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An apparatus for generating electromag-
netic radiation comprises a polarizable of mag-
netizable medium. There is means of generat-
ing, in a controlled manner, a polarization or
magnetisation current whose distribution pattern
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APPARATUS FOR GENERATING FOCUSED
ELECTROMAGNETIC RADIATION

The present invention relates to the generation of electromagnetic ra-
diation and, more particularly, to an apparatus and method of generating
focused pulses of electromagnetic radiation over a wide range of frequencies.
More particularly it relates to an apparatus and method for generating pulses
of non-spherically decaying electromagnetic radiation.

The present apparatus and method are based on the emission of electro-
magnetic radiation by rapidly varying polarisation or magnetisation current
distributions rather than by conduction or convection electric currents. Such
currents can have distribution patterns that move with arbitrary speeds (in-
cluding speeds exceeding the speed of light in vacuo), and so can radiate
more intensely over a much wider range of frequencies than their conven-
tional counterparts. The spectrum of the radiation they generate could ex-
tend to frequencies that are by many orders of magnitude higher than the
characteristic frequency of the fluctuations of the source itself.

Furthermore, intensities of normal emissions decay at a rate of R~2,
where R is the distance from the source. It has been noted, however, that the
intensities of certain pulses of electromagnetic radiation can decay spatially
at a lower rate than that predicted by this inverse square law (see Myers et al.,
Phys. World, Nov. 1990, p. 39). The new solution of Maxwell’s equations set
out below, for example, predicts that the electromagnetic radiation emitted
from superluminally, circularly moving charged patterns decays at a rate
of R~!. Another example is the electromagnetic radiation emitted from
superluminally, rectilinearly moving charged patterns which decays at a rate
of R73.

This emission process can be exploited, moreover, to generate waves
which do not form themselves into a focused pulse until they arrive at their
intended destination and which subsequently remain in focus only for an
adjustable interval of time.

It will be widely appreciated that being able to employ such emissions
for signal transmission, amongst other applications, would have significant
commercial value, given that it would enable the employment of lower power
transmitters and /or larger transmission ranges, the use of signals that cannot
be intercepted by third parties, and the exploitation of higher bandwidth.
The near-field component of the radiation in question has many features in
common with, and so can be used as an alternative to, synchrotron radiation.
The present invention provides a method and apparatus for generating such
emissions.

According to the present invention there is provided an apparatus for
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generating electromagnetic radiation comprising:
a polarizable or magnetizable medium; and
means of generating, in a controlled manner, a polarisation or magneti-
sation current with a rapidly moving, accelerating distribution pattern such
that the moving source in question generates electromagnetic radiation.
The speed of the moving distribution pattern may be superluminal so
that the apparatus generates both a non-spherically decaying component and
an intense spherically decaying component of electromagnetic radiation.
The apparatus may comprise a dielectric substrate, a plurality of elec-

trodes positioned adjacent to the substrate, and the means for applying a -

voltage to the electrodes sequentially at a rate sufficient to induce a polarised
region in the substrate which moves along the substrate with a speed exceed-
ing the speed of light. The dielectric substrate may have either a rectilinear
or a circular shape.

The wavelength of the generated electromagnetic radiation may be in
any range from the radio to a minimum determined only by the lower limit to
the acceleration of the source (potentially optical, ultraviolet or even x-ray).

Examples of the present invention will now be described with reference
to the accompanying drawings, in which:

Figure 1 is a diagram showing the wave fronts of the electromagnetic
emission from a particular volume element (source point) S within the cir-
cularly moving polarised region of the polarizable medium of the present
invention;

Figure 2 is a graph showing the value of a function representing the
emission time versus the retarded position for differing source points a, b, ¢
within the polarizable medium in question;

Figure 3 is a perspective view of the envelope of the wave fronts shown
in Fig. 1;

Figure 4 is a view of the cusp curve of the envelope shown in Fig. 3;

Figure 5 is the locus of the possible source points which approach the
observation point P along the radiation direction with the wave speed at the
retarded time, a locus that is henceforth referred to as the bifurcation surface
of the observer at P;

Figure 6 is a view of the cross sections of the blfurcatlon surface and
the source distribution with a cylinder whose axis coincides with the rotation
axis of the source;

Figures 7(a) and 7(b) are views of two examples of the apparatus of
the present invention showing the dielectric substrate, the electrodes and a
superluminally moving polarised region of the dielectric substrate;

Figure 8 is a diagram showing the wave fronts, and the envelope of the
wave fronts, of the electromagnetic emission from a particular volume element

2



WO 00/14750 ' PCT/GBY99/02943

(source point) S within the rectilinearly moving, accelerating superluminal
source of the present invention; and

Figure 9 shows the evolution in observation time of the relative positions
and the envelope of a set of wave fronts emitted during a limited interval of
retarded time; the snapshots (a)-(f) include times at which the envelope has
not yet developed a cusp [(a) and (b)], has a cusp [(c)~(e)], and has already
lost its cusp (f).

Prior to description of the invention, it is appropriate to discuss the
principles underlying it.

Bolotovskii and Ginzburg (Soviet Phys. Usp. 15, 184, 1972) and Bolo-
tovskii and Bykov (Sovet Phys. Usp. 33, 477, 1990) have shown that the
coordinated motion of aggregates of charged particles can give rise to ex-
tended electric charges and currents whose distribution patterns propagate
with a phase speed exceeding the speed of light in vacuo and that, once
created, such propagating charged patterns act as sources of the electromag-
netic fields in precisely the same way as any other moving sources of these
fields. That these sources travel faster than light is not, of course, in any
way incompatible with the requirements of special relativity. The superlu-
minally moving pattern is created by the coordinated motion of aggregates
of subluminally moving particles.

We have solved Maxwell’s equations for the electromagnetic field that
is generated by an extended source of this type in the case where the charged
pattern rotates about a fixed axis with a constant angular frequency.

There are solutions of the homogeneous wave equation referred to, inter
alia, as non-diffracting radiation beams, focus wave modes or electromagnetic
missiles, which describe signals that propagate through space with unexpect-
edly slow rates of decay or spreading. The potential practical significance of
such signals is clearly enormous. The search for physically realizable sources
of them, however, has so far remained unsuccessful. Our calculation pin-
points a concrete example of the sources that are currently looked for in this
field by establishing a physically tenable inhomogeneous solution of Maxwell’s
equations with the same characteristics.

Investigation of the present emission process was originally motivated
by the observational data on pulsars. The radiation received from these
celestial sources of radio waves consists of highly coherent pulses (with as
high a brightness temperature as 10%° °K) which recur periodically (with
stable periods of the order of 1 sec). The intense magnetic field (~ 10'? G)
of the central neutron star in a pulsar affects a coupling between the rotation
of this star and that of the distribution pattern of the plasma surrounding it,
so that the magnetospheric charges and currents in these objects are of the
same type as those described above. The effect responsible for the extreme

3
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degree of coherence of the observed emission from pulsars. therefore, may
well be the violation of the inverse square law that is here predicted by our
calculation. _

The present analysis is relevant also to the mathematically similar prob-
lem of the generation of acoustic radiation by supersonic propellers and he-
licopter rotors, although this i1s not discussed in detail here.

We begin by considering the waves that are emitted by an element of
the superluminally rotating source from the standpoint of geometrical optics.
Next, we calculate the amplitudes of these waves, i.e. the Green’s function
for the problem, from the retarded potential. We then specify the bifurcation
surface of the observer and proceed to calculate the electromanetic radiation
arising from a superluminally moving ertended source. The singularities of
the integrands of the radiation integrals that occur on the bifurcation surface
are here handled by means of the theory of generalised functions: the electric
and magnetic fields are given by the Hadamard’s finite parts of the divergent
integrals that result from differentiating the retarded potential under the
integral sign. The theory is then concluded with a descriptive account of the
analysed emission process in more physical terms, the description of examples
of the apparatus, and an outline of the applications of the invention.
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1. ENVELOPE OF THE WAVE FRONTS AND ITS CUSP

Consider a point source (an element of the propagating distribution
pattern of a volume source) which moves on a circle of radius r with the
constant angular velocity wé,, i.e. whose path x(t) is given, in terms of the
cylindrical polar coordinates (r, ¢, z), by

r = const., z = const., ¢ =@+ wt, (1)

where &, is the basis vector associated with z, and ¢ the initial value of ¢.
The wave fronts that are emitted by this point source in an empty and
unbounded space are described by

[xp — x(t)| = c(tp — 1), (2)

where the constant ¢ denotes the wave speed, and the coordinates (xp,tp) =
(rp,ep,2p,tp) mark the spacetime of observation points. The distance R
between the observation point xp and a source point x is given by

Ixp — x| = R(p) = [(zp — 2)* + rp> + 1% — 2rprcos(pp — o)z, (3)
so that inserting (1) in (2) we obtain
R(t) = [(zp — 2)*+rp> + 1% — 2rprcos(pp — @ — wi)]? =c(tp —t). (4)

These wave fronts are expanding spheres of radii ¢(tp —t) whose fixed centres
(rp=r,9p =@+ wt,zp = z) depend on their emission times ¢ (see Fig. 1).

Introducing the natural length scale of the problem, c/w, and using
¢t = (p — $)/w to eliminate ¢ in favour of ¢, we can express (4) in terms of
dimensionless variables as

9= —pp+R(p) =9, (5)

in which R = Rw/c, and
p=¢—¢p (6)

stands for the difference between the positions ¢ = ¢ — wt of the source
point and ¢p = pp — wip of the observation point in the (r, ¢, z)-space.
The Lagrangian coordinate ¢ in (5) lies within an interval of length 27 (e.g.
—71 < ¢ < 7), while the angle ¢, which denotes the azimuthal position of the
source point at the retarded time ¢, ranges over (—o0,00).

Figure 1 depicts the wave-fronts described by (5) for fixed values of
(r,®,z) and of ¢ (or tp), and a discrete set of values of ¢ (or t). [In this

)
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figure, the heavier curves show the cross section of the envelope with the plane
of the orbit of the source. The larger of the two dotted circles designates the
orbit (at 7 = 3¢c/w) and the smaller the light cylinder (rp = ¢/w).]

These wave fronts possess an envelope because when 7 > ¢/w, and so
the speed of the source exceeds the wave speed, several wave fronts with
differing emission times can pass through a single observation point simul-
taneously. Or stated mathematically, for certain values of the coordinates
(rp,$p,2zp; T, z) the function g(p) shown in Fig. 2 is oscillatory and so can
equal ¢ at more than one value of the retarded position : a horizontal line
# = constant intersects the curve (a) in Fig. 2 at either one or three points.
[Fig. 2 is drawn for pp = 0, 7p = 3, # = 2 and (a) 2 = Zp, inside the
envelope, (b) 2 = 2., on the cusp curve of the envelope, (c) 2 = 2% — Zp,
outside the envelope. The marked adjacent turning points of curve (a) have
the coordinates (¢+,¢<), and @ous represents the solution of g(w) = ¢o for
a ¢ that tends to ¢_ from below.]

Wave fronts become tangent to one another and so form an envelope
at those points (rp, ®p, zp) for which two roots of g(¢) = ¢ coincide. The
equation describing this envelope can therefore be obtained by eliminating ¢

between g = ¢ and dg/0¢ = 0.
Thus, the values of ¢ on the envelope of the wave fronts are given by

89/0p = 1 — #ipsin(pp — v)/R(p) = 0. (7)

When the curve representing g(y) is as in Fig. 2(2) (i.e. # > 1 and A > 0),
this equation has the doubly infinite set of solutions ¢ = w4 + 2nm, where

Y+ = pp + 27 — arccos[(1 F A2 /(77p)], (8)

A= (73 - 1)(F* - 1) - (2 - 2p)%, 0

n is an integer, and (7, 2;7p,2p) stand for the dimensionless coordinates
rw/ec, zw/c, Tpw/c and zpw/c, respectively. The function g(¢p) is locally
maximum at ¢4 + 2n7 and minimum at p_ + 2n7. :

Inserting @ = ¢+ in (5) and solving the resulting equation for ¢ as a
function of (7p, 2p), we find that the envelope of the wave fronts is composed

of two sheets:
¢ = ds = g(ps) = 21 — arccos[(1 F A?)/(77p)] + Ra, (10)

in which

~

Ry=[(:-2p)*+72+75 -2 F A2 (11)

6
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are the values of R at ¢ = ¢+. For a fixed source point (r,, z), equation
(10) describes a tube-like spiralling surface in the (rp, ¢p, zp)-space of obser-
vation points that extends from the speed-of-light cylinder 7p =1 to infinity.
[A three-dimensional view of the light cylinder and the envelope of the wave
fronts for the same source point (S) as that in Fig. 1 is presented in Fig. 3
(only those parts of these surfaces are shown which lie within the cylindrical
volume 7p < 9, —~2.25 < 2p — 2 < 2.25).]

The two sheets ¢ = ¢4 of this envelope meet at a cusp. The cusp
occurs along the curve

¢ = 2m — arccos[1/(Fp)] + (FHF% — 1)% = ¢, (12a)

5=sp+(FL— DIF2-1)% = 2, (126)

shown in Fig. 4 and constitutes the locus of points at which three different
wave fronts intersect tangentially. [Figure 4 depicts the segment —15 <
3p — 2 < 15 of the cusp curve of the envelope shown in Fig. 3. This curve
touches—and is tangent to—the light cylinder at the point (fp = 1,2p =
2,¢ = ¢¢lsp=1) on the plane of the orbit.] :

On the cusp curve ¢ = ¢, z = z., the function g(y) has a point of

inflection [Fig. 2(b)] and 82g/8¢?, as well as 0g/0y and g, vanish at
@ = @p + 27 — arccos[1/(F7p)] = @e. (12¢)

This, in conjunction with ¢t = (¢ — @)/w, represents the common emission
time of the three wave fronts that are mutually tangential at the cusp curve

of the envelope.
In the highly superluminal regime, where 7 >> 1, the separation of the

ordinates ¢4 and ¢_ of adjacent maxima and minima in Fig. 2(a) can be
greater than 2. A horizontal line ¢ = constant will then intersect the curve
representing g(y) at more than three points, and so give rise to simultane-
ously received contributions that are made at 5,7, - -+, distinct values of the
retarded time. In such cases, the sheet ¢_ of the envelope (issuing from the
conical apex of this surface) undergoes a number of intersections with the
sheet ¢, before reaching the cusp curve. We shall be concerned in this paper,
however, mainly with source elements whose distances from the rotation axis
do not appreciably exceed the radius ¢/w of the speed-of-light cylinder and
so for which the equation g(p) = ¢ has at most three solutions.

At points of tangency of their fronts, the waves which interfere construc-
tively to form the envelope propagate normal to the sheets ¢ = ¢+ (rp, zp)
of this surface, in the directions

fiy = (c/w)Vp(dr — @)
= &, [ip — Fp (1 F A)|/Ry + &, /7p + &2 (5p — 2)/ Ry, (13)

7
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with the speed c. (&,,, é,, and &,, are the unit vectors associated with the
cylindrical coordinates 7p, pp and zp of the observation point, respectively.)
Nevertheless, the resulting envelope is a rigidly rotating surface whose shape
does not change with time: in the (rp, @p, zp)-space, its conical apex 1s sta-
tionary at (7, $, 2), and its form and dimensions only depend on the constant
parameter 7.

The set of waves that superpose coherently to form a particular section
of the envelope or its cusp, therefore, cannot be the same (i.e. cannot have the
same emission times) at different observation times. The packet of focused
waves constituting any given segment of the cusp curve of the envelope, for
instance, is constantly dispersed and reconstructed out of other waves. This
one-dimensional caustic would not be unlimited in its extent, as shown in Fig.
4, unless the source is infinitely long-lived: only then would the duration of
the source encompass the required intervals of emission time for every one of

its constituent segments.

1I. AMPLITUDES OF THE WAVES GENERATED BY
A POINT SOURCE

Our discussion has been restricted so far to the geometrical features
of the emitted wave fronts. In this section we proceed to find the Lienard-

Wiechert potential for these waves.
The scalar potential arising from an element of the moving volume
source we have been considering is given by the retarded solution of the

wave equation
V'2Gy — 8%Go/8(ct’)? = —4mpo, (14a)

in which
po(r!, @', 2 t") = 8(r' —r)é(¢" — wt' — @)o(z' — z)/r’' (14b)

is the density of a point source of unit strength with the trajectory (1). In
the absence of boundaries, therefore, this potential has the value

Go(xp,tp) = /dsx’dt’po(x’,t')d(tp —t' — |xp — x'|/c)/|xp — ¥| (15a)

= /+°° dt'8[tp —t' — R(t")/c]/R(t'), (15b)

- 00

where R(t') is the function defined in (4) (see e.g. Jackson, Classical Electro-
dynamics, Wiley, New York 1975).
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If we use (1) to change the integration variable t' in (15b) to ¢, and
express the resulting integrand in terms of the qunatities introduced in (3),

(5) and (6), we arrive at

+0o0

Go(r,rp, ¢ — @p, 2 — zp) = / dpdlg(p) — 9]/ R(p). (16)

— 00

This can then be rewritten, by formally evaluating the integral, as

1
Go = ;é;i W’ am)

where the angles ¢, are the solutions of the transcendental equation g(p) = ¢
in —oo < ¢ < +oo and correspond, in conjunction with (1), to the retarded
times at which the source point (r,, z) makes its contribution towards the
value of G at the observation point (rp, ¢p, 2p).

Equation (17) shows, in the light of Fig. 2, that the potential G of
a point source is discontinuous on the envelope of the wave fronts: if we
approach the envelope from outside, the sum in (17) has only a single term
and yields a finite value for Gy, but if we approach this surface from inside,
two of the ¢;s coalesce at an extremum of g and (17) yields a divergent value
for Go. Approaching the sheet ¢ = ¢, or ¢ = ¢_ of the envelope from
inside this surface corresponds, in Fig. 2, to raising or lowering a horizontal
line ¢ = ¢o = const., with ¢_ < ¢o < ¢4, until it intersects the curve (a)
of this figure at its maximum or minimum tangentially. At an observation
point thus approached, the sum in (17) has three terms, two of which tend
to infinity.

On the other hand, approaching a neighbouring observation point just
outside the sheet ¢ = ¢_ (say) of the envelope corresponds, in Fig. 2, to
raising a horizontal line ¢ = ¢ = const., with ¢¢ < ¢_, towards a limiting
position in which it tends to touch curve (a) at its minimum. So long as it
has not yet reached the limit, such a line intersects curve (a) at one point
only. The equation g(y) = ¢ therefore has only a single solution ¢ = eyt in
this case which is different from both ¢, and ¢_ and so at which 8g/0y is
non-zero (see Fig. 2). The contribution that the source makes when located
at ¢ = @out is received by both observers, but the constructively interfering
waves that are emitted at the two retarded positions approaching ¢_ only
reach the observer inside the envelope.

The function Go has an even stronger singularity at the cusp curve of
the envelope. On this curve, all three of the ;s coalesce [Fig. 2(b)] and each
denominator in the expression in (17) both vanishes and has a vanishing

derivative (8g/0¢ = 8%g/0¢* = 0).
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There is a standard asymptotic technigue for evaluating radiation in-
tegrals with coalescing critical points that describe caustics. By applying
this technique—which we have outlined in Appendix A—to the integral in
(16), we can obtain a uniform asymptotic approximation to Go for small
|p4+ — ¢, i.e. for points close to the cusp curve of the envelope where Gy is
most singular. The result is
Go'™ ~ 2¢17%(1 — Xz)_%Lpo cos(% arcsin x) — c14o sin(% arcsinx)], |x| <( 1,)

18

and

Go® ~ c172(x? = 1)~ % [po sinh(Zarccosh|x])
+ c1gosgn(x) sinh(Zarccoshix])], |x| > 1,(19)

where ¢1, po, o and x are the functions of (r, z) defined in (A2), (A5), (A6)
and (A10), and approximated in (A23)-(A30). The superscripts ‘in’ and
‘out’ designate the values of G inside and outside the envelope, and the
variable x equals +1 and —1 on the sheets ¢ = ¢4 and ¢ = ¢_ of this

surface, respectively.
The function Go°" is indeterminate but finite on the envelope [cf.

(A39)], whereas Go™ diverges like V3e172(po F c190)/(1 — x2)% as x — 1.
The singularity structure of Go'® close to the cusp curve is explicitly exhibited

by
Go™ ~ fg(w/C)(F"f% —1)"%co? (5 — £)7 /[co®(2c — 2)° — (¢ — $)%%, (20)

in which 0 < 2. — 2 < 1, |¢. — ¢| < 1 and

co = F (%% — 1) - DHE -1 (21)

[see (18) and (A22)-(A26)]. It can be seen from this expression that both the
singularity on the envelope (at which the quantity inside the square brackets
vanishes) and the singularity at the cusp curve (at which 2. — Z and ¢, — ¢
vanish) are integrable singularities.

The potential of a volume source, which is given by the superposition
of the potentials G of its constituent volume elements, and so involves in-
tegrations with respect to (r, @, z), is therefore finite. Since they are created
by the coordinated motion of aggregates of particles, the types of sources
we have been considering cannot, of course, be point-like. It is only in the
physically unrealizable case where a superluminal source is point-like that its
potential has the extended singularities described above.

10



WO 00/14750 ‘ PCT/GB99/02943

In fact, not only is the potential of an extended superluminally moving
source singularity free, but it decays in the far zone like the potential of any
other source. The following alternative form of the retarded solution to the
wave equation V2A4q ~ 8%4,/8(ct)? = —4mp [which may be obtained from
(15a) by performing the integration with respect to time]:

Ao = / Pap(x,tp — |x — xp|/)/|% ~ xp] (22)

shows that if the density p of the source is finite and vanishes outside a finite
volume, then the potential Ay decays like |xp|~? as the distance |xp — x| =~
|xp| of the observer from the source tends to infinity.

I1II. THE BIFURCATION SURFACE OF AN OBSERVER

Let us now consider an eztended source which rotates about the z-axis
with the constant angular frequency w. The density of such a source—when
it has a distribution with an unchanging pattern—is given by

p(r, ‘p,z7t) = p(r, ¢, Z)a (23)

where the Lagrangian variable ¢ is defined by ¢ — wt as in (1), and p can be
any function of (r,®, z) that vanishes outside a finite volume.

If we insert this density in the expression for the retarded scalar poten-
tial and change the variables of integration from (r, ¢, z,t) to (7,9, 2,t), we
obtain

Ao(xp,tp) = / Bardtp(x,)8(tp — t — |x — xpl/c)/Ix — xp| (24a)
= [ rardpdzplr, . 2)Go(r 7, 0 = b,z 20),  (24)

where Gy is the function defined in (16) which represents the scalar potential
of a corresponding point source. That the potential of the extended source
in question is given by the superposition of the potentials of the moving
source points that consititute it is an advantage that is gained by marking
the space of source points with the natural coordinates (r, @, z) of the source
distribution. This advantage is lost if we use any other coordinates.

In Sec. II, where the source was point-like, the coordinates (r, @, z)
of the source point in Go(r,7p, ® — $p,2z — zp) were held fixed and we were
concerned with the behaviour of this potential as a function of the coordinates
(rp, §p,zp) of the observation point. When we superpose the potentials of
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the volume elements that constitute an extended source, on the other hand,
the coordinates (rp, @p, zp) are held fixed and we are primarily concerned
with the behaviour of Gy as a function of the integration variables (7, , z).

Because G is invariant under the interchange of (r, ¢, z) and (rp, ¢ p, 2p)
if ¢ is at the same time changed to —¢ [see (5) and (16)], the singularity of
G, occurs on a surface in the (r, @, z)-space of source points which has the
same shape as the envelope shown in Fig. 3 but issues from the fixed point
(rp,$p,2p) and spirals around the z-axis in the opposite direction to the
envelope. [See Fig. 5 in which the light cylinder and the bifurcation surface
associated with the observation point P are shown for a counterclockwise
source motion. In this figure, P is located at 7p = 9, and only those parts
of these surfaces are shown which lie within the cylindrical volume 7 < 11,
—1.5 < 3 — 2p < 1.5. The two sheets ¢ = ¢+(r, z) of the bifurcation surface
meet along a cusp (a curve of the same shape as that shown in Fig. 4) that
is tangent to the light cylinder. For an observation point in the far zone
(#p > 1), the spiralling surface that issues from P undergoes a large number
of turns—in which its two sheets intersect one another—bofore reaching the
light cylinder.]

In this paper, we refer to this locus of singularities of Go as the bifur-
cation surface of the observation point P.

Consider an observation point P for which the bifurcation surface in-
tersects the source distribution, as in Fig. 6. [In Fig. 6, the full curves depict
the cross section, with the cylinder # = 1.5, of the bifurcation surface of an
observer located at #p = 3. (The motion of the source is counterclockwise.)
Projection of the cusp curve of this bifurcation surface onto the cylinder
7 = 1.5 is shown as a dotted curve, and the region occupied by the source as
a dotted area. In this figure the observer’s position is such that one of the
points (¢ = ¢¢, z = z.) at which the cusp curve in question intersects the
cylinder #'= 1.5—the one with z. > 0—is located within the source distri-
bution. As the radial position rp of the observation point tends to infinity,
the separation—at a finite distance z. — 2z from (¢, 2zc)—of the shown cross
sections decreases like rp~3.]

The envelope of the wave fronts emanating from a volume element of
the part of the source that lies within this bifurcation surface encloses the
point P, but P is exterior to the envelope associated with a source element
that lies outside the bifurcation surface.

We have seen that three wave fronts—propagating in different directions—
simultaneously pass an observer who is located inside the envelope of the
waves emanating from a point source, and only one wavefront passes an ob-
server outside this surface. Hence, in contrast to the source elements outside
the bifurcation surface which influence the potential at P at only a single

12
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value of the retarded time, this potential receives contributions from each
of the elements inside the bifurcation surface at three distinct values of the
retarded time.

The elements inside but. adjacent to the bifurcation surface, for which
Go diverges, are sources of the constructively interfering waves that not only
arrive at P simultaneously but also are emitted at the same (retarded) time.
These source elements approach the observer along the radiation direction
xp —x with the wave speed at the retarded time, i.e. are located at distances
R(t) from the observer for which

dR

—Et‘- = —C (25)

t=tp—R/c
[see (4), (7) and (8)]. Their accelerations at the retarded time,

1
cwA?

&R

d? (26)

= F—=
t=tp—R/c Ry

bl

are positive on the sheet ¢ = ¢_ of the bifurcation surface and negative on
¢ = ¢4

The source points on the cusp curve of the bifurcation surface, for which
A = 0 and all three of the contributing retarded times coincide, approach
the observer—according to (26)~—with zero acceleration as well as with the
wave speed.

From a radiative point of view, the most effective volume elements of
the superluminal source in question are those that approach the observer
along the radiation direction with the wave speed and zero acceleration at
the retarded time, since the ratio of the emission to reception time intervals
for the waves that are generated by these particular source elements generally
exceeds unity by several orders of magnitude. On each constituent ring of the
source distribution that lies outside the light cylinder (r = ¢/w) in a plane
of rotation containing the observation point, there are two volume elements
that approach the observer with the wave speed at the retarded time: one
whose distance from the observer diminishes with positive acceleration, and
another for which this acceleration is negative. These two elements are closer
to one another the smaller the radius of the ring. For the smallest of such
constituent rings, i.e. for the one that lies on the light cylinder, the two
volume elements in question coincide and approach the observer also with
zero acceleration.

The other constituent rings of the source distribution (those on the
planes of rotation which do not pass through the observation point) likewise

13
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contain two such elements if their radii are large enough for their velocity
rwe, to have a component along the radiation direction equal to c. On the
smallest possible ring in each plane, there is again a single volume element—
at the limiting position of the two coalescing volume elements of the neigh-
bouring larger rings—that moves towards the observer not only with the
wave speed but also with zero acceleration.

For any given observation point P, the efficiently radiating pairs of
volume elements on various constituent rings of the source distribution col-
lectively form a surface: the part of the bifurcation surface associated with
P which intersects the source distribution. The locus of the coincident pairs
of volume elements, which is tangent to the light cylinder at the point where
it crosses the plane of rotation containing the observer, constitutes the seg-
ment of the cusp curve of this bifurcation surface that lies within the source
distribution.

Thus the bifurcation surface associated with any given observation
point divides the volume of the source into two sets of elements with dif-
fering influences on the observed field. As in (18) and (19), the potentials
Go™ and Go°"* of the source clements inside and outside the bifurcation sur-
face have different forms: the boundary |x(r,TP, @—@P, z—zp)| = 1 between
the domains of validity of (18) and (19) delineates the envelope of wave fronts
when the source point (7, @, z) is fixed and the coordinates (rp,@p,zp) of
the observation point are variable, and describes the bifurcation surface when
the observation point (p, ¢pP, zp) is fixed and the coordinates (r, @, z) of the
source point sweep a volume. ‘

The expression (24b) for the scalar potential correspondingly splits into
the following two terms when the observation point is such that the bifurca-
tion surface intersects the source distribution:

Ag = /deGo ‘ (27a)
=/ deGoi"+f dv pGo°™, (27b)
Vi Vout

where dV = rdrdgdz, Vin and V,ut designate the portions of the source which
fall inside and outside the bifurcation surface (see Fig. 6), and Go™ and Go°™
denote the different expressions for G in these two regions.

Note that the boundaries of the volume Vi, depend on the position
(rp,¢p,zp) of the observer: the parameter 7p fixes the shape and size of
the bifurcation surface, and the position (rp, PP, zp) of the observer specifies
the location of the conical apex of this surface. When the observation point
is such that the cusp curve of the bifurcation surface intersects the source
distribution, the volume Vi, is bounded by ¢ = ¢—, ¢ = ¢4, and the part of

14
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the source boundary p(r, ¢, z) = 0 that falls within the bifurcation surface.
The corresponding volume Vouy 18 bounded by the same patches of the two
sheets of the bifurcation surface and by the remainder of the source boundary.

In the vicinity of the cusp curve (12), i.e. for |pe — @] < 1and 0 < 2.~
3 « 1, the cross section of the bifurcation surface with a cylinder #=constant

is described by

3

(12— DL - DIFRP - DT E - (28)

[see (10)—(12) and (A26)]. This cross section, which is shown in Fig. 6, has
two branches meeting at the intersections of the cusp curve with the cylinder
# = constant whose separation in ¢—at a given (2. — 2)—diminishes like f;%
in the limit #p — oco. Thus, at finite distances Z. — £ from the cusp curve,
the two sheets ¢ = ¢_ and ¢ = ¢4 of the bifurcation surface coalesce and
become coincident with the surface ¢ = 3(¢_ + ¢4) = c2 as fp — co. That

is to say, the volume Vi, vanishes like f;%.

Because the dominant contributions towards the value of the radiation
field come from those source elements that approach the observer—along
the radiation direction—with the wave speed and zero acceleration at the
retarded time, in what follows, we shall be primarily interested in far-field
observers the cusp curves of whose bifurcation surfaces intersect the source
distribution. For such observers, the Green’s function lims, 00 Go undergoes
a jump discontinuity across the coalescing sheets of the bifurcation surface:
the values of x on the sheets ¢ = ¢, and hence the functions Go™ |p=¢_
and Go°"*|4=¢,, remain different even in the limit where ¢ = ¢_ and ¢ = ¢

coincide [cf. (A10) and (A39)].

IV. DERIVATIVES OF THE RADIATION INTEGRALS AND THEIR
HADAMARD’S FINITE PARTS

A. Gradient of the scalar potential

In this section we begin the calculation of the electric and magnetic
fields by finding the gradient of the scalar potential Ag, i.e. by calculat-
ing the derivatives of the integral in (27a) with respect to the coordinates
(rp,pp,zp) of the observation point.

If we regard its singular kernel Gy as a classical function, then the inte-
gral in (27a) is improper and cannot be differentiated under the integral sign
without characterizing and duly handling the singularities of its integrand.
On the other hand, if we regard Gy as a generalized function, then it would
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be mathematically permissible to interchange the orders of differentiation
and integration when calculating VpAo.

This interchange results in a new kernel V pG whose singularities are
non-integrable. However, the theory of generalized functions prescribes a
well-defined procedure for obtaining the physically relevant value of the re-
sulting divergent integral, a procedure involving integration by parts which
extracts the so-called Hadamard’s finite part of this integral (see e.g. Hoskins,
Generalised Functions, Ellis Horwood, London 1979). Hadamard’s finite part
of the divergent integral representing VpAo yields the value that we would
have obtained if we had first evaluated the original integral for Ap as an
explicit function of (rp, dp, zp) and then differentiated it.

From the standpoint of the theory of generalized functions, therefore,
differentiation of (27a) yields

Vpdo = / V59 pGo = (VpAo)in + (VpAo)out, (290)

in which
(VpAG)in,out = / dV pV pGo™°. (29b)
‘/in,ou'.
Since p vanishes outside a finite volume, the integral in (27a) extends over all
values of (r, ¢, z) and so there is no contribution from the limits of integration

towards the derivative of this integral.

The kernels VpGo™°" of the above integrals may be obtained from
(16). Applying Vp to the right-hand side of (16) and interchanging the
orders of differentiation and integration, we obtain an integral representation
of VpGy consisting of two terms: one arising from the differentiation of R
which decays like rp~2 as rp — o0 and so makes no contribution to the field
in the radiation zone, and another that arises from the differentiation of the
Dirac delta function and decays less rapidly than r p~2. For an observation
point in the radiation zone, we may discard terms of the order of rp~2 and

write +oo
VpGo =~ (w/c)/ doR™16'(g — ¢)A, 7p > 1, (30)

in which & is the derivative of the Dirac delta function with respect to its
argument and

N =& ,[fp— Fcos(p— ©p)]/R+ &p,/fp +&:p(Ep — 2)/R. (31)

Equation (30) yields VpGo™ or VpGo®* depending on whether ¢ lies within
the interval (¢—, ¢+ ) or outside it.
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If we now insert (30) in (29b) and perform the integrations with respect
to ¢ by parts, we find that

p=¢+ O+ . . . R
+/ d¢5p/3‘10G1m}, Tp > 1,

(32)

(VpAo)in = (w/C)/rdrdz{—{p(;lin]

S

and
out ¢=0+
(VpAo)out = (w/c) rdrdz{ [pGl ]
. S P=¢_

([T /. TV agopopGa), 7> 1, (39)
- +

in which S stands for the projection of Vi, onto the (r, z)-plane, and G,™
and G;°U* are given by the values of

+00
Gi= [ dpReg-9n= 3 BVBefoATR (G0

- p=;

for ¢ inside and outside the interval (¢_, ¢4+), respectively.

Like Go'™, the Green’s function G, diverges on the bifurcation surface
¢ = ¢+, where 8g/0¢ vanishes, but this singularity of Go™ is integrable
so that the value of the second integral in (32) is finite (see Sec. 1I and
Appendix A). Hadamard’s finite part of (VpAo)in (denoted by the prefix
Fp) is obtaind by simply discarding those ‘integrated’ or boundary terms in
(32) which diverge. Hence, the physically relevant quantity Fp{(V PAQ)in}
consists—in the far zone—of the volume integral in (32).

Let us choose an observation point for which the cusp curve of the bi-
furcation surface intersects the source distribution (see Fig. 6). When the
dimensions (~ L) of the source are negligibly smaller than those of the bifur-
cation surface (i.e. when L L rp and so z, — z < rp throughout the source
distribution) the functions G,™°" in (32) and (33) can be approximated by
their asymptotic values (A34) and (A35) in the vicinity of the cusp curve
(see Appendix A).

According to (A34), (A36) and (A44), G,® decays like p1/c1® = O(1)
at points interior to the bifurcation surface where limgp 00 X remains finite.
Since the separation of the two sheets of the bifurcation surface diminishes

like 7*;% within the source [see (28)], it therefore follows that the volume

—z
integral in (32) is of the order of 1 X #p?, a result which can also be inferred
from the far-field version of (A34) by explicit integration. Hence,

Fp{(VpAoin} = O(Fp?), 7P > 1, (35)
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decays too rapidly to make any contribution towards the value of the electric
field in the radiation zone. .

Because G°"" is, in contrast to G,™, finite on the bifurcation surface,
both the surface and the volume integrals on the right-hand side of (33) have
finite values. Each component of the second term has the same structure as
the expression for the potential itself and so decays like rp~ ! (see the ultimate
paragraph of Sec. II). But the first term—which would have cancelled the
correspoding boundary term in (32) and so would not have survived in the
expression for VpAp had the Green’s function G been continuous—behaves
differently from any conventional contribution to a radiation field.

Insertion of (A39) in (33) yields the following expression for the asymp-
totic value of this boundary term in the limit where the observer is located
in the far zone and the source is localized about the cusp curve of his (her)

bifurcation surface:

' b+
/TdeZ [PG10Ut] o " la™? [ rdrdz[p1(ple, — Ple-) + 2¢1q1(plg, + Plo-)l-
(36)
In this limit, the two sheets of the bifurcation surface are essentially coinci-

dent throughout the domain of integration in (36) [see (28)]. So the difference
between the values of the source density on these two sheets of the bifurcation
3

surface is negligibly small (~ 7 p2) fora smoothly distributed source and the
functions plg, appearing in the integrand of (36) may correspondingly be
approximated by their common limiting value pus(T, z) on these coalescing

sheets.
Once the functions p|¢, are approximated by ps(7, 2) and q1 by (A41),
equation (36) yields an expression which can be written, to within the leading

order in the far-field approximation #p >> 1 [see (A44) and (A45)], as

¢ _s [
/ rdrdz [pclw] ¢+ ~ 2%(c/w)2fp‘3 / di(72 —1)"%ny
S - fe

x/ d2(3 — 2) ™% pos(T, 2)
2c.~-Lzw/c
5 0.—3 S 1 1
~ 22 (c/w) rP2/ dr(#* — 1) 4n1(L5w/c)2(pr), (37)
f<
with

1
()= [ a0 o (38)

where z. — Lz(r) < z £ zc and ¢ < r < 71> are the intervals over which
the bifurcation surface intersects the source distribution (see Fig. 6). The
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quantity (pos)(r) may be interpreted, at any given 7, as a weighted average—
over the intersection of the coalescing sheets of the bifurcation surface with

the plane z = z, — n®L;—of the source density p.

The right-hand side of (37) decays like rp~% as rp — oco. The sec-
ond term in (33) thus dominates the first term in this equation, and so the
quantity (VpAg)out itself decays like 7p~ ! in the far zone.

B. Time derivative of the vector potential

Inasmuch as the charge density (23) has an unchanging distribution

pattern in the (r, @, z)-frame, the electric current density associated with the
moving source we have been considering is given by

J(x,t) = rwp(r; §, 2)&, | (39)

in which rwé, = rw[—sin(¢ — Yp)é, + cos(ip — @p)é,,) is the velocity of
the element of the source pattern that is located at (r, ¢, z). This current
satisfies the continuity equation 8p/d(ct) +V -j=10 automatically.

In the Lorentz gauge, the retarded vector potential corresponding to

(24a) has the form
A(xp,tp) =c* /d3xdtj(x,t)6(tp —t—|x—xpl/c)/lx—xp|.  (40)

If we insert (39) in (40) and change the variables of integration from (r, ¢, z,t)
to (r, @, 2, @), as in (24), we obtain

A= /dep(r, @, 2)Ga(r, TP, @ — PPy 2 — zp), (41)

in wheih dV = rdrd@dz, the vector Ga—which plays the role of a Green’s
function—is given by

+o0
Go= [ dotydlole)~ dl/R9) = 3 BT No0/0vl 0 (D)

=0 p=p;

and g and g;s are the same quantities as those appearing in (17) (see also
Fig. 2).

Because (17), (34) and (42) have the factor |0g/8¢|! in common, the
function G, has the same singularity structure as those of Go and Gy: it
diverges on the bifurcation surface dg/8p = 0 if this surface is approached
from inside, and it is most singular on the cusp curve of the bifurcation surface
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where in addition 8%g/0p? = 0. It is, moreover, described by two different
expressions, G,™ and G,°%", inside and outside the bifurcation surface whose
asymptotic values in the neighbourhood of the cusp curve have exactly the
same functional forms as those found in (18) and (19); the only difference
being that po and go in these expressions are replaced by the p2 and q2 given
in (A37) (see Appendix A).

As in (29), therefore, the time derivative of the vector potential has the
form OA/0tp = (BA/0tp)in + (OA /Otp)out With

(8A/atp)in’out = —W / depanin’OUt/a(ﬁp (43)
‘/in,out.
when the observation point is such that the bifurcation surface intersects the

source distribution.

The functions Go™™°"* depend on ¢p and ¢ in the combination ¢ — @p
only. We can therefore replace 8/0¢p In (43) by ~8/8¢ and perform the
integration with respect to ¢ by parts to arrive at

L =04 b+ .
L= 22 in _ 2 in
(OA/BtP)in = C /S drdzf {[sz ]¢=¢_ . dpdp/ GG } (44)
and
~2 out ¢=0+
(BA/0tp)out = —c [ drdzf {[pGg ]
S P=0¢-

+ ( /_ 4: + /¢ " )d¢ap/a¢G2°“‘}‘. (45)

For the same reasons as those given in the paragraphs following (32) and
(33), Hadamard’s finite part of (8A/8tp)in consists of the volume integral

-8

in (44) and is of the order of 7p? [note that according to (A37) and (A42),
p2 > ci1qz and p2/c? = O(1)]. The volume integral in (45), moreover,
decays like 75", as does its counterpart in (33).

The part of 9A /3tp that decays more slowly than conventional contri-
butions to a radiation field is the boundary term in (45). The asymptotic
value of this term is given by an expression similar to that appearing in (36),
except that p1 and q; are replaced by p2 and gz. Once the quantities plg,
and q3 in the expression in question are approximated by pps and by (A42),
as before, it follows that

(OA/dtp)out ~ —-c/;ﬁdrdzr2 [pG2°“t]¢ ~ —%c Is drdzF2 ppsc1 a2

3 —La P> gan2(a ~1 [k (s _ 5\-}
~ =2 (P w)p 8p [i2 a2 (72 = 1) [7 ], 0ge G8(Ee = 2) } pps (46)
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This behaves like f;% as #p — oo since the Z-quadrature in (46) has the
finite value 2(L5w/c)%(pbs> in this limit [see (37) et seq.].
Hence, the electric field vector of the radiation
E = —VPAO - 8A/8(ctp) ~ —C—l(aA/atP)out
Z -1, Fs 1aa2(n _1 1
~ 2h (cpw)ipteg, [12 (P2 — )T H(Taw/O pes)  (47)

itself decays like rp~7 in the far zone: as we have already seen in Sec. IV(A),
the term V pAo has the conventional rate of decay rp~! and so is negligible

relative to (0A/0tp)out-

C. Curl of the vector potential

There are no contributions from the limits of integration towards the
curl of the integral in (41) because p vanishes outside a finite volume and
so the integral in this equation extends over all values of (r,,z). Hence,
differentiation of (41) yields

B =Vp x A = B, + Bout, (48a)

in which
B = [ dVE/Tex GO (48b)
Vin,out

Operating with Vpx on the first member of (42) and ignoring the term
that decays like 7p~2, as in (30), we find that the kernels Vp x G2 and
Vp x G° of (48b) are given—in the radiation zone—by the values of

“+oo

Vp %X Gg (w/c)/ dpR™16' (9 — ¢)h x &,, TP >1, (49)
—00

for ¢ inside and outside the interval (¢_,d4), respectively. [ is the unit

vector defined in (31).]
Insertion of (49) in (48) now yields expressions whose ¢-quadratures

can be evaluated by parts to arrive at

B / drdzi?{ [ G i"]¢=¢+ + / ™ 180p/00G ), fp>1, (50)
in = - ) T )
s P33 o=t p/oPlas P

and
=04

Bout =~ fsdrdzfz{ [pG3°“t] b

+ (/¢ +/¢+ﬂ)d¢3p/8¢G3°m}, fp > 1, (51)
o N
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where G3'" and G;°" stand for the values of

+00
Gs = / JoR-16(g — ) x 6y = 5 R7'8g/0pT A x &, (52)

—0 p=p;

inside and outside the bifurcation surface.

Once again, owing to the presence of the factor |0g/8¢|~! in G5,
the first term in (50) is divergent so that the Hadamard’s finite part of Bin
consists of the volume integral in this equation, an integral whose magnitude

is of the order of f;% [see the paragraph containing (35) and note that,
accroding to (A38) and (A44), p3 > a1d3 and ps/cr® = O(1)]. The second
term in (51) has—Tlike those in (33) and (45)—the conventional rate of decay
7p'. Moreover, the surface integral in (51)—which would have had the same
magnitude as the surface integral in (50) and so would have cancelled out
of the expression for B had G5™ and G3°"" matched smoothly across the
bifurcation surface—decays as slowly as the corresponding term in (45).
The asymptotic value of G5 for source points close to the cusp curve of
the bifurcation surface has been calculated in Appendix A. It follows from
this value of Gz and from (51), (52), (A40), (A44) and (Ad45) that, in the

radiation zone,

¢
B~ /Sdrdzf2 [pG3°“t} ¢+ ~ %fs drdz72ppsc1 a3

~ 2 (yint [ a7 - )7 [ upe 4B - 5)"4 poens (53)

2.—Lsw/c

to within the order of the approximation entering (37) and (46).
The far-field version of the radial unit vector defined in (31) assumes

the form .
C=fle,, - (1—7T%)78,, (54)

on the cusp curve of the bifurcation surface [see (12b), (13) and (A27), and
note that the position of the observer is here assumed to be such that the
segment of the cusp curve lying within the source distribution is described
by the expression with the plus sign in (12b), as in Fig. 6]. So, nz equals
fi X &,, in the regime of validity of (53) [see (A45)]. Moreover, A can be
replaced by its far-field value '

fl_"_"(TpérP—{-Zpézp)/RP, Rp — 0, (55)

if it is borne in mind that (53) holds true only for an observer the cusp curve
of whose bifurcation surface intersects the source distribution.
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Once nz in (53) is approximated by fi x é,, and the resulting 2-
quadrature 1s expressed in terms of (pbs) [see (38)], this equation reduces

to i
B~faxE, (56)

where E is the electric field vector earlier found in (47). Equations (47) and
(56) jointly describe a radiation field whose polarization vector lies along the
direction of motion of the source, €ypp-

Note that there has been no contribution toward the values of E and
B from inside the bifurcation surface. These quantities have arisen in the
above calculation solely from the jump discontinuities in the values of the
Green’s functions G°", G2°"" and G3°"* across the coalescing sheets of
the bifurcation surface. We would have obtained the same results had we
simply excised the vanishingly small volume limr, o0 Vin from the domains
of integration in (29), (43) and (48).

Note also that the way in which the familiar relation (56) has emerged
from the present analysis Is altogether different from that in which it ap-
pears in conventional radiation theory. Essential though it is to the physical
requirement that the directions of propagation of the waves and of their en-
ergy should be the same, (56) expresses a relationship between fields that are
here given by non-spherically decaying surface integrals rather than by the

conventional volume integrals that decay like rp~ 1.

V. A PHYSICAL DESCRIPTION OF THE EMISSION PROCESS

Expressions (47) and (56) for the electric and magnetic fields of the
radiation that arises from a charge-current density with the components (23)
and (39) imply the following Poynting vector:

S ~ gw”lc(c/w)zfl_,l[f:: dif? (7?2 — 1)'%(1)2&1/0)% (pbs'>]2ﬁ- (57)

In contrast, the magnitude of the Poynting vector for the coherent cyclotron
radiation that would be generated by a macroscopic lump of charge, if it
moved subluminally with a centripetal acceleration cw, is of the order of
((p)L3)%w?/ (cRp?) according to the Larmor formula, where L3 represents
the volume of the source and (p) its average charge density. The intensity
of the present emission is therefore greater than that of even a coherent
conventional radiation by a factor of the order of (L;/L)(Lw/c)*(Rp/L), a
factor that ranges from 10'° to 1020 in the case of pulsars for instance.

The reason this ratio has so large a value in the far field (Rp/L > 1)
is that the radiative characteristics of a volume-distributed source which
moves faster than the waves it emits are radically different from those of a
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corresponding source that moves more slowly than the waves it emits. There
are source elements in the former case that approach the observer along the
radiation direction with the wave speed at the retarded time. These lie on
the intersection of the source distribution with what we have here called the
bifurcation surface of the observer (see Figs. 5 and 6): a surface issuing from
the position of the observer which has the same shape as the envelope of
the wave fronts emanating from a source element (Figs. 1 and 3) but which
spirals around the rotation axis in the opposite direction to this envelope
and resides in the space of source points instead of the space of observation

points.

The source elements inside the bifurcation surface of an observer make
their contributions towards the observed field at three distinct instants of
the retarded time. The values of two of these retarded times coincide for an
interior source element that lies next to the bifurcation surface. This limit-
ing value of the coincident retarded times represents the instant at which the
component of the velocity of the source point in question equals the wave
speed ¢ in the direction of the observer. The third retarded time at which a
source point adjacent to—just inside—the bifurcation surface makes a con-
tribution is the same as the single retarded time at which its neighbouring
source element just outside the bifurcation surface makes its contribution
towards the observed field. (The source elements outside the bifurcation sur-
face make their contributions at only a single instant of the retarded time).

At the instant marked by this third value of the retarded time, the
two neighbouring source elements—just interior and just exterior to the bi-
furcation surface—have the same velocity, but a velocity whose component
along the radiation direction is different from c. The velocities of these two
neighbouring elements are, of course, equal at any time. However, at the
time they approach the observer with the wave speed, the element inside the
bifurcation surface makes a contribution towards the observed field while the
one outside this surface does not: the observer is located just inside the en-
velope of the wave fronts that emanate from the interior source element but
just outside the envelope of the wave fronts that emanate from the exterior
one. Thus, the constructive interference of the waves that are emitted by
the source element just outside the bifurcation surface takes place along a
caustic which at no point propagates past the observer at the conical apex
of the bifurcation surface in question.

On the other hand, the radiation effectiveness of a source element which
approaches the observer with the wave speed at the retarded time is much
greater than that of a neighbouring element the component of whose velocity
along the radiation direction is subluminal or superluminal at this time. This
s because the piling up of the emitted wave fronts along the line joining the
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source and the observer makes the ratio of emission to reception time intervals
for the contributions of the luminally moving source elements by many orders
of magnitude greater than that for the contributions of any other elements.
As a result, the radiation effectiveness of the various constituent elements
of the source (i.e. the Green’s function for the emission process) undergoes

5 discontinuity across the boundary set by the bifurcation surface of the

observer.

The integral representing the superposition of the contributions of the
various volume elements of the source to the potential thus entails a discon-
tinuous integrand. When this volume integral is differentiated to obtain the
field, the discontinuity in question gives rise to a boundary contribution in
the form of a surface integral over its locus. This integral receives contri-
butions from opposite faces of each sheet of the bifurcation surface which
do not cancel one another. Moreover, the contributions arising from the
exterior faces of the two sheets of the bifurcation surface do not have the
same value even in the limit Rp — 0 where this surface is infinitely large
and so its two sheets are—throughout a localized source that intersects the
cusp—coalescent. Thus the resulting expression for the field in the radiation
sone entails a surface integral such as that which would arise if the source
were two-dimensional, i.e. if the source were concentrated into an infinitely
thin sheet that coincided with the intersection of the coalescing sheets of the
bifurcation surface with the source distribution.

For a two-dimensional source of this type—whether it be real or a vir-
tual one whose field is described by a surface integral—the near zone (the
Fresnel regime) of the radiation can extend to infinity, so that the amplitudes
of the emitted waves are not necessarily subject to the spherical spreading
that normally occurs in the far zone (the Fraunhofer regime). The Fresnel
distande which marks the boundary between these two zones is given by
Rp~L L2 /Ly, in which L, and L are the dimensions of the source perpen-
dicular and parallel to the radiation direction. If the source is distributed
over a surface and so has a dimension L) that is vanishingly small, therefore,
the Fresnel distance R tends to infinity.

In the present case, the surface integral which arises from the disconti-
nuity in the radiation effectiveness of the source elements across the bifurca-
tion surface has an integrand that is in turn singular on the cusp curve of this
surface. This has to do with the fact that the source elements on the cusp
curve of the bifurcation surface approach the observer along the radiation
direction not only with the wave speed but also with zero acceleration. The
ratio of the emission to reception time intervals for the signals generated by
these elements is by several orders of magnitude greater even than that for
the elements on the bifurcation surface. When the contributions of these
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elements are included in the surface integral in question, i.e. when the obser-
vation point is such that the cusp curve of the bifurcation surface intersects
the source distrbution (as shown in Fig. 6), the value of the resulting im-

proper integral turns out to have the dependence Rp_%, rather than Rp ™',
on the distance Rp of the observer from the source.

This non-spherically decaying component of the radiation is in addi-
tion to the conventional component that is concurrently generated by the
remaining volume elements of the source. It is detectable only at those ob-
servation points the cusp curves of whose bifurcation surfaces intersect the
source distribution. It appears, therefore, as a spiral-shaped wave packet
with the same azimuthal width as the ¢-extent of the source. For a source
distribution whose superluminal portion extends from 7 = 1 to 7 =75 > 1,
this wave packet 1s detectable—Dby an observer at infinity—within the angles
lx — arccos 7S l<gp < %w + arccos f;l from the rotation axis: projection
(12b) of the cusp curve of the bifurcation surface onto the (7, z)-plane reduces
to cot @p = (7% — 1)% in the limit Rp — oo, where 0p = arctan(rp/zp) [also
see (54)].

Because it comprises a collection of the spiralling cusps of the envelopes
of the wave fronts that are emitted by various source elements, this wave
packet has a cross section with the plane of rotation whose extent and shape
match those of the source distribution. It is a diffraction-free propagating
caustic that—when detected by a far-field observer—would appear as a pulse
of duration A¢/w, where A is the azimuthal extent of the source.

Note that the waves that interfere constructively to form each cusp,
and hence the observed pulse, are different at different observation times:
the constituent waves propagate in the radiation direction f with the speed
¢, whereas the propagating caustic that is observed, i.e. the segment of the
cusp curve that passes through the observation point at the observation time,
propagates in the azimuthal direction &,, with the phase speed Tpw.

The fact that the intensity of the pulse decays more slowly than pre-
dicted by the inverse square law is not therefore incompatible with the con-
servation of energy, for it is not the same wave packet that is observed at
different distances from the source: the wave packet in question is constantly
dispersed and re-costructedted out of other waves. The cusp curve of the
envelope of the wavefronts emanating from an infinitely long-lived source is
detectable in the radiation zone not because any segment of this curve can be
identified with a caustic that has formed at the source and has subsequently
travelled as an isolated wavepacket to the radiation zone, but because certain
set of waves superpose coherently only at infinity.

Relative phases of the set of waves that are emitted during a limited
time interval is such that these waves do not, in general, interfere construc-
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tively to form a cusped envelope until they have propagated some distance
away from the source. The period in which this set of waves has a cusped
envelope and so is detectable as a periodic train of non-spherically decaying
pulses, would of course have a limited duration if the source 1s short-lived.

Thus, pulses of focused waves may be generated by the present emis-
sion process which not only are stronger in the far feld than any previously
studied class of signals, but which can in addition be beamed at only a select
set of observers for a limited interval of time.

V1. DESCRIPTION OF EXAMPLES OF THE APPARATUS

An apparatus can be designed for generating such pulses, in accordance
with the above theory, which basically entails the simple components shown
in Figs. 7(a) and 7(b).

Referring to the example of Fig. 7(a), a linear dielectric rod 1 of length
| is provided with an array of electrodes 2, 3 arranged opposite one another
along its length with n /1 electrodes per unit length. In use, a voltage potential
is applied across the dielectric rod 1 by the electrodes 2, 3, with each pair of
electrodes 2, 3, in the array being activated in turn to generate a polarisation
region with the fronts 5. By rapid application and removal of a potential
voltage to electrodes 2, 3, this polarised region can be set in accelerated
motion with a superluminal velocity. Creating a voltage across a pair of
electrodes polarises the material in the rod between the electrodes. The
electrodes can be controlled independently, so that the distribution pattern
of polarisation of the rod as a function of length along the rod is controlled.

By varying the voltage across the electrode pairs as a function of time,
this polarisation pattern is set in motion. For example, neighbouring elec-
trode pairs can be turned on with a time interval of At between them, start-
ing from one end of the rod. Thus, at a snapshot in time, part of the rod
is polarised (that part lying between electrode pairs with a voltage across
them) and part of it is not polarised (that part lying between electrode pairs
without a voltage across them). These regions are separated by “polarisa-
tion fronts” which move with a speed of [/(nAt). With suitable choices of
and At the polarisation fronts can be made to move at any speed (including
speeds faster than the speed of light in vacuo). The polarisation fronts can
be accelerated through the speed of light by changing At with time.

High-frequency radiation may be generated by modulating the ampli-
tude of the resulting polarisation current with a frequency  that exceeds
a/c, where a is the acceleration of the source. The spectrum of the spherically
decaying component of the radiation would then extend to frequencies that
would be by a factor of the order of (cf/a)? higher than Q. The required

27



WO 00/14750 '
PCT/GB99/02943

modulation may be achieved by varying the amplitudes of the voltages that
are applied across various electrode pairs all in phase.

Figure 7(b) shows another example of the invention, the one analysed
above. In this example, the dielectric rod is formed in the shape of a ring.
Figure 7(b) is a plan view showing electrodes 2, and has electrodes 3 disposed
below the rod 1. For a ring of radius 7 and a polarisation pattern that moves
sround the ring with an angular frequency w, the velocity of the charged
region is rw. In this example, rw is greater than the speed of light ¢ so that the
moving polarisation pattern emits the radiation described with reference to
Figures 1 to 6. An azimuthal or radial polarisation current may be produced
by displacing the plates of each electrode pair relative to one another.

The voltages across neighbouring electrode pairs have the same time
dependence (their period is 27 /w) but, as in the rectilinear case, there is
a time difference of At between them. The polarisation pattern must move
coherently around the ring, i.e. must move rigidly with an unchanging shape;
this would be the case if nAt = 27V /w, where n is the number of electrodes
around the ring and N an integer. Within the confines of this condition, the
time dependence of the voltage across each pair of electrodes can be chosen
at will. The exact form of the adopted time dependence would allow, for
example, the generation of harmonic content and structure in the source.
As in the rectilinear case, modulation of the amplitude of this source at
a frequency £ would result in a radiation whose spectrum would contain
frequencies of the order of (Q/w)3Q.

The electrodes are driven by an array of similar oscillators, an array in
which the phase difference between successive oscillators has a fixed value.
There are several ways of implementing this:

a single oscillator may be used to drive each electrode through progres-
sively longer delay lines;

each electrode pair may be driven by an individual oscillator in an array
of phase-locked oscillators; or

the electrode pairs may be connected to points around a circle of radius
 which lies within—and is coplanar with—an annular waveguide, a waveg-
uide whose normal modes include an electromagnetic wave train that prop-
agates longitudinally around the circle with an angular frequency w > c/r.

For a dielectric rod in the shape of a ring of diameter 1 m, oscillators
operating at a frequency of 100 MHz would generate a superluminally moving
polarisation pattern. The required oscillator frequencies are easily obtainable
using standard laboratory equipment, and any material with an appreciable
polarizability at MHz frequencies would do for the medium. If the amplitude
of the resulting polarisation current is in addition modulated at 1 GHz, then
the device would radiate at ~ 100 GHz. The efficiency of this emission
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process is expected to be as high as a few percent.

With oscillators operating at frequencies of 1 GHz (also available), the
size of the device would be about 10 cm across; applications demanding
portability are therefore viable.

VIl. APPLICATIONS

A. Medical and biomedical applications

The present invention may be exploited to generate waves which do
not form themselves into a focused pulse until they arrive at their intended
destination and which subsequently remain in focus only for an adjustable
interval of time, a property that allows for applications in various areas of
medical practice and biomedical research.

Examples of its use in therapeutic medicine are: (i) the selective irra-
diation of deep tumours whilst sparing surrounding normal tissue, and (ii)
the radiation pressure or thermocautery removal of thrombotic and embolic
vascular lesions that may result from abnormalities in blood clotting without
invasive surgery. Examples of its use in diagnostic medicine are absorption
spectroscopy (focusing a broadband pulse within a tissue some frequencies
of which would be absorbed) and three-dimensional tomography (mapping
specifiable regions of interest within the body to high levels of resolution). In
biomedical research, it provides a more powerful alternative to confocal scan-
ning microscopy; with a single superluminal aerial being used as an X-ray
source for imaging purposes.

An example of an apparatus required for generating the pulses in ques-
tion is that shown in Fig. (7a). It consists of a linear dielectric rod, an array
of electrode pairs positioned opposite to each other along the rod, and the
means for applying a voltage to the electrodes sequentially at a rate sufficient
to induce a polarization current whose distribution pattern moves along the
rod with a constant acceleration at speeds exceeding the speed of light in
vacuo.

The envelope of the wave fronts emanating from a volume element of
the superluminally moving distribution pattern thus produced is shown in
Fig. 8. It consists of a two-sheeted closed surface when the duration of
the source includes the instant at which the source becomes superluminal.
The two sheets of this envelope are tangent to one another and form a cusp
along an expanding circle. If the source has a limited duration, the envelope
in question is correspondingly limited [as in Fig. 9(d)] to only a truncated
section of the surface shown in Fig. 8.

The snapshots in Fig. 9 trace the evolution in time of the relative posi-
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tions of a particular set of wave fronts that are emitted during a short time
interval. They include times at which the envelope has not yet developed a
cusp [(2) and (D)], has a cusp [(c)~(e)], and has already lost its cusp (f).

A source with the life span 0 <t < T gives rise to a caustic, l.e. to a set
of tangential wave fronts with a cusped envelope, only during the following
finite interval of observation time:

M(M?*-1)ljc<tp < M[M?*(1 +aT/u)® = 1)i/c, (58)

where M = u/c and | = c?/a with u, ¢, and a standing for the source
speed at t = 0, the wave speed, and the constant acceleration of the source,
respectively. For aT/u < 1, therefore, the duration of the caustic, 3M?*T, is
proportional to that of the source.

Moreover, a cusped envelope begins to form in the case of a short-lived
source only after the waves have propagated a finite distance away from the
source. The distance of the caustic from the position of the source at the

retarded time is given by
Rp = 6p¥(Bp% ~ DI, (59)

where Bp = (u+atp)/c and tp is the observation time. This distance can be
long even when the duration of the source is short because there is no upper
limit on the value of the length I (= ¢?/a) that enters (58) and (59): ! tends
to infinity for a — 0 and is as large as 1018 cm when a equals the acceleration
of gravity. Thus Rp can be rendered arbitrarily large, by a suitable choice of
the parameter [, without requiring either the duration of the source (T') or
the retarded value (ﬂp%c) of the speed of the source to be correspondingly
large.

This means that, when either M or | is large, the waves emitted by a
short-lived source do not focus to such an extent as to form a cusped envelope
until they have travelled a long distance away from the source. The period
during which they then do so can be controlled by adjusting the parameters
MandT.

The collection of the cusp curves of the envelopes that are associated
with various source elements constitutes a ring-shaped wave packet. This
wave packet is intercepted only by those observers who are located, during

its life time (58), on its trajectory
e=(op} -1}, (=187 - 3BP0 1, (60)

where £ represents the distance (in units of [) of the observer from the rec-
tilinear path of the source, say the z-axis, and ¢ stands for the difference
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between the Lagrangian coordinates z=z—ut~- %at2 of the source point
and zp = zp — utp — %aip2 of the observation point.

It is possible to limit the spatial extent of the wave packet embody-
ing the large-amplitude pulse by enclosing the path of the source within an
opaque cylindrical surface which has a narrow slit parallel to its axis, a slit
acting as an aperture that would only allow an arc of the ring-shaped wave
packet to propagate to the far field. The volume occupied by the result-
ing wave packet could then be chosen at will by adjusting the width of the
aperture and the longitudinal extent of the source distribution.

B. Compact sources of intense broadband radiation

In the near zone, the radiation that is generated by the invention can
be arranged to have many features in common with synchrotron radiation.
Most experiments presently carried out at large-scale synchrotron facilities
could potentially be performed by means of a polarization synchrotron, i.e.
the compact device described in Sec. VI. This device has applications, as
a source of intense broadband radiation, in many scientific and industrial
areas, e.g. in spectroscopy, in semiconductor lithography at very fine length
scales, and in silicon chip manufacture involving UV techniques.

The spectrum of the radiation generated in a polarization synchrotron

extends to frequencies that are by a factor of the order of (c©2/a)? higher
than the characteristic frequency €2 of the fluctuations of the source itself (c
and a are the speed of light and the acceleration of the source, respectively).
For a polarizable medium consisting of a 1 m arc of a circular rod whose
diameter is ~ 10 m [see Fig. (7b)], a superlminal source motion is achieved
by an applied voltage that oscillates with the frequency ~ 10 MHz. If the
amplitude of the resulting polarization current is in addition modulated at
~ 500 MHz, then the device would radiate at ~ 1 THz.
_ In the case of the source elements that approach the observer with the
~ wave speed and zero acceleration, the interval of retarded time 6t during
which a set of waves are emitted is significantly longer than the interval of
observation time 6tp during which the same set of waves are received.

For a rectilinearly moving superluminal source, the ratio dt/dtp is given
by 23 (u?/c? - 1)%(a5tp/c)"§, where u is the retarded speed of the source
and a its constant acceleration. This ratio increases without bound as a
approaches zero. Regardless of what the characteristic frequency of the tem-
poral fluctuations of the source may be, therefore, it is possible to push the
upper bound to the spectrum of the emitted radiation to arbitrarily high
frequencies by making the acceleration a small. [Note that the emission pro-
cess described here remains different from the Cerenkov process, in which a
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exactly equals zero, even in the limit a — 0.]

The relationship between ¢t and dtp is dtp = Lw?(8t)® if the source
moves circularly with the angular frequency w. Thus the spectrum of the
spherically decaying part of the radiation that is generated by accelerated
superluminal sources extends to frequencies which are by a factor of the
order of (c€2/a)? or (€2/w)? higher than the characteristic frequency  of the
modulations of the source amplitude.

C. Long-range and high-bandwidth telecommunications

There are at present no known antennas in which the emitting elec-
tric current is both volume distributed and has the time dependence of a
travelling wave with an accelerated superluminal motion. A travelling wave
antenna of this type, designed on the basis of the principles underlying the
present invention, generates focused pulses that not only are stronger in the
far field than any previously studied class of signals, but can in addition be
beamed at only a select set of observers for a limited interval of time: the
constituent waves whose constructive interference gives rise to the propagat-
ing wave packet embodying a given pulse come into focus (develop a cusped
envelope or a caustic) only long after they have emanated from the source
and then only for a finite period (Fig. 9).

The intensity of the waves generated by this novel type of antenna
decay much more slowly over distance than that of conventional radio or
light signals. In the case of conventional sources, including lasers, if the
transmitter (source) to receiver (destination) distance doubles, the power of
the signal is reduced by a factor of four. With the present invention, the
same doubling of distance only halves the available signal. Thus the power
required to send a radio signal from the Earth to the Moon by the present
transmitter would be 100 million times smaller than that which is needed in
the case of a conventional antenna.

The emission mechanism in question can therefore be used to convey
telephonic, visual and other electronic data over very long distances without
significant attenuation. In the case of ground-to-satellite communications,
the power required to beam a signal would be greatly reduced, implying
that either far fewer satellites would be required for the same bandwidth or
each satellite could handle a much wider range of signals for the same power

output.

D. Hand-held communication devices

A combined effect of the slow decay rate and the beaming of the new
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radiation is that a network of suitably constructed antennae could expand
the useable spectrum of terrestrial electromagnetic broadcasts by a factor of
s thousand or more, thus dispensing with the need for cable or optical fibre
for high-bandwidth communications.

The evolution of the Internet, real-time television conferencing and re-
lated information-intense communication media means that there is a grow-
ing demand for cheap high-bandwidth aerials. Highly compact aerials for
hand-held portable phones and/or television/Internet connections based on
the present invention can handle, not only much longer transmitter-to-receiver
distances than those currently available in cellular phone systems, but also
much higher bandwidth.

Far fewer ground based aerial structures are required to obtain the
same area coverage. Because there would be no cross-talk between any pairs
of transmitter and receiver, the effective bandwidth of free space could be
increased many thousand-fold, thus allowing, say, for video transmission be-

tween hand-held units.
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APPENDIX A: ASYMPTOTIC EXPANSIONS OF
THE GREEN’S FUNCTIONS

In this Appendix, we calculate the leading terms in the asymptotic
expansions of the integrals (16), (34), (42) and (52) for small ¢4 — ¢, 1.
for points close to the cusp curve (12) of the bifurcation surface (or of the
envelope of the wavefronts). The method—originally due to Chester et al.
(Proc. Camb. Phil. Soc., 54, 599, 1957)—which we use is a standard one
that has been specifically developed for the evaluation of radiation integrals
involving caustics (see Ludwig, Comm. Pure Appl. Maths, 19, 215, 1966).
The integrals evaluated below all have a phase function g(p) whose extrema

(¢ = pa) coalesce at the caustic (12).
As long as the observation point does not coincide with the source

point, the function g(y) is analytic and the following transformation of the
integration variables in (16) is permissible:

1,,3

g(p) = 3® —c’v+c, (A1)

where v is the new variable of integration and the coeflicients
cr=(3)¥(ps —¢-)% and ca=3(d4 +9¢-) (A2)

are chosen such that the values of the two functions on opposite sides of (Al)
coincide at their extrema. Thus an alternative exact expression for Go is

+o00
Go = / dvfo(1)8(30° — c2%v + ¢z — B), o (43)

-0

in which
fo(v) = R™ldp/dv. (A4)

Close to the cusp curve (12), at which ¢ vanishes and the extrema v =
+¢; of the above cubic function are coincident, fo(v) may be approximated

by po + gov, With
Do = %(folx/:c] + folu:—cl)’ (AS)

and
go = %01_1(f0|,,___Cl - f0|,,=_cl)- (A6)

The resulting expression

+00
Go ~ / dv(po + QOV)5(%V3 —a?v+e—¢) (A7)

-0
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will then constitute, according to the general theory, the leading term in the
asymptotic expansion of Go for small ¢;.

To evaluate the integral in (A7), we need to know the roots of the cubic
equation that follows from the vanishing of the argument of the Dirac delta
function in this expression. Depending on whether the observation point is
located inside or outside the bifurcation surface (the envelope), the roots of

W —cvt+e=0 (A8)
are given by
v = 2¢; cos(Znm + 3 arccos x), Ix| <1, (A9a)
for n =0, 1 and 2, or by
v = 2cysgn(x) cosh(3arccosh|x|), x| > 1, (A9D)

respectively, where
XE[p- %(¢+ + ¢—)]/[%(¢+ —¢_)]= %(Gb —c2)/er (A10)

Note that x equals +1 on the sheet ¢ = ¢, of the bifurcation surface (the

envelope) and —1 on ¢ = ¢_.
The integral in (A7), therefore, has the following value when the obser-

vation point lies inside the bifurcation surface (the envelope):

+c0 .
/ dvé(3v®—ciPvtco) = 2 _pc1m?|dcos?(Enm+3 arccosx)—ll_l, Ix| < 1.

—o0
(A11)
Using the trignometric identity 4 cos® & — 1 = sin 3a/ sin o, we can write this
-as
+o00 . 2
/ dvs(1vd —ci?v 4+ o) = (1 - x*)72 > |sin(4nm + 3 arccos X)|
- n=0

=2¢;7%(1 - Xz)—% cos(zarcsinx), x| <1, (A12)

in which we have evaluated the sum by adding the sine functions two at a

time.
When the observation point lies outside the bifurcation surface (the

envelope), the above integral receives a contribution only from the single
value of v given in (A9b) and we obtain

+00
/ dvd(31® — v +c) = 172 (x* - 1 % sinh(}arccosh(x]), Ix| > 1,
~00
(A13)

35



WO 00/14750 PCT/GB99/02943

where this time we have used the identity 4cosh’a — 1 = sinh 3a/ sinh a.
The second part of the integral in (A7) can be evaluated in exactly the

same way. It has the value

+00 2
/ dvvé (3 —aiPv+ ) = 2¢1 71 - x2)"? Z | sin($nm + L arccosx)|
—oo n=0
x cos(Znm + 3 arccos x)
= —2¢;7 1 - X2)—% sin(% arcsiny), |xl <1, (Al4)
when the observation point lies inside the bifurcation surface (the envelope),
and the value

1

+00 . '
/ dvvs(33—ci?v+cz) = 11 (x2—1)"2sgn(x) sinh(3arccosh|x|), x| > 1,
—00
(A15)
when the observation point lies outside the bifurcation surface (the envelope).

Inserting (A12)-(A15) in (A7), and denoting the values of Gp inside
and outside the bifurcation surface (the envelope) by Go™ and Go°*, we

obtain

Go™ ~ 2¢c17%(1— x?) ™% [po cos(3 arcsin x) — 190 sin(2arcsinx)], x| <1,
(A16)

and

Go®™ ~ 2 (x% - 1)~ 2 [po sinh(}arccosh|x]|) + c1gosgn(x) sinh(2arccosh|x|)],
IxI>1,  (417)

for the leading terms in the asymptotic approximation to Gp for small ¢;.
The function fo(v) in terms of which the coefficients po and go are
defined is indeterminate at v.= ¢; and v = —¢;: differentiation of (A1) yields
do/dv = (v* — c12)/(8g/dp) the zeros of whose denominator at ¢ = p_ and
¢ = g, respectively coincide with those of its numerator at v = +c; and
v = —c;. This indeterminacy can be removed by means of ’'Hopital’s rule

by noting that

d(p V2 - 012 2v
dy _r-a’ _ , A18
| T TG0 |y, = TG D
i.e. that .
dy _ ( +2¢; ) : _ (2a1Rg)? (A19)
dV v==+c 829/8‘102 =P A-‘} ’

36



WO $0/14750 PCT/GB95/02943

in which we have calculated (8%g/8¢?),, from (7) and (8). The right-hand
side of (A19) is, in turn, indeterminate on the cusp curve of the bifurcation
surface (the envelope) where ¢; = A = 0. Removing this indeterminacy by
expanding the numerator in this expression in powers of A%, we find that
dy/dv assumes the value 23 at the cusp curve.

Hence, the coefficients po and go that appear in the expressions (A8)
and (A9) for Gy are explicitly given by

e

po = (w/c)(her)F(RZ? + RIT)A, (A20))

and

o

g = (w/o)(2e) F(RTY - RyE)a™H (A21)

[see (A4)—-(AB) and (A19)].
In the regime of validity of (A8) and (A9), where A is much smaller
than (7372 — 1)%, the leading terms in the expressions for Ry, c1, po and qo

are

Ry = (7372 - 1)} £ (7272 - 1)"3 A1 + 0(8), (A22)
e = 273 (7377 — 1)"3AT + O(A), (A23)
po = 28 (/) (7% — 1)7F + O(A1), (424)
and
00 = 27 ¥ (w/c) (722 — 1)1 + O(AD). (A25)

These may be obtained by using (9) to express 2 everywhere in (10), (11)
and (A2) in terms of A and 7, and expanding the resulting expressions in
powers of A?%. The quantity A in turn has the following value at points
0< 2 —2<(Fb—1)1(72 1)

A =272 - D)} (7 - 1)} (5 — £) + O[(c — 97, (A26)

in which 2 is given by the expression with the plus sign in (12b).
For an observation point in the far zone (7p > 1), the above expressions

reduce to

Bu=rip, o= 2b(FEp)H(1 -7 (5 - 8)3, (A27)
A = 27p(F2 — 1) (3 - 2), (A28)
po =24 (w/e)(Fpf)™Y, o= 275 (w/)(FPF)7, (A29)
and 3 3 8
x =~ 3(377p)2 (1 — 7)1 (¢ — dc)/ (2. — 2)%, (A30)
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in which 2. — 2 has been assumed to be finite.

Evaluation of the other Green’s functions, G,, G, and Gg, entails
calculations which have many steps in common with that of Go. Since the
integrals in (34), (42) and (52) differ from that in (16) only in that their
integrands respectively contain the extra factors fi, &, and I X &, they can
be rewritten as integrals of the form (A3) in which the functions

fl (1/) = flf(), fg(l/) = é(pfO and fg(l/) =n X éLpfO (A31)

replace the fo(v) given by (A4).

If po and go are correspondingly replaced, in accordance with (A5) and
(A6), by
Pi = S(f| g, +Blpep)  EF=L23 (A32)

and
ar = Jer (oo, —filee)y  EEL23 (A33)

then every step of the analysis that led from (A7) to (A8) and (A9) would
be equally applicable to the evaluation of Gg. It follows, therefore, that

Gii" ~ 2721 - x2) ™% [p cos(3 arcsin x) — 19k sin(2 arcsinx)],  Ix| <1,
(A34)

and

G ~ e 7 ()% - 1)‘%[p;c sinh(3arccosh|x|)
+ crqesgn(x) sinb(Zarccosh|x])], Ix|>1, (A35)

constitute the uniform asymptotic approximations to the functions Gy inside
and outside the bifurcation surface (the envelope) Ix] = 1.

Explicit expressions for px and qx s functions of (r, z) may be found
from (8), (A19), and (A31)-(A33) jointly. The result is

wles
ol

PL _y-}(w/e)ett At {((Fp — i5Y) (BRI £ RYF) — 75 AR(RL

qi
a3 Al P, Y PP a3
B e, + 7Rt (BT 2 RTDe,, + (p - DRTT £ R1F)E),
(A36)
22 —o-Hw/o)(Frp) AT {(RE £ RS,
2
IR 2 AT 4 ANBIE F RID)Ie, ), (A37)
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and
P? b (/o)) o=t AH (- (ep - 2R
3

-

no 3 -
2

+AR(RIEF RIP)e,, + (2p - (R
1, A3 ~_3 a3 a3
+7p[AT(RI?F R~ (FP - 1)(RZ* £ R %)Jé.. ), (A38)

where use has been made of the fact that &, = —sin(y — ¢p)é,, + cos(¢ —
©op)é,,. Here, the expressions with the upper signs yield the py and those

with the lower signs the qx.
The asymptotic value of each G°"" is indeterminate on the bifurcation

surface (the envelope). If we expand the numerator of (A35) in powers of its
denominator and cancel out the common factor (x* — 1)# prior to evaluating
the ratio in this equation, we obtain

GkOUtI¢=¢t = GkOUtlx=i1 ~ (Pr % 2c1qx)/(3¢1?). (A39)

3
2

o |

out

This shows that G¢°"*|s=¢_ and G°"|s=y, remain different even in the
limit where the surfaces ¢ = ¢_ and ¢ = ¢4 coalesce. The coefficients qx
that specify the strengths of the discontinuities

GkOUt|¢=¢+ . Gkout|¢=¢_ ~ %Qk/cl (A40)
reduce to
a = f_g(w/c)(ffp)—3{(1 - %fz)'fpérp + (2P - é)ézp]a (A41)
Qe ~ 23 (w/c) (77 p) *eup, (A42)
and \
a5 = —28 (/) (77p) (2P — 2)&r, — FPés,] (A43)

in the regime of validity of (A27) and (A28).
When 0 < 3, — 2 < (72 — 1)37p, the expressions (A4l) and (A43)
further reduce to

qL =~ f%—(w/c)(f'fp)"znl, and qz ~ 23 (w/c)(77p) " 'ng, (A44)

)$e,, and nsz=(1-7"2)%8&,, +7&,,,

: (A45)
for in this case (12b)—with the adopted plus sign—can be used to replace
2 — 3p by (72 — 1)77p.
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CLATIMS

1. An apparatus for generating electromagnetic radiation

comprising:

a polarizable of magnetizable medium; and means of
generating, in a controlled manner, a polarization or
magnetisation current whose distribution pattern has an
accelerated motion with a superluminal speed, SO that the
apparatus generated both a non-spherically decaying

component and an intense spherically decaying component of

electromagnetic radiation.

2. An apparatus according to claim 1, wherein the

polarizable medium is a dielectric substrate.

3. An apparatus according to claim 2, wherein the means
for generating the polarization current distribution is an
array of electrode pairs positioned opposite to each other
along the substrate and a voltage applied to the electrodes
sequentially at a rate sufficient to induce a polarization
current whose distribution pattern moves along the

substrate with a speed exceeding the speed of light in

vacuo.

4. An apparatus according to any preceding claim, wherein
the spectrum of the emitted electromagnetic radiation

contains frequencies that are higher than the

characteristic frequency of modulations of the emitting

current.

5. An apparatus according to any preceding claim, where

the polarizable or magnetizable has the shape of a circle

or an arc of a circle.

6. An apparatus according to any of claims 1 to 4, where

in the polarizable or magnetizable medium has a rectilinear

shape.
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7. An apparatus according to claim 6, wherein the

distribution pattern of the current can be accelerated
through the speed of light in such a way that the envelope
of the wave fronts emitted by each volume element of this

source possesses a cusp for a specific period of time.

8. A compact polarization synchrotron comprising an
apparatus according to claims 4 and 5, arranged to generate

intense, focused pulses of electromagnetic radiation with

high frequencies in the near zone.

9. A device according to claims 7 and 8, arranged for

spectroscopy.

10. A device according to claims 7 and 8, arranged for

silicon chip manufacture and semiconductor lithography at

very fine length scales.

11. A broad-band telecommunications antenna comprising an
apparatus according to any preceding claim, for conveying

telephonic, visual and other electronic data over very long

distances without significant attenuation.

12. A broad-band telecommunications antenna comprising an
apparatus according to claim 7, and means for controlling
the apparatus such that a generated pulse of
electromagnetic radiation is focused at a specific region

of interest, distant from the antenna, for a specific

period of time.

13. A network of antennae according to claims 11 and 12,
arranged to expand the effective bandwidth of free space

for terrestrial electromagnetic broadcasts and

communications.



10

15

20

25

30

WO 00/14750

42
14. A highly compact aerial according to claims 11, 12 and
13 to be used for hand-held portable phones and/or

television/Internet connections.

15. A device for medical diagnosis treatment comprising an
apparatus according to claim 7, and means for controlling
the apparatus such that a generated pulse of
electromagnetic radiation is focused at a specific region

of interest within the body for a specific period of time.

16. A device according to claim 15, arranged to irradiate

deep tumours selectively whilst sparing surrounding normal

tissue.

17. A device according to claim 15, arranged for radiation
pressure or thermocautery removal of thrombotic and embolic

vascular lesions without invasive surgery.

18. A device according to claim 15, arranged for three-

dimensional tomography.

19. A device according to claim 15, arranged for

absorption spectroscopy.

20. A device according to claim 15, arranged for confocal

scanning microscopy.

PCT/GB99/02943
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