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ABSTRACT ARTICLE HISTORY
Molybdenum disulphide (MoS,) is a versatile inorganic material due to its unique electronic, electrical, Received 04 May 2022
optical, and biological properties, hence widely studied for various engineering applications. The Accepted 01 August 2022
main objective of this review is to provide comprehensive information about MoS; for the researcher KEYWORDS

intended to start research on MoS,. The beginning of the review is focused on providing information i, bdenum disulphide; 20
on the methods, precursors, and conditions used for the synthesis of various MoS, nanostructures materials; water splitting;
such as nanospheres, nanotubes, nanoflakes, nanobelts, nanoflowers, nanofibers, nanoclusters, lithium-ion batteries
nanosheets, and nanowires. The structural features of MoS,, both in pure and with other composite

forms, are discussed in detail using the XRD, Raman, PL and UV-visible spectra reported by various

research groups. Further, the detailed morphological features of both pure and composite forms of

MoS; are also discussed by taking selected works of SEM and TEM images. Finally and very impor-

tantly, the review also summarises the multifunctional applications of the versatile MoS, and its

composites in lubricants, exploring its tribological properties, in lithium-ion batteries, revealing its

electrical and electronic property, as a catalyst for water splitting hydrogen evolution reaction,

oxygen evolution reactions, endorsing its potential electrochemical property, various biomedical

applications such as bio sensors, bioimaging, and very importantly in environmental applications.
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Graphical Abstract is Reproduced with permission from [1] [2], [3].

1. Introduction It is a silvery black solid classified as the transition metal

Molybdenum disulphide is an inorganic compound made of ~ dichalcogenide. It is a diamagnetic [4,5] indirect bandgap
molybdenum and sulphur with the chemical formula MoS,. semiconductor [6,7]. Thin layers of molybdenum disulphide
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(MoS,) are known for their nonzero bandgap, high electrical
conductivity [8-10], good thermal stability [11,12], and
excellent mechanical strength [13-15]. Crystalline MoS,
usually consists of two phases, 2 H and 3 R (H and
R indicate hexahedral and rhombohedral, respectively). 1 T
(T indicates the tetragonal) phase is also reported in the
literature [16]. With the prevalent energy crisis, there is
a need for alternate fuels to reduce the dependency on fossil
fuels and other non-renewable fuel sources. Hydrogen is
gaining popularity as a renewable fuel. It is a clean fuel as it
produces only water vapour on combustion. One of the
methods of producing hydrogen is by the electrolysis of
water. The use of platinum as an electrocatalyst is common
but makes the process expensive [17]. Molybdenum disul-
phide is found to be a possible replacement for platinum as
a catalyst in electrochemical water splitting [18-21] due to its
bandgap suitable for water splitting, low Gibbs free energy
for hydrogen adsorption and ease of production. It is inex-
pensive and competent when compared to conventional
catalysts. MoS, as an electrocatalyst finds applications in
fuel cells, automobiles, electricity generation, and space tra-
vel. MoS, is suitable for many other applications due to its
tunable bandgap, hexagonal layered structure [22], and
abundance of free sulphur sites.

There are several review articles on MoS, which cover
a number of its attributes. Many researchers have worked on
its photocatalytic and electrocatalytic properties of MoS, along
with its applications are detailed in an article by Li et al. [23].
The use of MoS, as electrochemical and biological sensors is
reported by Sinha et al. It highlights how Transition Metal
Dichalcogenides (TMDs) other than MoS, are suitable for
sensing applications [24]. The potential use of MoS, as a gas
sensor along with other materials is reported by Donarelli et al.
[25]. Furlan et al. reviewed the lubricating properties of MoS,
composites and tribological properties such as varied matrices,
contents, processing conditions, testing temperatures, and
atmospheres [26]. An article by Bazaka et al. illustrates the
synthesis and applications of MoS, nanoparticles in the field of
medicine [27]. Liu et al. highlighted the biomedical aspect of
the MoS, nanomaterials by studying its applications, in vivo
behaviour, and toxicology profiles of the material [28].
Bhattacharya et al. have depicted the dependence of optical
properties on particle size. Unlike other reports, the aspect of
zero-dimensional nanocrystals is highlighted [29]. The ther-
mal properties of 2D materials are crucial for their application
in electronic and optoelectronic devices. Arkadiusz and co-
workers demonstrate the ways to address crucial stability
issues in light-sensitive materials and can be used to under-
stand heat management in MoS, and other 2D flake-based
thin films [30].

Andrzej and team have investigated the temperature-
dependent thermal conductivity and interfacial thermal con-
ductance of molybdenum disulphide monolayers supported on
SiO,/Si substrates, using Raman spectroscopy. The calculated
thermal conductivity (k) and interfacial thermal conductance
(g) decreased with increasing temperature from 62.2 W m™"
K™ and 1.94 MW m™ K" at 300 K to 7.45 W m™ K ' and
1.25 MW m > K" at 450 K, respectively [31] .

Two-dimensional (2D) MoS, finds its application as
a catalyst or a carrier and is extensively researched because
of its superior structural and electronic properties compared
with those of bulk structures. Yanguang and co-workers
synthesised MoS,/RGO hybrids, which showed a greater

electrocatalytic activity towards the hydrogen evolution reac-
tion (HER) compared to other MoS, catalysts. A Tafel slope
of ~41 mV/decade was measured for MoS, catalysts in the
HER for the first time. This exceeds by far the activity of
previous MoS, catalysts and results from the abundance of
catalytic edge sites on the MoS, nanoparticles and the excel-
lent electrical coupling to the underlying graphene net-
work [32].

Damien and co-workers used a solvent-free intercalation
method and reported chemically exfoliated MoS, nanosheets
with a very high concentration of metallic 1 T phase proving
enhanced catalytic activity towards the evolution of hydro-
gen with a notably low Tafel slope of 40 mV/dec. The 1 T
MoS; also remains unaffected after oxidation, suggesting that
edges of the nanosheets are not the main active sites [33].

The structural and electronic properties of MoS, are stu-
died using plane wave pseudopotential method under gen-
eralised gradient approximation (GGA) scheme-based
Discrete Fourier Transform (DFT) calculations. The electro-
nic band structure and density of states calculation show
many similarities between monolayer-MoS, and bulk-MoS,
except the nature of the band gap which is found direct for
monolayer-MoS, as compared to indirect for bulk-MoS,.
Tianshu et al. suggest ways to engineer the electronic proper-
ties so as to obtain direct band gap 3D layered nanoparticles
or Mo doped metallic nanowires. They worked on taking the
advantage of surface states to design metallic nanowires with
novel catalytic and thermoelectric properties. The single
sheet MoS, nanoparticles sized up to ~3.4 nm show no
appreciable quantum confinement effects. However, their
electronic structure is entirely dominated by surface states
near the Fermi level. The 3D nanoparticles showed strong
electronic properties on layer stacking distance, and the
number of these planes and their distance can be tuned to
engineer clusters with direct band gaps, at variance with the
bulk [34].

In all these review papers, importance is not given to the
various synthesis methods, instead the versatility of MoS,,
doped MoS, and its applications as electrocatalysts. This
review article covers the aforementioned aspects that are
missing in other review articles. It concludes with the future
scope of MoS, and some studies, which can be performed to
explore its efficiency in electrochemical water splitting.

2. Synthesis of MoS, nanoparticles

Molybdenum disulphide as a nanomaterial is known for
a plethora of applications in lubricants [35-37], battery sys-
tems [38,39], electrochemical water splitting [18-21], bio-
sensing [40,41], bio-imaging [42,43], environmental applica-
tions [44,45], and many more. With its ever-increasing
diverse application base, various methods of synthesis have
been tried and reported in the literature. These methods have
led to the synthesis of various MoS, crystal structures and
morphologies. Different articles have reported numerous
morphologies such as thin films [46,47], nanowires [48-
50], spheres [51], nanocrystals [52,53], Nanotubes [54], etc.
Several problems such as low yield and high impurities are
reported during synthesis. To overcome these, many precur-
sors such as sodium molybdate, ammonium molybdate,
thioacetamide, thiourea, and sodium sulphate are explored.
Several techniques of synthesis of pure MoS, and MoS,



composites reported in the literature are discussed in the
following section. MoS, synthesis methods are summerized
the Table 1.

2.1 Synthesis of pure MoS; nanomaterials

Synthesis of pure MoS, nanoparticles with varying morphol-
ogies is detailed below

2.1.1 Synthesis of MoS; nanotubes

Sudarson et al. reported the synthesis of MoS, nanotubes via
a new method (horizontal reactor) and its structural elucida-
tion and the optical properties. The MoS, nanotubes are
polydispersed ranged between 30 and 200 nm. The MoS,
nanotubes reported here were type II and have a strong
coupling effect between optical cavity modes and the exci-
tons [55]. Nath et al. used simple heating of trisulphide
molybdenum complexes in a stream of hydrogen to synthe-
sise Bamboo-like stacked MoS, [56]. Yunlei et al. synthesised
MoS, nanotubes by hydrothermal method for potassium ion
batteries and reported that the ratio of MoS, to the randomly
produced polysulphide in the synthesised MoS, nanotubes is
4.29 which confirms that the synthesised MoS, nanotubes
have quite high quality. The MoS, nanotubes showed super-
ior rate capability and cyclability (127 mAh g™' at
200mA g' after 100 cycles) in the potassium ion bat-
tery [57].

Olga et al. used lead as a growth promoter for two-step
synthesis of MoS, nanotubes. MoS, and Pb mixture was
exposed to highly compressed shock-heated argon gas at
9900 K to get molybdenum suboxide nanowhiskers with
traces of lead in the first step. The molybdenum suboxide
nanowhiskers were then treated with H,S gas at 820°C to
yield MoS, nanotubes. The synthesis of new nanostructures
from other layered materials can be best done with high-
temperature shockwave system [58].

Chen et al. synthesised open-ended MoS, nanotubes by
gas solid reaction route using ammonium molybdenum
hydrate in the hydrogen atmosphere and was used as the
catalyst for methanation. The MoS, nanotubes were added to
a Ni substrate and used as catalyst for methanation reaction
in a microreactor. This process offers a relatively energy-
efficient method of synthesis that shows potential applica-
tions in carbon monoxide detection as well as methane gen-
eration for fuel and lighting [59] .

2.1.2 Synthesis of single-walled MoS; nanotubes

Remstar reported growing MoS, nanotubes by catalysed
transport method. C60 was used as a growth promoter. It is
a long reaction carried out for 22 days at a temperature of
1010 K in an evacuated silica ampoule at a pressure of
1023 Pa containing 5 wt% of C60 and MoS, powder. Here,
C60 played the role of a catalyst, and iodine was used as
a transporting agent. The reaction resulted in 15 wt% of
single-walled nanotubes and the rest formed layered mate-
rial. Excess C60 was removed by washing with toluene [60].

2.1.3 Synthesis of MoS, nanofibers and nanotubes

Zelenski and Dorhout synthesised MoS, nanofibers and
nanotubes. A stock solution of (NH,4),MoS, was prepared
in a solvent of choice (dimethylformamide (DMF), ethylene-
diamine (en), pyridine (py) (0.034 M was saturated),
dimethyl sulphoxide (DMSO)). A glass frit was used to filter
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all the solutions to ensure the dissolution of solids in the dark
red-brown solutions. The precursor solution was introduced
into the thiomolybdate solution using a template piece of
5.5 mm. The solvent was dried by evaporation at 70°C on
a hot plate. The loaded template was placed on a stage in
a fused silica flow-through tube inside a tube furnace, which
was heated to 450°C at the rate of 10°C/min. Ten per cent H,
/N, atmosphere was introduced into the tube at a rate of
20 mL/min. The furnace was maintained at that condition
for a period of 1 h before it was cooled to room temperature
by step cooling. In the heating process, the red-brown colour
of the templates laden with precursors turned black [61].

2.1.4 Synthesis of MoS; thin films

Barreau and Bernede demonstrated the synthesis of MoS,
thin films using NaF (Sodium Fluoride) as an additive. It
begins with the sputtering of Mo in an argon plasma.
A homogeneous mixture of molybdenum, sulphur, and
NaF was made by evaporating sulphur and sodium fluoride
in argon plasma. The substrate temperature was increased to
823 K from room temperature. Finally, when the tempera-
ture of the substrate reached 823 K, the films were annealed,
under constant argon flow, for 30 min yielding films of
a 700 nm thickness [62].

2.1.5 Synthesis of discrete and dispersible MoS,
nanocrystals

Yu et al. reported the synthesis of MoS, with different
morphologies. Spherical, onion and tube-shaped MoS,
nanoparticles were synthesised by reacting Mo(CO)q
(molybdenum carbonyl) and TOPO (trioctylphosphine)
oxide with the same precursors but varying weights of reac-
tants, reaction time, and the reaction temperature. The
detailed procedure is as follows.

Spherical MoS, nanoparticles were synthesised by reacting
molybdenum carbonyl with elemental sulphur in trioctylpho-
sphine oxide at a temperature between 270°C and 300°C. The
synthesis involved mixing molybdenum carbonyl and trioctyl-
phosphine oxide in a flask flushed with Argon maintained at
a temperature of 250°C overnight. Sulphur/octadecene solution
was rapidly injected into the system, and the temperature was
gradually increased to the target value. The system was main-
tained at the conditions for a period of 24 to 48 h, followed by
cooling to 60°C along with toluene injection into the system.
The resulting dispersion was cooled to room temperature, and
MoS, nanoparticles were isolated using anhydrous methanol in
excess. Lastly, the mixture was centrifuged, and the supernatant
fluid was removed [63].

In another method, the same reactants trioctylphosphine
and molybdenum carbonyl of different weights were mixed
in a flask flushed with argon at room temperature. Then, the
flask was heated to 250°C and kept overnight. Sulphur/
1-octadecene solution was rapidly injected into the system.
The temperature was raised to 280°C and the system was
maintained for 24 h to obtain onion and tube-shaped MoS,
nanoparticles [63].

2.1.6 Synthesis of MoS, nanoflowers

Sun et al. reported a solvothermal method to synthesise
flower-like MoS, nanoparticles. An aqueous solution of Na,
Mo0O,.2 H,O (sodium molbdate dihydrate) and CS(NH,),
(thiourea) was mixed and stirred for 10 min. The solution
was maintained at 190°C for 24 h in a 100 mL Teflon-lined
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autoclave reactor. The black precipitate obtained was gradu-
ally cooled to room temperature, centrifuged, and dried at
50°C in a vacuum oven. The dried sample was annealed in
nitrogen atmosphere at 500°C for 5 h [64].

2.1.7 Synthesis of MoS; nanoclusters

Wilcoxon and team synthesised MoS, nanoparticles
using the inverse micelle method. Here, water-
containing micelles become the platform for growing
particles in non-aqueous media. A molybdenum halide,
namely, MoCl; (molybdenum tetrachloride), and
a sulfiding agent, Na,S (Sodium sulphide), were used
as precursors, which vyielded particles as small as
2.5 nm. This method offers the advantage of manipulat-
ing the particle size by controlling the micelle size. This
can be done by altering the emulsifier/water ratio. One
disadvantage of this method is that the halides used as
precursors are unstable and are not readily available.
Nevertheless, it is considered one of the best techniques
to synthesise semiconducting or other types of nanoma-
terials [65].

2.1.8 Synthesis of stable colloidal MoS, nanopatticles
Yang et al. synthesised MoS, nanoparticles by hydrothermal
method for tumour therapy. Precursors used in the process
were C,H4N,S,.2HCI (cystamine dihydrochloride), PVP
(polyvinylpyrrolidine), Na,M00,.2H,0 (sodium molybdate
dihydrate). The precursors were dissolved in 40 mL of dis-
tilled water and stirred to get a homogeneous solution. The
solution was transferred to a 100 mL polyphenylene lined
stainless steel autoclave and heated for 12 h at a temperature
of 220°C. The black product formed was washed with dis-
tilled water and centrifuged at 21,000 rpm for 10 min. The
as-prepared MoS, NPs were stored at 4°C for further
use [66].

2.1.9 Synthesis of monodispersed globular MoS,
nanoparticles

Wang et al. reported the synthesis of globular MoS, nano-
particles using ethylene glycol (EG) as a precursor. Different
volume ratios of water and ethylene glycol (30 mL) were
taken in a PTFE (polytetrafluoroethylene) lined autoclave.
This mixture was then mixed with Na,MoQO, (sodium
molybdate), pre-processed sublimed sulphur with stirring
for 2 min. This was followed by adding a trace of MnCl,
(Manganese chloride) to reduce the final size of globular
MoS, nanoparticles. The sealed autoclave was maintained
at a temperature between 170°C and 190°C for 24 h in an
electric drying oven. The black precipitate formed was
washed with deionised water and absolute ethanol followed
by centrifugation at 7000 rpm for 30 min. The product was
finally dried at 60°C for 6 h [67].

2.1.10 Synthesis of nano- and micro-ribbons of
polycrystalline MoS,

MoS, nanoparticles and microribbons were synthesised by
electrochemical or chemical method. Here, MoO, (molyb-
denum oxide) nanowires were taken as precursors and were
electrically deposited on a pyrolytic graphite surface. This
arrangement was then exposed to H,S (Hydrogen sulphide)
at a temperature between 800°C and 900°C to get MoS, [68].
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2.1.11 Synthesis of MoS, nanoparticles using MoOs
(molybdenum oxide) nanobelts
Zeng and Qin reported the synthesis of MoS, nanoparticles
by a novel approach. It begins with the synthesis of MoOj3
nanobelts. The precursor solution was prepared by dissolving
Na,M00,4.2H,0 in water followed by addition of nitric acid
for acidification. The solution was heated at 180°C for
a period of 24 h in a stainless-steel autoclave lined with
Teflon of 100 mL capacity. This resulted in the formation of
a white-coloured product, which was collected via centrifuga-
tion and was washed with deionised water several times [52].
The MoOj; nanobelts obtained were used as precursors to
synthesise MoS, nanoparticles. MoO3 nanobelts were dis-
persed in 25 mL of water followed by the addition of PVP.
This mixture was stirred for 10 min to obtain a uniform
suspension followed by addition of NaSCN (sodium thiocya-
nate) with vigorous stirring for 10 mins. The resulting mix-
ture was transferred into Teflon-lined autoclave and heated
at 180°C for a period of 24 h. The product obtained was
subjected to centrifugation and thorough washing with water
and ethanol. Later, the product was subjected to drying at
80°C for 12 h under vacuum to obtain the desired nanopar-
ticles confirmed by characterisation [52].

2.1.12 Synthesis of MoS; nanoparticles using supercritical
ethanol

Kumar, Li, and the team illustrated a synthesis technique
with a very short reaction time of 10 min via a simple super-
critical ethanol route for application as the anode in lithium-
ion batteries [53].

MoS, nanoparticles were synthesised using supercriti-
cal ethanol in a SUS 316 tube reactor. A predetermined
amount of water and ethanol were mixed to get a clear
solution at ambient temperature. In the same solution, the
desired amount of bis(acetylacetonato) dioxomolybde-
num (VI) was dissolved by vigorous stirring. Aliquot was
loaded into the reactor maintained at 400°C and the ali-
quot was immersed in a molten salt bath. After the desired
reaction time, quenching of the reactor was done in
a molten salt bath. The formed product was washed with
distilled water and ethanol followed by drying at 70°C for
12 h. Calcination of the obtained product was carried out
at 500-800°C for 5 h in 5% H,S/Ar at a flow rate of
100 mL/min to obtain the final product [53].

2.2 Synthesis of MoS, nanocomposites

In this section, the synthesis of various composites of MoS,
has been discussed.

2.2.1 Synthesis of MoS,/graphene nanocomposites
Chang and Chen illustrated the synthesis of MoS, and gra-
phene nanocomposite by the solution-phase method. The
nanomaterials were synthesised using graphene oxide,
sodium molybdate, and L-cysteine. L-cysteine consists of
multifunctional groups such as -SH, -NH,, and -COO. It
can be used for conjugation with other metal ions or other
functional groups [69].

2.2.2 Synthesis of MoS,/TiO, nanocomposites

Hui Liu Tang and his team have reported the synthesis of
TiO, nanoparticles decorated with MoS, nanoparticles to
reinforce the photocatalytic activity driven by the radiation
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in the visible region. The TiO, nanoparticles were synthesised
by dissolving commercial TiO, in aqueous solution of NaOH
by stirring for 30 min. The mixture was subjected to heating at
180°C for a period of 24 h in a 100 mL Teflon coated autoclave
reactor. Later, the autoclave was gradually cooled to room
temperature and the formed product was taken out. The
product was washed with aqueous HCI (pH = 7), deionised
water, and absolute ethanol. After washing, the product was
dried at 80°C for 12 h followed by calcination at 600°C for 2 h
to obtain TiO, nanomaterials. The next step involved the
decoration of MoS, nanoparticles on TiO, nanoparticles. The
TiO, nanobelts were mixed with sodium molybdate, thiourea,
and deionised water and heated at 180°C for 24 h in a 100 mL
Teflon lined autoclave reactor. After several washings with
double distilled water and absolute ethanol, the heated pro-
duct was dried at a temperature of 80°C for 12 h [54].

Pourabbas and Jamshidi modified the conventional
hydrothermal method by reducing the heating temperature
to 180°C and the duration to 5 hours which had shown an
increase in the efficiency. An aqueous solution of (NH,4)sMo,
0,4 - 4H,0 (ammonium heptamolybdate) and H,NCSNH,
(thiourea) was prepared in 50 mL of distilled water followed
by the addition of surfactants, 1-octanol, and sodium lauryl
sulphate. The contents were heated in an autoclave reactor
with a Teflon lining of volume 50 mL. The product obtained
was subjected to washing with ethanol and water followed by
drying. The MoS, produced was dispersed in 300 mL of
ethanol for 20 min using a high-speed homogeniser. TiO,
was added, and the homogenisation was continued for 15
more minutes to form a suspension. The suspension thus
formed was dried in a rotary evaporator to remove the
solvent by evaporating at 40°C under reduced pressure.
The grey precipitate formed was then collected and washed
several times using distilled water and finally dried for 2 h at
60°C under vacuum [70].

2.2.3 Synthesis of MoS,/Au heterostructures
Li and Cain showed a technique that involved depositing a film
of gold (Au) of thickness 10 nm on a silicon substrate via
a galvanic deposition approach. The Au film is subjected to
a high-temperature annealing process, wherein the film breaks
into islands and eventually forms Au nanoparticles [71].
MoO; (molybdenum trioxide) powder was taken in a tube
furnace, and the furnace was placed in an alumina boat. The
furnace was surrounded by a 50-50 mixture of sulphur and
selenium powders. The furnace was heated to 650°C for
30 min and held at that temperature for 5 min. The sul-
phur/selenium mixture was then brought to 300°C and held
there for the same time. SiO, membranes of thickness 20 nm
were formed above the oxide-containing boat. Argon gas of
extremely high assay was circulated inside the chamber to
create an inert atmosphere. It also acted as a carrier gas. The
process was performed at atmospheric pressure [71,72].

2.3 Additive manufacturing or 3D printing of MoS,

Additive manufacturing of MoS, involves the processing of
functional materials to produce products with improved
functionalities. So far, additives have been applied only for
3D printing of MoS, for energy storage applications

Navid and his team have done a review on Progress in
additive manufacturing of MoS, based structures for energy
storage applications. Molybdenum disulphide is a well-known

two-dimensional (2D) transition metal dichalcogenide with
outstanding electrochemical, physical, and mechanical prop-
erties that makes it a probable entrant for energy storage
electrodes via intercalation of different H+, Li+, Na+, and K
+ cations. The researchers determined that the processing of
prominent MoS, based functional structures prepared by
additive manufacturing processes can provide complex struc-
tures for different electrochemical applications, particularly
for energy conversion/storage systems [73].

Swetha and team demonstrated the use of direct ink writ-
ing (DIW) technology to create 3D catalytic electrodes for
electrochemical applications. Commercially available MoS,
and graphene oxide powders were mixed with thixotropic,
high concentration, viscous ink to yield hybrid MoS,/gra-
phene aerogels. A porous 3D structure of 2D graphene sheets
and MoS,particles was created after post treatment by freeze-
drying and reducing graphene oxide through annealing. The
3D printed MoS,/graphene aerogel electrodes possess an elec-
trochemical active surface area (>1700 cm ™) and were able to
achieve currents over 100 mA in acidic media [74] .

Kalyan and team have fabricated an electrocatalytically
active filament for fused deposition modelling (FDM) printing
composed of catalytically active material, conductive fillers,
and polymer. The conductive fillers like graphite, activated
charcoal, and multi-walled carbon nanotubes of varying mass
loading were used with the base PLA (polymer polylactic acid)
to optimise a filament with good flexibility and conductivity.
The 3D-printed electrodes were obtained by adding a (photo)
electrocatalytically active filament into the optimised carbon/
polymer filament. The researchers selected MoS2 as an arche-
typal 2D material to demonstrate the functionality of the 3D
electrodes in energy conversion and storage applications by
the modified filament. The 3D-printed MoS,/carbon electrode
showed a good (photo)electrocatalytic hydrogen evolution
reaction and high capacitive performance [75].

3. Structural features of MoS, nanostructures

Morphology is the study of the structure of a material/sub-
stance at the subatomic level. MoS, is classified as a transition
metal dichalcogenide (TMD), which is a part of 2D materials.
A MoS, monolayer is generally found to have a thickness of
6.5 A diameter. Examples of monolayer TMDs are MoS,,
WS,, MoSe,, and MoTe,. These seem to have a direct band-
gap making them suitable for applications in electronics.
Their crystal structure indicates no inversion centre, which
enables a new degree of freedom of charge carriers, namely
the k-valley index. This has resulted in a new branch of
physics called valleytronics. There is a strong spin-orbit cou-
pling in TMDs leading to a spin-orbit splitting of 100 MeV in
the valence band and 1-3 MeV in the conduction band.

3.1 Crystal structure of MoS,

MoS, nanoparticles exist in both amorphous and crystalline
forms and the same is reported frequently in the literature
[76-79].

Wang et al. inferred that all the XRD peaks obtained
corresponded to hexagonal MoS, nanoparticles (Figure 1
(a)). No diffraction peaks of impurities were found, and the
lattice constant a = 3.16 A ° corresponds to the reference
value of MoS, [76]. In another study, the crystal structure of
the particle was confirmed using X-ray diffraction as peaks



observed were similar to MoS, having a hexagonal structure
with (100) as the highest intensity indicating that the (100)
plane was preferential in terms of growth [77].

On studying the XRD pattern obtained for the synthesised
nanoparticles by Hu et al., four diffraction peaks were observed
at (002), (100), (103), and (110) peaks [78]. Authors observed
the diffraction peaks at 20 = 14.3°, 29.0°, 32.6°, 33.5°, 35.8°,
39.5° 44.1°, 49.7° were obtained which are analogous to the
bulk MoS,. In addition, two more diffraction peaks of copper
at 43.3° 50.4° were obtained in the copper-molybdenum sul-
phide hybrid (Figure 1 ()). This indicates that the copper
nanoparticles were reduced on the MoS, nanosheet [79].

It can be inferred that the formation of the crystalline and
amorphous phases of MoS,, depends on many factors
including the precursor used and the method of synthesis.
Another noteworthy point is that the presence of impurities,
both intentional and unintentional, can be seen as additional
peaks in the diffraction pattern that aids to determine the
doping possibilities of the materials.

3.2 Raman spectra of MoS,

Jing Wuan Yu et al. conducted Raman spectroscopy at
a wavelength of 632.8 nm and laser power of 1.3 mW at
ambient conditions. Four first-order Raman active modes
were reported. According to the literature, the peaks repre-
senting MoS, are 404 cm ™' and 379 cm™' denoted by A4 and
E',, respectively [80]. The Raman spectra of MoS, powder
and nanosheets were differentiated by the additional peaks at
279 cm™', 817 cm™, and 988 cm ™ in the case of nanopowder
and are absent in MoS, exfoliated nanosheets as shown in
Figure 2(a). Raman spectroscopy can also be conducted with
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Figure 1. (a) XRD graph of hollow MoS, nanoparticles (Reprinted with permis-
sion from Ref [76]); (b) XRD patterns of both pure MoS, and hybrid made Cu-
MoS, (Reprinted with permission from Ref [79]).
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a solid-state laser of excitation wavelength 532 nm resulting
in the same pattern [81].

Haifeng Dong et al. synthesised hybrid materials of nitro-
gen-doped reduced graphene oxide (N-RGO) and MoS,
followed by the characterisation using Raman spectroscopy
at a laser excitation wavelength of 532 nm. In Figure 2(b) the
characteristic peaks (Elzg and A;g) of MoS, are visible at
375.5 cm™' and 403.5 cm™’, respectively. The difference
between the peaks was just 27.5 cm™', which is less than
pristine MoS,, and it was inferred that the introduction of
RGO could reduce the aggregation of MoS, nanoparti-
cles [82].

Hong Li studied the Raman Spectra for bulk to monolayer
MoS,. The intensities or widths of the peaks vary arbitrarily,
while the Raman frequencies E',; and A,gand the peaks vary
monotonously with the layer number of ultrathin MoS,
flakes. It is also reported that as the layer number of MoS,
decreases, the coupling between electronic transitions and
phonons become weaker which attributes to the increased
electronic transition energies or elongated intralayer atomic
bonds in ultrathin MoS,. The asymmetric Raman peak at
454 cm™, is regarded as the overtone of longitudinal optical
M phonons in bulk MoS,, which is actually a combinational
band involving a longitudinal acoustic mode (LA(M)) and an
optical mode A,,. The researchers reported a clear evolution
of the coupling between electronic transition and phonon
when MoS, is scaled down from three- to two-dimensional
geometry [83].

Liangbo studied the Raman spectra of MoS,, WS,, and
their heterostructures using density functional theory and
concluded that each heterostructure configuration possesses
a unique Raman spectrum in both frequency and intensity
that can be explained by changes in dielectric screening and
interlayer interaction. The results establish a set of guidelines
for the practical experimental identification of heterostruc-
ture configurations [84].

3.3 UV-visible spectra of MoS,

In UV-visible spectroscopy, MoS, shows absorption bands
at 611 nm and 659 nm, and these are associated with band-
edge excitations and are typical for any MoS, sample.
Dumcenco et al. performed UV-Vis spectroscopy of mono-
layer MoS, using sapphire cuvette to ensure high optical
transparency. Additional peaks were found at 430 nm and
303 nm as shown in Figure 3(a) representing van hove
singularities [85].

Dipak Nimbalkar and co-workers synthesised hybrids of
reduced graphene oxide (rGO) and MoS,. Characterisation
using UV-Vis spectroscopy showed that the characteristic
peaks of MoS, at 627 and 672 nm and also the characteristic
peaks of rGO in the range of 230-300 nm correspond to the p—
p* plasmon peak of rGO [86]. Razi Ahmed et al. performed
UV-Vis spectroscopy on three different samples - pristine
MoS,, MoS, exfoliated with oleylamine (OLA), and dodeca-
nethiol (DDT). It was reported that the pristine MoS, showed
characteristic peaks at 671 and 609 nm and the other two
samples showed more or less identical peaks. In both the OLA
and DDT exfoliated MoS,, the peak at 671 nm is slightly blue-
shifted to 667 and 666 nm, respectively, as shown in Figure 3(b)
[87]. From all these studies, it can be inferred that typically two
peaks are found in UV-Vis absorption spectra of pure MoS, in
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Figure 2. Raman spectra of (a) MoS, powder and exfoliated MoS, (Reprinted with permission from Ref [80]; (b) Hybrid structure of MoS, and N-rGO, (c) 3D MoS,
/NRGO in the range of 300-450 cm-1. (Reprinted with permission from Ref [82]).

the range of 605-630 nm and 655-675 nm, respectively. These
are the characteristic peaks of MoS,, but additional peaks can
form due to irregularities and the introduction of other compo-
site materials.

3.4 Photo luminescence (PL) spectra of MoS,

Xjao Li et al. reported that the PL spectra are intrinsically related
to the number of layers and the thickness of the nanosheets of
MoS; considered [88]. Zhen Li also confirmed that the photo-
luminescence of monolayer MoS, is significantly more intense
than that of the bulk layer, and the introduction of layers into
the monolayer decreases the intensity considerably [89]. PL
spectroscopy is usually done at an excitation wavelength of

532 nm [90], and emission peaks are obtained in the range
between 610 and 680 nm. Figure 4(b) represents the PL spectra
of thin (~1.3 nm) and thick (~10 nm) films of annealed MoS..
Monolayer MoS, has the most prominent peaks and usually,
two peaks are noticed. This is the result of energy split due to
valence band spin-orbital coupling. Typical peak widths are
approximately 27 nm, but this may vary and get bigger for
exfoliated MoS, nanosheets. The peak intensity of PL spectra
of nanostructured MoS, will be higher than that of bulk MoS; as
reported in the literature [91].

3.5 Morphology of nanoscaled MoS,

MoS, nanoparticles of varying morphologies can be synthe-
sised that offer a variety of material properties suitable for
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Figure 3. UV-Vis Spectra of (a) pure MoS, (Reprinted with permission from Ref [85]; (b) MoS, — pure and exfoliated with OLA and DDT (Reprinted with permission

from Ref [87]).
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from Ref [91]).

several applications in various fields such as renewable
energy, bio-sensing, bio-imaging, etc.

Zeng et al. synthesised MoO; nanobelts and MoS,
nanoparticles whose FESEM images are shown in
Figure 5(a,b). It was observed that the nanobelts of
MoO; have a smooth surface and a mean width of
100-500 nm. The MoS, nanoparticles prepared by the
same process yielded spheres with a diameter ranging
from 50 to 100 nm as shown in Figure 5(c,d). MoS, was
prepared using the MoO; nanoparticles as precursors,
and it yielded flower-like structures as shown in Figure 5
(e,f) [52].

Heavily wrinkled morphology with a diameter in the
range of 300 to 800 nm has been reported [76]. The broad
size distribution can be attributed to surfactants not being
added during the synthesis. Also, the surface is observed to
be heavily wrinkled owing to the large surface area that
enhances the electrode-electrolyte interface, making it sui-
table for insertion and extraction of lithium [76].
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Other morphologies, such as flake-like shapes [92], nano-
tubes [59], and nanoflowers [64], have also been reported,
and the different shapes are owing to the precursor and the
method of synthesis. The morphology also depends on the
form of the nanomaterial such as pure or composite.

3.6 HRTEM analysis of nanoscaled MoS,

MoS, nanoparticles decorated on rGO were also verified
using Transmission Electron Microscopy [93]. MoS, nano-
particles were lying flat on the RGO, which was observed by
the light contrast of the TEM image (Figure 6(a,b)) [94].

TEM images depict hollow interiors of the particle (Figure
6(c)), which is following the SEM images and selected area
electron diffraction is also seen in (Figure 6(d)) from all
images it can be concluded from the images is that the
particles are made of nanosheets [94].

(Figure 6(e,f)) show copper nanoparticles successfully
decorated on MoS, sheets covering a very large area with
the particles ranging from 1 to 5 nm, this can be attributed to
coordination between sulphur atoms of MoS, and copper
ions before reduction [79]. In another report, AFM images
reveal the thickness of three layered nanosheets as 3.5 nm
resulting in the thickness of a single layer in the range of 0.9-
1.2 nm [79].

4. Multi-functionality of MoS, nanostructures

MoS; has a lot of favourable characteristics like high elec-
trical conductivity, tunable band-gap, and excellent mechan-
ical properties like sliding layers making it suitable for a wide
range of applications discussed in the following subsections.

4.1 Lubricants and grease additives

The dense hexagonal lamellar structure of MoS, shows
stacked layers of S-Mo-S held by weak van der Waals forces,
which means that the layers can slide over one another easily
and therefore MoS, can be used in lubricants [95]. It is
mostly used as a lubricating additive in oils and paraffin
due to its excellent anti-wear and friction-reducing

Figure 5. FESEM Images of (a, b) MoOs nanobelts; (c, d) and MoS, nanoparticles (Reprinted with permission from Ref [52]; FESEM Images of MoS, nano-flowers
made by MoOj; nanobelts where (e) NaSCN is directly added; (f) and further HCl is added (Reprinted with permission from Ref [52].
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Figure 6. (a) TEM image of MoS, nanoparticles decorated on rGO; (b) HRTEM of MoS, nanoparticles decorated on rGO; (c) TEM image of hollow Mo$S, nanoparticles
(d) Selected area diffraction (Reprinted with permission from Ref [94]); (e) TEM images of MoS, nanosheet (f) TEM images of Cu-MoS, hybrid Reprinted with

permission from Ref [79]).

properties along with the ability to withstand extreme pres-
sures. Hu and team reported that nano-sized MoS, usually
has better tribological applications than bulk MoS, in both
friction reduction and wear resistance [96]. In nano-sized
MoS,, studies have been done on identifying the best possible
morphology for lubricants.

Hu et al. reported that MoS, nanoballs have better
tribological properties than MoS, nano-slices at an addi-
tive concentration of 1.5 wt% [96]. However, these
results are contradictory. Vattikuti and co-workers com-
pared the efficiencies of nanoballs and nanosheets, and
they reported that the MoS, nanosheets adhere better on
the metal surface being lubricated and reduce friction
more than nanoballs. They reported 0.1 wt% to be the
optimal concentration of MoS, to be added as an addi-
tive to lubricating oils [97]. In studies undertaken by
Kogovsek and Kalin, the size and morphology of MoS,
did not sufficiently alter the coefficient of friction when
compared to the actual material being utilised [98].
Figure 7 shows an example of a tribological test that
can be employed to test the lubricant properties of MoS,
nanoballs [96].

To determine the best suitable morphology of MoS, for
tribological applications, Meirong Yi and the team per-
formed a study where they synthesised three different

morphologies including nano-flowers, nanospheres, and
nanosheets [99]. They reported that the best tribological
application was obtained with nanosheets, which showed
a 41.1% reduction in friction coefficient and 76.8% reduction
in wear.

Researchers have explored the possibility of enhancing
lubrication by using composites of MoS, with other materi-
als. Reduced graphene oxide (RGO)/MoS, nanocomposites,
in comparison with pure MoS,, show improved stability,
dispensability in oil, and enhanced lubricating ability in
vacuum environments [93]. Other applications of MoS, as
a lubricant additive include the usage in the steering linkages,
ball joints, wheel bearings, construction, mining, and agri-
cultural equipment. In the military, MoS, can be used to
grease many of the joints found in weapons and missile
launchers. MoS, is also used in solid film lubricants where
it can provide sliding and low wear without the use of any
liquid lubricant [100]. It is also suitable for aerospace appli-
cations because of its good lubricating ability in a vacuum
and under high loads [101].

4.2 Lithium-ion batteries

Lithium-ion batteries (LIBs) are streamlined energy sto-
rage devices that are widely used because of their high
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Figure 7. Schematic of a tribological test used to check the lubricating properties of MoS, nanoparticles. (Reprinted with permission from Ref [96]).

energy density, long cycling, and rate capability. The
most prevalent material used to prepare anodes in
lithium-ion batteries is commercial graphite. However,
due to its low specific capacity, researchers have been
studying potential alternatives for lithiated graphite. The
unique structure of MoS, means that foreign particles
can easily intercalate and decalate inside the structure.
The interlayer spacing between the S-Mo-S layers at
0.615 nm is much more than graphite, which is
0.335 nm, and this extra spacing implies that lithium
ions can easily enter the anode without damaging the
material. This leads to a higher theoretical capacity of
anodes made with MoS, [102]. Figure 8 shows the dif-
ferent molecular mechanisms of how lithium can get
intercalated within the structure of MoS,. All interca-
lated Li ions along the b-axis are pushed towards the
interior of the crystal. In this example, a row of four
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intercalated Li ions takes in an incoming Li ion, making
the row with five ions [103].

Chang et al. synthesised graphene-like MoS,/amorphous
carbon (a-C) composites. The graphene-like MoS,
nanosheets were uniformly dispersed in amorphous carbon,
and MoS,/a-C composites exhibited high capacity and excel-
lent cyclic stability when used as anode materials for Li-ion
batteries. The composite prepared by adding 1.0 g of glucose
in hydrothermal solution exhibited the highest reversible
capacity (962 mAhg™") and excellent cyclic stability [104].
Another similar study, Wang Shiquan et al. also synthesised
MoS, nanoflakes for lithium-ion battery applications; they
reported that MoS, electrodes prepared can store lithium
reversibly in a voltage range of 0.01-3 V and shows good
cycling ability [105]. These studies show that nanoflakes have
high potential in lithium-ion batteries. There are specific uses
of Mo$, quantum dots (QDs) in lithium-ion battery applica-
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Figure 8. lllustrative depiction of the Li-ion intercalation of MoS2 along the b-axis. The first layer underneath the selvedge is intercalated first to (near) completion
prior to the intercalation of the second layer (a, b). A solvated Li ion is initially intercalated at the step (c). All intercalated Li ions along the b-axis are pushed
towards the interior of the crystal. In this example, a row of four intercalated Li ions takes in an incoming Li ion, making the row with five ions. (Reprinted with

permission from Ref [103]).
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tions. Spinel Li;TisO;, (lithium titanate oxide) is an alter-
native material that is used as an anode in lithium-ion
batteries because of its stability and zero strain nature, but
the main limitation of this material is the fast fading of its
capacity and poor rate performance. LiyTisO;, nanosheets
anchored with MoS, QDs exhibit exceptional lithium storage
capacity along with high cycling ability and high specific
capacity. This is because of the strong hetero-interfacial
effect observed between the nanosheets and MoS, QDs [102].

It can be seen that MoS, has a very good potential to
replace graphene in lithium-ion battery applications because
of the very good ability to intercalate lithium ions into its
structure. This is helped by the increased spacing between
the layers when compared to graphene.

4.3 Catalysts in water-splitting

Water-splitting is the process in which water is split into its
components of Oxygen and Hydrogen. This process has two
main reactions: HER (Hydrogen Evolution Reaction) and
OER (Oxygen Evolution Reaction). This process aids in
Hydrogen collection and storage. This requires a suitable
catalyst because of the high energy required by the reaction,
and the use of a catalyst generally makes the process easier.
The catalyst is generally Platinum, but Platinum cannot be
used as it is expensive and though it has great HER, it has
poor OER. So, molybdenum disulphide has been proposed as
an alternative to platinum.

An ideal catalyst for such applications must have a large
current density, low over potential, a small Tafel slope, and
good stability in all conditions. The tunable bandgap and
versatile nature of MoS, means researchers have considered
it as a feasible material for catalytic applications [101]. Bulk
MoS, has a smaller band gap of 1.3 eV, and as it starts losing
layers the bandgap keeps increasing until monolayer MoS,
has 1.9 eV, this is what is meant by a tunable bandgap [105].
This implies that in photochemical water splitting a wide
variety of light spectrum can be harvested. Initially, bulk
MoS,; exhibited low catalytic activity because of limited
active sites, but a lot of work has been done on improving
the surface characteristics, composition, and using MoS, in

Electrolyte
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gate molecules
dielectric

Reference Electrode
)

conjunction with other materials like graphene oxide or TiO,
to improve the catalytic activity [106].

Studies have shown that nanosheets or nanoparticles of
MoS, have better electrochemical catalytic activity because of
increased active sites and lower Tafel slopes but even then
MoS, does not show good activity in OER when compared
and this is the reason for conjugating it with other materials
like CdS or TiO,. Such conjugation can be considered as
a viable route towards the manufacture of an excellent cata-
lyst based on MoS,. Ying Liu and team constructed a MoS,
/CdS heterostructure and tested its efficiency in water split-
ting, and they reported that usage of MoS, extends the
utilisation of visible light and reduces the breakdown of
CdS in working conditions. So, this hetero-junction of
MoS, and CdS shows great potential in the application of
photochemical water splitting [107].

4.4 Bio-sensors

Molybdenum disulphide shows good sensing properties
because of its semiconducting nature, it can be used to
manufacture FETs, and also two-dimensional materials pos-
sess high surface area; they make very good candidates for
gas sensing applications. MoS, based sensors are usually
FETs that use pure or functionalised MoS, nanosheets
which act as a dielectric layer. This layer specifically captures
the molecule that is being targeted and signals the presence
of that particular molecule [108]. Figure 9 shows a sensor
using MoS, to identify target molecules; it is supported on
a block of Si/SiO, [109].

This application of MoS; is mostly used to create sensors
with environmental uses. Mercury ions have an affinity with
sulphur, MoS; has free sulphur sites, and therefore Hg** ions
can be adsorbed onto the surface of MoS, FETs and lead to
the detection and removal of mercury ions in an environ-
ment [108]. Kangho Lee and the team synthesised MoS, thin
films and used them in the sensing of ammonia (NH;). They
reported that manufactured sensors show fast response time
towards NH; but do not recover immediately at room tem-
perature. Nevertheless, they concluded that sensors made
with MoS, are viable sensors for mass production [110].

target

Figure 9. Depiction of MoS, as a sensor being supported on a SiO,/Si structure. (Reprinted with permission from Ref [116]).
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The well-explored gas sensing application of MoS, is
the sensing of NO (nitric oxide). NO is electron-
withdrawing and therefore it gets adsorbed onto the sur-
face of MoS, nanosheets reducing the resistance and
therefore increasing the current which is detected by the
sensor [108]. Hai Li and team successfully reported that
single and multilayer MoS, nanosheets have been used to
detect NO gas with single-layer sheets being more effi-
cient [111]. MoS, has also been used to manufacture
sensors for detecting humidity [112], volatile organic
contaminants [108], and doxycycline [113].

4.5 Bioimaging

Bioimaging is the tracing of live cells with the use of
fluorescent probes, and it is a non-invasive process of
visualising the processes occurring in the body and the
cells that undertake them. Since the human body very
quickly expels any foreign object, the retention of any
probe is an important factor in the design of such
probes. Transition metal QDs have been explored, but
recently MoS, has come into the spotlight because of its
favourable characteristics. MoS, molecules are negatively
charged and can easily be dispersed in biofluids and
since they have free sulphur sites, they can easily com-
bine with thiol species like amino acids and travel
through the living body [102]. This functionality can
be further helped by the synthesis of biocompatible
MoS, QDs using methods like sodium intercalation.
The probes produced by this method are found to be
nearly non-cytotoxic even at higher concentrations.

Qingqing Liu and team manufactured highly biocompa-
tible MoS, QDs with excellent water solubility and reported
that due to their remarkable optical properties they can
directly be used in vitro imaging. They reported that alkaline
solution is the key to forming such materials [114]. Yin et al.
reported that MoS2 QDs were prepared by a simple sol-
vothermal method in N-methyl-2-pyrrolidone (NMP), as
shown in Figure 10. The prepared products were centrifuged
for several minutes. Afterwords, the transparent light yellow
solution was obtained. To remove the solvent, the obtained
solution was evaporated under vacuum at a certain tempera-
ture. Then, the obtained precipitate was redispersed in ethyl
acetate to acquire the MoS2 QD powder by filtration and
followed by vacuum volatilisation. Figure 10 shows the flow
diagram of this particular synthesis technique.

Recently, Jaiswal et al. developed a methodology tar-
geted at the utilisation of sacrificial amine donors for C-
H functionalization with MoS2 quantum dots (QDs) as
the catalyst as well as the photosensitiser [116]. Since
MoS, is considered non-toxic and can easily travel
through the human body, it can be used to synthesise
extremely versatile bio-imaging particles. Due to its

optical properties, it can also be tracked within the
body using in-vitro imaging directly.

4.6 Environmental applications

Given molybdenum disulphide’s unique properties stem-
ming from the free sulphur sites that appear in large
quantities on the surface, this free sulphur can attract
other metal ions and get them adsorbed onto them and
help in the removal of such heavy metals from water.
Bulk MoS, does not work efficiently in this application
because of its smaller interlayer spacing compared to
other adsorbents, but nano-sized MoS, works efficiently
and lots of structures and morphologies have been
explored for the same. Heavy metals like mercury and
cadmium are easily adsorbed onto the surface of MoS,,
this is also because of the strong Lewis acid-base inter-
actions [108]. Chang Liu et al. reported that 2D molyb-
denum disulphide nanosheets can also be used to
capture lead (Pb*') ions with fast adsorption rates
[117]. They attributed this to the complexation between
lead and free sulphur sites on the surface as well as the
affinity between the positively charged Pb and negatively
charged MoS, sites. Apart from these, MoS, can also be
used to adsorb zinc, cobalt, and other heavy metals.
Figure 11 shows the interaction between lead and
MoS, monolayers. Due to specific interactions between
the heavy metals, MoS, adsorbents are selective, and
depending on the concentration and composition of
heavy metals in a given sample of water, they will
adsorb in the order Hg > Pb > Cd > Zn [108].

Molybdenum disulphide can also be used as an adsorbent
for organic materials like dyes, oils, and antibiotics [118,119].
When compared to adsorption of heavy metals where
adsorption takes place due to affinity between heavy metals
and sulphur sites, here it is because of the hydrophobic
nature. The adsorption capacity of the prepared structure
depends on the surface area; therefore, it must be a priority to
increase the surface area and minimise the restacking of
layers onto themselves.

Lastly, one of the miscellaneous properties of molybde-
num disulphide is that it displays antimicrobial activity
against E. coli and other bacteria. The exact mechanism of
this antimicrobial ability has not been completely detailed,
but there are a few theories that include membrane damage
by sharp edges of the MoS, structure and peroxidase catalyst
activity [108].

Research can be done on understanding the antimicrobial
activities of MoS, better and applying them in real-life situa-
tions. There are lots of other contaminants in the environ-
ment in which MoS, can be used for removal and further
work on identifying such contaminants and manufacturing
suitable structures of MoS, for such removal can be done.
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Figure 11. Diagrammatic illustration of the mechanism of removal of lead from wastewater with the use of a MoS2 monolayer (Reprinted with permission from Ref

[117]).

5. Conclusion

To summarise, the MoS, is proved to be a very versatile material
due to its various multifunctional properties as revealed by
various research works. The research work confirms that the
structural morphologies of MoS, can be effectively tuned by
applying various synthesis approaches, reaction conditions, and
precursors. It is very flexible in the techniques of synthesis,
which are also feasible on the laboratory scale. Further, its
electronic, optical, chemical, and catalytic properties can be
tailored by making it a composite with RGO, CNT, metallic
nanoparticles, metal oxides, etc. Further, the pure and compo-
site forms of MoS, exhibit multifunctional applications in var-
ious fields such as optoelectronics, tribology, bio-sensing, bio-
imaging, in vitro imaging, and photoelectrocatalysis. It holds
a lot of potential in the field of renewable energy, particularly
hydrogen generation. MoS, has a very good potential to explore
and also to further enhance its performance in various applica-
tions by doping, surface functionalization with biomolecules,
polymers, nanometals, etc.
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