electrolysis, single protons, double protons, double neutrons, quadruple neutrons, tetrad hydrogen, deuterons, etc., which were not detected in the background, were detected on the nuclear emulsion plate placed close to the electrolysis cell, and were particularly abundant on the nuclear emulsion plate not blocked with a lead plate.

電解を15時間行った後、電解セルに近接して配置した原子核乾板にはバックグラウンドには認められない単一イトン、二重イトン、二重中性子、四重中性子、四重水素、重陽子等が検出され、特に鉛板でブロックしていない原子核乾板には多く検出された。

[0030]

On the other hand, the cathode palladium rod after electrolysis was cut in the center and the cut surface was analyzed by EDX (Energy Dispersive X-ray Spectroscopy). As a result, useful elements such as lithium, beryllium, boron, carbon, oxygen, fluorine, neon, sodium, magnesium, aluminum, silicon, phosphorus, sulfur, chlorine, argon, potassium, calcium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, rubidium, indium, and ruthenium were detected.

一方、電解後の陰極パラジウム棒を中央部で切断し、切断面部分についてEDX(Energy Dispersive X-ray Spectroscopy)法で分析した結果、リチウム、ベリリウム、硼素、炭素、酸素、フッ素、ネオン、ナトリウム、マグネシウム、アルミニウム、珪素、リン、硫黄、塩素、アルゴン、カリウム、カルシウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ルビジウム、インジウム、ルテニウム等の有用元素が検出された。

This indicates that deuterium itself was transformed into a heavy element in one go through a multi-body nuclear fusion reaction, and that the palladium cathode reacted with deuterium or electrons to transform into indium and ruthenium.

これは重水素自身が多体核融合反応により一気に重元素に変化したこと、及び陰極のパラジウムが 重水素または電子と反応し、インジウム及びルテニウムに変化したことを示すものである。

[0031]

Example 2 Heavy water electrolysis was carried out under the same conditions as in Example 1, except that NaOD was used instead of sodium chloride as the supporting electrolyte to prepare heavy water containing 2.0 wt. % caustic soda (4.1 g of caustic soda dissolved in 100 g of deionized heavy water (purity of 99.9% or more)). As a result, from the 10th day after the start of electrolysis, the palladium rod cathode began to heat up rapidly to 300-330°C, and the liquid temperature also gradually rose to above 90°C.

.....

実施例2実施例1において、支持電解質として食塩の代りにNaODを使用した2.0重量%苛性ソーダ含有重水(苛性ソーダ4.1gを脱イオンした重水(純度99.9%以上)100gに溶解したもの)を使用して、その他の条件は実施例1と同様に重水電解を行った結果、電解開始10日目から陰極パラジウム棒が急激に発熱して300~330℃になり、液温も次第に上昇して90℃以上に達した。

The electrolysis was carried out for 16 days.

電解は16日間行った。

On a nuclear emulsion plate placed close to the electrolytic cell, single protons, double protons, double neutrons, quadruple neutrons, tetrad hydrogen, deuterons, etc., which were not detected in the background, were detected in the same manner as in Example 1.

電解セルに近接して配置した原子核乾板にはバックグラウンドには認められない単一イトン、二重イトン、二重中性子、四重中性子、四重水素、重陽子等が実施例1と同様に検出された。

After electrolysis, the cathode palladium rod was cut in the center and the cut surface was analyzed by EDX. As a result, it was confirmed that various useful elements similar to those in Example 1 had been produced.

電解後の陰極パラジウム棒を中央部で切断し、切断面部分について E D X 法で分析した結果、実施例1と同様の種々の有用元素が生成していることが確認された。

[0032]

Example 3 In Example 2, an alloy rod composed of palladium/silver in a weight ratio of 90/10 (diameter 5 mm, length 5 cm, which had been degassed in a vacuum heating furnace at 4×10

Torr and 800°C for 10 hours prior to electrolysis) was used in place of the palladium cathode rod. Heavy water electrolysis was carried out under the same conditions as in Example 2, with a direct current of 1.0 A (cathode current density 12.1 A/dm²) passing through the rod. As a result, from the 9th day after the start of electrolysis, the cathode rod began to heat up rapidly to 300 to 330°C, and the solution temperature gradually rose to above 90°C.

実施例3実施例2において、パラジウム陰極棒の代りにパラジウム/銀=90/10重量比から成る合金棒(直径5 mm、長さ5 c m、電解に先立ち、予め真空加熱炉中で 4×10 -5 T o r r 、 800 °Cで10 時間の脱ガス処理したもの)を用い、その他の条件は実施例2と同様に直流 1.0 A (陰極電流密度12.1 A / d m2)を通電し、重水電解を行った結果、電解開始9日目から陰極棒が急激に発熱して300 ~ 30 °Cになり、液温が次第に上昇して90 °C以上になった。 The electrolysis was carried out for 15 days.

電解は15日間行った。

On a nuclear emulsion plate placed close to the electrolytic cell, single protons, double protons, double neutrons, quadruple neutrons, tetrad hydrogen, deuterons, etc., which were not detected in the background, were detected in the same manner as in Example 1.

.....

電解セルに近接して配置した原子核乾板にはバックグラウンドには認められない単一イトン、二重イトン、二重中性子、四重中性子、四重水素、重陽子等が実施例1と同様に検出された。

After electrolysis, the cathode bar was cut in the center and the cut surface was analyzed by EDX. As a result, it was confirmed that various useful elements similar to those in Example 1 were produced.

電解後の陰極棒を中央部で切断し、切断面部分について E D X 法で分析した結果、実施例 1 と同様の種々の有用元素が生成していることが確認された。

[0033]

Example 4 In Example 2, the palladium cathode rod was surrounded by a cylindrical bag-shaped (diameter 15 mm, length 10 cm with a bottom attached) polyperfluorosulfonic acid membrane (Nafion 423 manufactured by DuPont), and a platinum wire was placed in a spiral shape on the outside of the polyperfluorosulfonic acid membrane to perform electrolysis.

.....

実施例4実施例2において、パラジウム陰極棒を円筒袋状(直径15mm、長さ10cmで底面を付けたもの)のポリパーフルオロスルホン酸膜(デュポン社製ナフィオン423)で包囲し、ポリパーフルオロスルホン酸膜の外側に白金ワイヤーをスパイラル状に設置して電解を行った。

The polyperfluorosulfonic acid membrane was connected to a Teflon tube, and hydrogen gas generated from the cathode was separated from oxygen gas and collected. From the 10th day

after the start of electrolysis, the palladium rod began to generate heat, reaching 300 to 330° C, and the liquid temperature also gradually rose, reaching 90°C or higher. The electrolysis was carried out for 15 days. On a nuclear emulsion plate placed close to the electrolytic cell, single protons, double protons, double neutrons, quadruple neutrons, tetrad hydrogen, deuterons, etc., which were not detected in the background, were detected in the same manner as in Example 1. After electrolysis, the cathode bar was cut in the center and the cut surface was analyzed by EDX. As a result, it was confirmed that various useful elements similar to those in Example 1 were produced.

.....

ポリパーフルオロスルホン酸膜をテフロンチューブに連結し、陰極から発生した水素ガスを酸素ガスと分離して回収した。電解開始10日目から、パラジウム棒が発熱して300~330℃に達すると共に液温も次第に上昇し、90℃以上になった。電解は15日間行った。電解セルに近接して配置した原子核乾板にはバックグラウンドには認められない単一イトン、二重イトン、二重中性子、四重中性子、四重水素、重陽子等が実施例1と同様に検出された。電解後の陰極棒を中央部で切断し、切断面部分についてEDX法で分析した結果、実施例1と同様の種々の有用元素が生成していることが確認された。

[0034]

Example 5 In Example 2, heavy water electrolysis was carried out under the same conditions as in Example 2, except that the current flow was increased to 2 A (cathode current density:

24.3 A/dm²). As a result, from the seventh day after the start of electrolysis, the palladium rod cathode began to heat up and the temperature rose rapidly to 300-340°C, and the solution temperature also gradually rose to above 90°C.

実施例 5 実施例 2 において、通電流を 2 A (陰極電流密度 2 4 . 3 A / d m 2)に増流し、その他の条件は実施例 2 と同様に重水電解を行った結果、電解開始 7 日目から陰極パラジウム棒が発熱して 3 0 0 \sim 3 4 0 $^{\circ}$ C に急激に上昇すると共に液温も次第に上昇し、 9 0 $^{\circ}$ C 以上になった。

The electrolysis was carried out for 15 days. On a nuclear emulsion plate placed close to the electrolytic cell, single protons, double protons, double neutrons, quadruple neutrons, tetrad hydrogen, deuterons, etc., which were not detected in the background, were detected in the same manner as in Example 1. After electrolysis, the cathode bar was cut in the center and the cut surface was analyzed by EDX. As a result, it was confirmed that various useful elements similar to those in Example 1 were produced.

電解は15日間行った。電解セルに近接して配置した原子核乾板にはバックグラウンドには認められない単一イトン、二重イトン、二重中性子、四重中性子、四重水素、重陽子等が実施例1と同様に検出された。電解後の陰極棒を中央部で切断し、切断面部分についてEDX法で分析した結果、実施例1と同様の種々の有用元素が生成していることが確認された。

[0035]

Example 6 An electrolytic cell having the same shape and dimensions as the electrolytic cell used in Example 4, but made of stainless steel, and capable of increasing the internal pressure by removing the generated gas through a pressure regulating valve, was used. A porous Teflon diaphragm was used instead of Nafion 423, and the entire electrolytic apparatus was enclosed in a pressurized airtight container pressurized with nitrogen gas, so that the inside and outside of the electrolytic cell were in an equal pressure state, and electrolysis was carried out in the same manner as in Example 2.

.....

実施例6実施例4で使用した電解槽と同じ形状、寸法を有するが、ステンレスから成り、圧力調整 弁を介して発生したガスを取り出すようにして内部圧力を上昇させることが可能な電解槽を用い、 ナフィオン423の代りに多孔性テフロン隔膜を使用し、電解装置全体を窒素ガスで加圧した加圧 密閉容器内に封入し、電解槽の内外が等圧の加圧状態になるようにして実施例2と同様の電解を 行った。

As in Example 2, abnormal heat generation was observed at the cathode from the 10th day after the start of electrolysis, and steam at 210°C was obtained when the pressure in the electrolytic cell and the pressurized sealed vessel was 20 kg/cm². The electrolysis was carried out for 15 days. On a nuclear emulsion plate placed close to the electrolytic cell, single protons, double protons, double neutrons, quadruple neutrons, tetrad hydrogen, deuterons, etc., which were not detected in the background, were detected in the same manner as in Example 1. After electrolysis, the cathode bar was cut in the center and the cut surface was

analyzed by EDX. As a result, it was confirmed that various useful elements similar to those in Example 1 were produced.

.....

実施例2と同様に電解開始後10日目から陰極部において異常発熱が観察され、電解槽内及び加圧密閉容器内の圧力が20kg/cm2のとき210℃のスチームを取り出すことができた。電解は15日間行った。電解セルに近接して配置した原子核乾板にはバックグラウンドには認められない単一イトン、二重イトン、二重中性子、四重中性子、四重水素、重陽子等が実施例1と同様に検出された。電解後の陰極棒を中央部で切断し、切断面部分についてEDX法で分析した結果、実施例1と同様の種々の有用元素がが生成していることが確認された。

[0036]

According to the method of the present invention, a large amount of energy can be obtained by inducing a nuclear fusion reaction through electrolysis of heavy water, and at the same time, various useful metals can be produced.

【発明の効果】本発明の方法によれば、重水の電解により核融合反応を生起して多量のエネルギー を得ることができると同時に、種々の有用金属を製造できる。