

Patent Translate

Powered by EPO and Google

Notice

This translation is machine-generated. It cannot be guaranteed that it is intelligible, accurate, complete, reliable or fit for specific purposes. Critical decisions, such as commercially relevant or financial decisions, should not be based on machine-translation output.

DESCRIPTION JP4441306B2

Method for producing calcium-doped barium titanate

カルシウムドープチタン酸バリウムの製造方法

[0001]

The present invention relates to a method for producing calcium-doped barium titanate consisting of spherical primary particles with an average particle size of 1 μm or less.

本発明は、球状であって、平均粒径が1μm以下の一次粒子からなるカルシウムドープチタン酸バリウムの製造方法に関するものである。

[0002]

Barium titanate powder is widely used as a dielectric material for electronic components such as piezoelectric elements and PTC thermistors, and is particularly useful as a substrate for multi-layer ceramic capacitors. This multi-layer ceramic capacitor is generally manufactured by stacking ceramic dielectric layers and internal electrode layers alternately, pressing them together, and firing them to form an integrated structure. The barium titanate powder thus produced is slurried with a binder or the like and then sintered to form a ceramic dielectric layer. Recently, the ceramic dielectric layers have been made thinner to meet the demand for smaller size and larger capacity. In this case, it is necessary that the dielectric strength characteristics are good, that particle aggregation does not occur when the slurry is formed, that the density of the layer is uniform, and that the capacitance of the capacitor is sufficiently secured. In order to satisfy these requirements, the composite oxide that forms the dielectric ceramic layer, such as barium titanate, is required to have the following characteristics:

チタン酸バリウム粉末は、圧電素子やPTCサーミスタ等の電子部品の誘電体材料として広く応用されており、特に多積層セラミックコンデンサの基板用として有用である。この多積層セラミックコンデンサは、一般に、セラミック誘電体層と内部電極層とを交互に層状に重ねて圧着し、これ

を焼成し一体化して製造される。このように製造されたチタン酸バリウム粉末は、バインダー等にスラリー化された後、焼結してセラミック誘電体層を形成する。最近では、セラミック誘電体層を薄層化することで小型化かつ大容量化の要求に応じている。この場合、耐電圧特性が良好で、スラリー化時に粒子の凝集が生じず、層の密度が均一となり、さらにコンデンサの容量が充分に確保される必要があるが、このような要求を満足するために、チタン酸バリウム等の誘電体セラミック層を形成する複合酸化物には以下ののような特性が要求されている。

[0003]

(1) Ultrafine particles with an average particle size of 1 μm or less, spherical, and with a narrow particle size distribution.

(1) 平均粒径が 1 μm 以下の超微粒子で、球状であり、粒度分布が狭いこと。

(2) It has good crystallinity and a perovskite structure. (3) The Ba/Ti atomic ratio is extremely close to 1.00 and is controlled to an accuracy of 1/1000. (4) Excellent dispersibility when made into a slurry or paste. (5) Good sintering characteristics.

(2) 結晶性が良く、ペロブスカイト構造を有すること。 (3) Ba/Ti 原子比が 1.00 に極めて近く、1000 分の 1 の精度で制御されていること。 (4) スラリー化又はペースト化した際の分散性に優れること。 (5) 良好的な焼結特性を有すること。

[0004]

Conventionally, for example, barium titanate powder has been produced by a solid-state reaction in which a titanium compound and a barium compound are mixed and fired.

従来、例えばチタン酸バリウム粉末の場合、チタン化合物とバリウム化合物とを混合焼成する固相反応により製造されていた。

However, because such solid-state reactions involve reacting compounds at high temperatures, the resulting barium titanate powder has a relatively large particle size of about 0.5 μm , a wide particle size distribution, and an inconsistent shape, resulting in poor dispersibility when made into a slurry or paste. Furthermore, when the particle size of barium titanate is so large, there is a limit to how thin the ceramic dielectric layer can be made.

しかしながら、このような固相反応では化合物を高温で反応させるため、得られるチタン酸バリウム粉末は、粒径が0.5 μm 程度と比較的大きく、粒度分布が広く、かつ形状が一定でないことが、スラリー化又はペースト化した際の分散性に劣るものであった。また、チタン酸バリウムの粒径がこのように大きいと、セラミック誘電体層を薄層化することに限界があった。

[0005]

For this reason, it is known that liquid phase reaction methods such as hydrolysis and hydrothermal synthesis are preferable for obtaining ultrafine particle barium titanate powder with an average particle size of 1 μm or less (see, for example, Patent Documents 1 and 2).

このため、平均粒径 1 μm 以下の超微粒子チタン酸バリウム粉末を得るためには、加水分解法、水熱合成法等の液相反応法が好ましいことが知られている（例えば、特許文献 1 及び 2 参照。）。

Patent Document 1 discloses a method for producing a compound of the formula ABO_{3} (wherein A is a metal cation selected from Ba, Sr, Ca, Mg, Pb, and Nd, and mixtures thereof, and B is a metal cation selected from Ti, Zr, Nb, Hf, Zn, and Sn, and mixtures thereof), in which a compound selected from hydroxides, chlorides, nitrides, and acetates of metal A is mixed with an organic compound of metal B under alkaline conditions with high stirring energy.

特許文献 1 では、式 ABO_{3} (式中、A は Ba、Sr、Ca、Mg、Pb、及び Nd 並びにその混合物から選ばれた金属カチオンであり、B は Ti、Zr、Nb、Hf、Zn 及び Sn 並びにその混合物から選ばれた金属カチオンである) の製造方法として、金属 A の水酸化物、塩化物、窒化物、酢酸塩から選ばれた化合物と、金属 B の有機化合物とを、アルカリ性で高攪拌エネルギー条件下で混合する方法が開示されている。

[0006]

In addition, Patent Document 2 discloses a general formula $A_{\text{sub}} x \text{ (BO}_{\text{sub}} 3 \text{)}_{\text{sub}} y$ (A is selected from Li^{+} , Na^{+} , K^{+} , Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} and La^{3+} , B is selected from Ti^{4+} , Zr^{4+} , Sn^{4+} , Hf^{4+} , Nb^{5+} and Ta^{5+} , x is equal to the valence of the anion $\text{BO}_{\text{sub}} 3$, and y is the valence of the cation A. The publication discloses a method for producing a crystalline perovskite powder of a valence (equivalent to the atomic valence of the metal A), which comprises contacting, under stirring, an aqueous solution containing an inorganic or organic salt or organometallic compound of at least one type of metal A and an inorganic or organic salt or organometallic compound of at least one type of metal B in an A/B ratio close to the stoichiometric value corresponding to the general formula, with an aqueous base solution preheated to a temperature of 70 to 100°C, which contains at least an inorganic or organic base in an amount greater than the stoichiometric amount corresponding to the general formula.

また、特許文献2では、一般式 $A_{\text{sub}} x \text{ (BO}_{\text{sub}} 3 \text{)}_{\text{sub}} y$ (Aは Li^{+} , Na^{+} , K^{+} , Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} 及び La^{3+} から選択され、Bは Ti^{4+} , Zr^{4+} , Sn^{4+} , Hf^{4+} , Nb^{5+} 及び Ta^{5+} から選択され、

x は陰イオン B O₃ の原子価に等しく、 y は陽イオン A の原子価に等しい) の結晶性ペロブスカイト粉体の製造方法として、少なくとも 1 種の金属 A の無機若しくは有機塩又は有機金属化合物と少なくとも 1 種の金属 B の無機若しくは有機塩又は有機金属化合物とを前記一般式に対応する化学量論的値付近の A / B 比で含有する水溶液と、少なくとも前記一般式に対応する化学量論的量より多い量の無機又は有機塩基を含有する 70 ~ 100 °C の温度に予備加熱された塩基水溶液とを、攪拌しながら接触させることからなる製造方法が開示されている。

[0007]

特開平 1-286923 号公報

特開平 1-286923 号公報

特開平 7-232923 号公報

特開平 7-232923 号公報

[0008]

In the method of Patent Document 1, water and a surfactant are placed in a reaction vessel in advance, and a titanium compound of alkoxytitanium is brought into contact with barium hydroxide or barium hydroxide obtained by reacting barium chloride with an alkali such as sodium hydroxide under high-stirring conditions to cause a reaction.

上記特許文献 1 の方法は、予め反応容器中に水と界面活性剤を入れておき、この中にアルコキシチタンのチタン化合物と、水酸化バリウムあるいは塩化バリウムと水酸化ナトリウム等のアルカリとを反応させて得た水酸化バリウムを、高攪拌条件下で接触させて反応させているものである。

In such a method, it is difficult to maintain a high pH during contact and reaction between the titanium compound and the barium compound, making it difficult to maintain a uniform reaction, and there is a problem in that it is difficult to control the Ba/Ti atomic ratio of the barium titanate produced.

このような方法の場合、チタン化合物とバリウム化合物の接触、反応の際の pH が高く保持されることが困難なため、均一な反応が保持され難く、生成するチタン酸バリウムの Ba/Ti 原子比の制御が困難であるという問題がある。

[0009]

Furthermore, in the method of Patent Document 2, a mixed aqueous solution of an acidic titanium compound and a barium salt is used as a starting material, and therefore, the preparation of the mixed aqueous solution is difficult, and in particular, there is a limit to the concentrations of the titanium compound and the barium salt in the mixed aqueous solution.

また、上記特許文献2の方法では、酸性のチタン化合物とバリウム塩の混合水溶液を出発原料としているため、その混合水溶液の調製が困難であり、特に混合水溶液中のチタン化合物及びバリウム塩の濃度には限界があった。

Specifically, when a mixed aqueous solution of titanium tetrachloride and barium chloride is prepared, the total concentration of metal ions is limited to about 1.2 mol/l, which causes a problem in productivity.

具体的には、四塩化チタンと塩化バリウム混合水溶液を調製した場合、金属イオンの合計濃度は1.2 mol/l程度までと限界があり、生産性に問題があった。

Furthermore, if carbonate is mixed into the starting liquid material, it is difficult to control the Ba/Ti atomic ratio, and the carbonate is mixed into the powdered salt, which is the reaction product, resulting in a decrease in quality, and ultimately there is a problem that the dielectric constant cannot be increased unless the product is fired.

また、出発原料液中に炭酸塩が混入した場合、Ba/Ti原子比の制御が困難であり、反応生成物である粉末塩中に炭酸塩が混入して品質の低下を招き、最終的には焼成しなければ比誘電率が上がらないといった問題もある。

Furthermore, although the barium titanate obtained by the above-mentioned conventional technology has fine particles, it has poor dispersibility when made into a slurry, and

ultimately agglomerates, leaving the problem that it is difficult to form a thin ceramic dielectric layer.

またさらに、上記従来技術で得られたチタン酸バリウムは粒子が細かいものの、スラリー化した際の分散性が悪く、結局は凝集してしまい、セラミック誘電体層の薄層化が困難であるという問題が残されていた。

[0010]

Furthermore, it is generally known that the reduction resistance and DC bias characteristics of barium titanate can be improved by substituting calcium for the barium sites to form calcium-doped barium titanate.

さらに、一般に、チタン酸バリウムは、バリウムサイトをカルシウムで置換してカルシウムドープチタン酸バリウムにすることによって、チタン酸バリウムの耐還元性、DCバイアス特性が改善されることが知られている。

Methods for producing calcium-doped barium titanate are also disclosed in the examples of Patent Documents 1 and 2, but as mentioned above, the methods in these patent documents do not maintain a uniform reaction, making it difficult to control the atomic ratios of Ba, Ca, and Ti.

カルシウムドープチタン酸バリウムの製造方法としては、上記特許文献1及び特許文献2の実施例等においても開示されているが、上述した通りこれら特許文献の方法では均一な反応が保持されないため、Ba、Ca及びTiの原子比の制御が困難であるという問題を抱えている。

Therefore, the produced calcium-doped barium titanate has a low dielectric constant, and there is a demand for an improvement in the dielectric constant.

このため、製造されたカルシウムドープチタン酸バリウムは誘電率が低く、誘電率の改善が要求されている。

[0011]

Therefore, the present invention aims to provide a method for producing calcium-doped barium titanate that fully satisfies the above characteristics (1) to (5), i.e., ultrafine particles with an average particle size of 1 μm or less, spherical, narrow particle size distribution, good crystallinity, a stable $[\text{Ca}+\text{Ba}]/\text{Ti}$ atomic ratio, the ability to stably control the content of each of the Ca, Ba, and Ti atoms at high concentrations, excellent dispersibility when made into a slurry or paste, and good sintering characteristics, and that also has ferroelectricity.

そこで、本発明は、上記（1）～（5）の特性、すなわち、平均粒径が1μm以下の超微粒子で、球状であり、粒度分布が狭く、結晶性が良好であり、[Ca + Ba] / Ti 原子比が安定しており、かつCa、Ba及びTiの各原子の含有率を高濃度で安定的に制御でき、スラリー化又はペースト化した際の分散性に優れ、良好な焼結特性を有するという特性を充分に満足し、かつ強誘電性を有するカルシウムドープチタン酸バリウムの製造方法を提供することを目的としている。

[0012]

As a result of extensive research into calcium-doped barium titanate powder that can achieve the above-mentioned object, the present inventors have found that by preparing an aqueous solution of a titanium compound, an aqueous solution of a barium compound, and an aqueous solution of a calcium compound as starting materials and continuously contacting these aqueous solutions of three types of compounds, it becomes easy to control the atomic ratio of Ca, Ba, and Ti, and the desired titanium-based composite oxide powder can be obtained, which led to the completion of the present invention.

本発明者らは、上記目的を達成し得るカルシウムドープチタン酸バリウム粉末について鋭意検討した結果、出発原料として、チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液をそれぞれ用意し、これら3種類の化合物の水溶液を連続的に接触させることによって、Ca、Ba及びTiの原子比の制御が容易となり、目的とするチタン系複合酸化物粉末が得られることを見出し、本発明を完成するに至った。

[0013]

Therefore, the method for producing calcium-doped barium titanate of the present invention was made based on this finding, and is characterized in that, in the method for producing calcium-doped barium titanate, one or more aqueous solutions of titanium compounds selected from halides, hydroxides, nitrates, sulfates, acetates, perchlorates, and oxalates, one or more aqueous solutions of barium compounds selected from halides, hydroxides, nitrates, sulfates, acetates, and perchlorates are added to and contacted with an alkaline aqueous solution, the aqueous solution of barium compounds is added to the alkaline aqueous solution without being mixed with the aqueous titanium compound and calcium aqueous solutions before being added to the alkaline aqueous solution, and the aqueous titanium compound and aqueous calcium compound solutions are contacted as a mixed aqueous solution before being mixed with the aqueous barium compound solution.

したがって、本発明のカルシウムドープチタン酸バリウムの製造方法は、このような知見に基づきなされたものであって、アルカリ水溶液中に、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩、過塩素酸塩、しゅう酸塩から選択される1種又は2種以上のチタン化合物水溶液、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩、過塩素酸塩から選択される1種又は2種以上のバリウム化合物水溶液、及びハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩、過塩素酸塩から選択される1種又は2種以上のカルシウム化合物水溶液を添加し接触させるカルシウムドープチタン酸バリ

ウムの製造方法において、前記バリウム化合物水溶液は、前記アルカリ水溶液中に添加する以前に、前記チタン化合物水溶液および前記カルシウム水溶液と混合させずに、前記アルカリ水溶液中に添加し、前記チタン化合物水溶液及び前記カルシウム化合物水溶液は、前記バリウム化合物水溶液との混合前に、予め混合水溶液として接触させることを特徴としている。

[0014]

According to the method for producing calcium-doped barium titanate of the present invention, it is possible to obtain calcium-doped barium titanate that fully satisfies the following characteristics: ultrafine particles with an average particle size of 1 μm or less, spherical, with a narrow particle size distribution, good crystallinity, a stable $[\text{Ca}+\text{Ba}]/\text{Ti}$ atomic ratio, the content of each of Ca, Ba, and Ti atoms can be stably controlled at a high concentration, has excellent dispersibility when made into a slurry or paste, and has good sintering characteristics, and is also ferroelectric.

本発明のカルシウムドープチタン酸バリウムの製造方法によれば、平均粒径が 1 μm 以下の超微粒子で、球状であり、粒度分布が狭く、結晶性が良好であり、 $[\text{Ca}+\text{Ba}]/\text{Ti}$ 原子比が安定しており、かつ Ca、Ba 及び Ti の各原子の含有率を高濃度で安定的に制御でき、スラリー化又はペースト化した際の分散性に優れ、良好な焼結特性を有するという特性を充分に満足し、かつ強誘電性を有するカルシウムドープチタン酸バリウムを得ることができる。

[0015]

A more preferred embodiment of the present invention will now be described.

以下、本発明のより好適な実施の形態について説明する。

The method for producing calcium-doped barium titanate of the present invention involves preparing an aqueous solution of a titanium compound, an aqueous solution of a barium compound, and an aqueous solution of a calcium compound, and then adding and contacting these aqueous solutions of compounds with a separately prepared alkaline aqueous solution, thereby producing calcium-doped barium titanate having the above-mentioned properties.

本発明のカルシウムドープチタン酸バリウムの製造方法は、チタン化合物水溶液と、バリウム化合物水溶液と、カルシウム化合物水溶液とをそれぞれ調製し、別途調製したアルカリ水溶液中に、これらの化合物水溶液を添加し接触することにより、上記特性を有するカルシウムドープチタン酸バリウムを製造することができる。

The aqueous solutions of the compounds and the contacting methods therewith in the present invention will be explained below.

以下、本発明における各化合物水溶液及びこれらの接触方法について説明する。

[0016]

(1) Aqueous Titanium Compound Solution The titanium compound in the aqueous titanium compound solution of the present invention is one or more selected from halides, hydroxides, nitrates, sulfates, acetates, perchlorates and oxalates.

(1) チタン化合物水溶液 本発明におけるチタン化合物水溶液のチタン化合物としては、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩、過塩素酸塩およびしう酸塩から選ばれる1種又は2種以上が用いられる。

Specific compounds include titanium tetrachloride, titanium trichloride, titanium hydroxide, titanyl sulfate, etc., and among these, titanium tetrachloride is preferably used.

具体的な化合物としては、四塩化チタン、三塩化チタン、水酸化チタン、硫酸チタニル等であり、これらの中でも四塩化チタンが好ましく用いられる。

[0017]

The titanium ion concentration in the aqueous titanium compound solution is suitably 0.1 mol /l or more, preferably 0.3 mol/l or more, and from the viewpoint of improving purity, 0.4 to 3.0 mol/l is preferred.

また、チタン化合物水溶液におけるチタンイオン濃度は、0.1 mol/l以上が適当であり、好ましくは0.3 mol/l以上、純度向上の観点からは0.4～3.0 mol/lが好ましい。

If the titanium ion concentration is less than 0.1 mol/l, the reaction rate drops drastically, and therefore a higher concentration is preferred in order to improve productivity.

このチタンイオン濃度が0.1 mol/l未満では、反応速度が極端に低下するため、生産性向上のためにはより高い濃度が好ましい。

In the present invention, an aqueous solution of a titanium compound alone is prepared and used, so that the concentration of this aqueous titanium compound solution can be increased, which makes it possible to improve productivity.

本発明においては、チタン化合物の単独の水溶液を調製して用いることから、このチタン化合物水溶液の濃度をより高くすることができ、その結果生産性を向上することが可能となる。

[0018]

Furthermore, it is preferable that the temperature of the aqueous titanium compound solution is preheated to and maintained at 30 to 90°C, preferably 40 to 50°C.

さらに、チタン化合物水溶液の温度は、30～90°C、好ましくは40～50°Cに予熱して保持しておくことが好ましい。

If the temperature exceeds 60°C, the titanium compound will hydrolyze and precipitate a solid, making it difficult to obtain a uniform aqueous solution, and as a result, it will be difficult to control the atomic ratio of Ca, Ba and Ti in the product.

この温度が60°Cを超えるとチタン化合物が加水分解して固体物が析出し、均一な水溶液が得られにくくなり、結果として生成物のCa、Ba及びTiの原子比の制御が困難となる。

[0019]

The water used to prepare the aqueous titanium compound solution in the present invention is preferably water that has been deionized with an ion exchange resin or the like, and further, water that has been degassed to remove excess gases such as carbon dioxide.

また、本発明におけるチタン化合物水溶液を調製する水としては、イオン交換樹脂等で脱イオン処理した水、さらには二酸化炭素などの余損ガスを脱気処理した水を使用することが好ましい。

It is preferable to dehydrochlorinate the titanium compound aqueous solution by means of bubbling argon gas or the like before contacting it with the barium compound aqueous solution and the calcium compound aqueous solution, since this reduces the chlorine content in the resulting calcium-doped barium titanate powder.

なお、チタン化合物水溶液は、バリウム化合物水溶液及びカルシウム化合物水溶液と接触させる前に、アルゴンガスをバーリングさせる等の手段により脱塩酸処理をしておくと、得られるカルシウムドープチタン酸バリウム粉末中の塩素分が低下するので好ましい。

[0020]

(2) Aqueous Solution of Barium Compound The barium compound used in the present invention is one or more compounds selected from the group consisting of halides, hydroxides, nitrates, sulfates, acetates and perchlorates.

(2) バリウム化合物水溶液 本発明におけるバリウム化合物としては、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩および過塩素酸塩から選ばれる1種又は2種以上が用いられる。 Specific compounds include barium chloride, barium hydroxide, barium nitrate, barium sulfate, barium acetate, etc., and among these, barium chloride and barium hydroxide are preferably used.

具体的な化合物としては、塩化バリウム、水酸化バリウム、硝酸バリウム、硫酸バリウム、酢酸バリウム等が挙げられ、これらの中でも塩化バリウム、水酸化バリウムが好ましく用いられる。

In the case of halides such as barium chloride, nitrates, sulfates, acetates, etc., it is more effective to first contact the barium chloride with an alkali metal hydroxide such as NaOH or KOH to generate barium hydroxide, which can then be used.

また、塩化バリウムなどのハロゲン化物、硝酸塩、硫酸塩、酢酸塩等の場合、バリウム塩化物に NaOH あるいは KOH 等のアルカリ金属の水酸化物を予め接触させ、水酸化バリウムを生成させてこれを用いると、より効果的である。

[0021]

The barium ion concentration of the aqueous barium compound solution in the present invention is suitably 0.05 mol/l or more, and preferably 0.1 to 2.0 mol/l.

また、本発明におけるバリウム化合物水溶液のバリウムイオン濃度は、0.05 mol/l 以上が適当であり、好ましくは 0.1 ~ 2.0 mol/l である。

If the barium ion concentration is less than 0.05 mol/l, the reaction rate drops significantly, so a higher concentration is preferred in order to improve productivity.

バリウムイオン濃度が 0.05 mol/l 未満では、反応速度が極端に低下するので、生産性向上のためにはより高い濃度が好ましい。

For example, the solubility of barium chloride is limited to approximately 1.2 mol/l, but when this is mixed with an aqueous solution of a titanium compound, the solubility is reduced to less than half.

例えば、塩化バリウムの溶解度は約1.2 mol/l しが限度であるが、これをチタン化合物水溶液との混合水溶液にすると、その溶解度は半分以下となる。

If the concentration is forced to be too high, the solution becomes heterogeneous, resulting in an inhomogeneous reaction.

無理に高濃度にすると、溶液が不均一となり、結果として反応が不均一となる。

In this way, in the present invention, a barium compound aqueous solution is prepared separately from the titanium compound aqueous solution and used as the raw material aqueous solution, so that the barium ion concentration can be made higher, as in the titanium compound aqueous solution, and as a result, productivity can be improved.

このように、本発明では、上記チタン化合物の水溶液とは別に、バリウム化合物水溶液を調製し原料水溶液として使用するので、上記チタン化合物水溶液と同様に、バリウムイオン濃度をより高くすることができ、その結果、生産性を向上させることができとなる。

[0022]

In the present invention, when the barium compound is, for example, a halide such as barium chloride, or a barium salt such as a nitrate, sulfate, or acetate, the barium salt is first converted into barium hydroxide, which is then brought into contact with an aqueous solution of a titanium compound and an aqueous solution of a calcium compound, thereby obtaining a calcium-doped barium titanate powder with a high purity, which is more effective.

本発明では、バリウム化合物が、例えば塩化バリウム等のハロゲン化物、硝酸塩、硫酸塩、酢酸塩等のバリウム塩である場合、これらバリウム塩を一旦水酸化バリウムに変換し、これをチタン化合物水溶液及びカルシウム化合物水溶液と接触させると、得られるカルシウムドープチタン酸バリウム粉末が高純度となり、より効果的である。

For example, in a method in which an aqueous solution of titanium tetrachloride, an aqueous solution of calcium chloride, and an aqueous solution of barium chloride are simultaneously brought into contact with an aqueous alkali solution, or in which a mixed aqueous solution of titanium tetrachloride, calcium chloride, and barium chloride is added to an aqueous alkali solution and brought into contact with the aqueous solution, chlorine is likely to remain in the reaction product, calcium-doped barium titanate.

例えば、四塩化チタン水溶液、塩化カルシウム水溶液及び塩化バリウム水溶液をアルカリ水溶液中に同時に接触させる方法や、あるいは四塩化チタン、塩化カルシウム及び塩化バリウムの混合水溶液をアルカリ水溶液中に添加し接触させる方法では、反応生成物であるカルシウムドープチタン酸バリウム中に塩素分が残留しやすい。

However, by converting the barium compound into an alkaline aqueous solution in advance and converting the barium compound into a hydroxide in advance, the reaction with the titanium compound proceeds more uniformly, and calcium-doped barium titanate with a lower chlorine content and higher purity can be produced.

しかしながら、上記バリウム化合物を予めアルカリ水溶液とし、バリウム化合物を水酸化物に予め変換することにより、チタン化合物との反応がより均一に進行し、塩素分の少ないより高純度のカルシウムドープチタン酸バリウムが製造できる。

[0023]

As the alkaline aqueous solution, an aqueous solution of an alkali metal hydroxide such as NaOH or KOH is used.

アルカリ水溶液としては、NaOHもしくはKOHのようなアルカリ金属水酸化物の水溶液が用いられる。

The concentration of such hydroxide is usually 0.2 to 15 mol/l, and is preferably a concentration sufficient to convert the barium compound into the hydroxide, that is, equal to or higher than the barium ion concentration.

このような水酸化物の濃度は、通常0.2～15 mol/lであり、バリウム化合物が水酸化物に変換するのに充分な濃度、つまりバリウムイオン濃度と同等かそれ以上であることが好ましい。

[0024]

Furthermore, in the present invention, barium hydroxide may be used as the alkali source instead of the hydroxides of alkali metals mentioned above.

さらに、本発明においては、上記のようなアルカリ金属の水酸化物を使用せず、水酸化バリウムをアルカリ源として使用してもよい。

That is, the aqueous barium compound solution may be prepared from barium hydroxide alone, or may be prepared from barium hydroxide and a barium compound other than barium hydroxide, such as barium chloride.

つまり、バリウム化合物水溶液は、水酸化バリウムのみから調製してもよく、また塩化バリウム等のような水酸化バリウム以外のバリウム化合物と水酸化バリウムから調製してもよい。

[0025]

The temperature of the aqueous barium compound solution is preferably preheated to 80 to 100°C, preferably the same temperature as that of the actual reaction system, and maintained at this temperature, since this promotes the reaction with the aqueous titanium compound solution.

また、バリウム化合物水溶液の温度は、80～100°C、好ましくは実際の反応系と同等の温度に予熱して保持しておくことが、チタン化合物水溶液との反応が促進されるので好ましい。

Furthermore, during the reaction of the aqueous titanium compound solution, the aqueous barium compound solution, and the aqueous calcium compound solution, it is preferable to keep the reaction temperature constant by limiting the temperature change to within $\pm 1^{\circ}\text{C}$, as this will stabilize the atomic ratio of Ca, Ba, and Ti in the resulting calcium-doped barium titanate.

さらに、チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液の反応中は、温度の変化を $\pm 1^{\circ}\text{C}$ 以内におさめて反応温度を一定に保持することが、得られるカルシウムドープチタン酸バリウムの Ca、Ba 及び Ti の原子比が安定するので好ましい。

[0026]

Furthermore, it is preferable to use water for preparing the aqueous barium compound solution of the present invention that has been deionized with an ion exchange resin or the like, and further that has been degassed to remove excess gases such as carbon dioxide.

さらに、本発明におけるバリウム化合物水溶液を調製する水としては、イオン交換樹脂等で脱イオン処理した水、さらには二酸化炭素などの余損ガスを脱気処理した水を使用することが好ましい。

[0027]

In the present invention, the alkaline aqueous solution of the barium compound obtained by the above-mentioned method may be used as it is, but it is more effective to perform a filtration treatment beforehand in order to facilitate control of the atomic ratios of Ca, Ba, and Ti and to achieve a high purity.

また、本発明においては、上記した方法により得られたバリウム化合物のアルカリ水溶液をそのまま用いても良いが、その前にろ過処理を行う方が、Ca、Ba及びTiの原子比制御の容易化や高純度化に効果的である。

For example, when NaOH is used as the alkali source, sodium carbonate contained as an impurity in the NaOH reacts with the barium compound, causing the precipitation of barium carbonate.

例えば、アルカリ源としてNaOHを使用した場合、NaOH中に不純物として含まれる炭酸ナトリウムがバリウム化合物と反応し、炭酸バリウムが沈殿する。

This can cause contamination during the reaction, so it is desirable to remove it in advance by filtration.

これは反応の際に汚染の原因となるので、ろ過により予め除去しておくことが望ましい。

In this respect, the method of the present invention, in which an aqueous solution of a titanium compound and an alkaline aqueous solution of a barium compound are prepared separately and then brought into contact with each other, can produce barium titanate of higher purity than, for example, a method in which a mixed solution of a titanium compound and a barium compound is added to an alkaline solution.

この点において、チタン化合物水溶液とバリウム化合物のアルカリ水溶液とを別々に調製し、接触させる本発明の方法は、例えばチタン化合物とバリウム化合物の混合溶液をアルカリ溶液中に添加する方法に比べ、純度の高いチタン酸バリウムを得ることができる。

[0028]

The alkaline aqueous solution of the barium compound thus prepared is preferably stored avoiding contact with the air, similar to the aqueous solution of the titanium compound.

このようにして調製されたバリウム化合物のアルカリ水溶液は、チタン化合物水溶液と同様に、大気への接触を避けて保存しておくことが望ましい。

It is more preferable to degas the alkaline aqueous solution of the barium compound before the reaction.

また、バリウム化合物のアルカリ水溶液は、反応前に脱気した方がより好ましい。

[0029]

(3) Aqueous Calcium Compound Solution The calcium compound used in the present invention is one or more selected from halides, hydroxides, nitrates, sulfates, acetates and perchlorates.

(3) カルシウム化合物水溶液 本発明におけるカルシウム化合物としては、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩および過塩素酸塩から選ばれる 1 種又は 2 種以上が用いられる。

Specifically, halides, hydroxides, etc. are used, and among these, calcium chloride is preferably used.

具体的には、ハロゲン化物、水酸化物等が使用されるが、これらの中でも、塩化カルシウムが好ましく用いられる。

[0030]

The calcium ion concentration of the aqueous calcium compound solution in the present invention is suitably 0.01 to 1 mol/l, and preferably 0.03 to 0.05 mol/l.

また、本発明におけるカルシウム化合物水溶液のカルシウムイオン濃度は、0.01～1 mol/l が適当であり、好ましくは0.03～0.05 mol/l に調製することが好ましい。

If the calcium ion concentration is less than 0.01 mol/l, the amount of calcium atoms substituting for the barium sites of barium titanate is insufficient, and the effect of suppressing particle growth is reduced when the resulting calcium-doped barium titanate is fired.

このカルシウムイオン濃度が0.01 mol/l 未満では、チタン酸バリウムのバリウムサイトに置換するカルシウム原子量が不足するため、生成カルシウムドープチタン酸バリウムを焼成した際、粒子成長を抑制する効果が低下する。

[0031]

Furthermore, in order to control the $[Ca + Ba]/Ti$ atomic ratio of the resulting calcium-doped barium titanate, it is desirable to preheat and maintain the temperature of the aqueous calcium compound solution at 30 to 90°C, preferably 40 to 50°C, similar to the temperature of the aqueous titanium compound solution.

さらに、カルシウム化合物水溶液の温度は、得られるカルシウムドープチタン酸バリウムの $[Ca + Ba]/Ti$ 原子比を制御するためにも、チタン化合物水溶液の温度と同様に、30～90°C、好ましくは40～50°Cに予熱して保持しておくことが望ましい。

[0032]

In addition, the water used to prepare the aqueous calcium compound solution in the present invention is preferably water that has been deionized with an ion exchange resin or the like, and further, water that has been degassed to remove excess gases such as carbon dioxide.

また、本発明におけるカルシウム化合物水溶液を調製する水としては、イオン交換樹脂等で脱イオン処理した水、さらには二酸化炭素などの余損ガスを脱気処理した水を使用することが好ましい。

[0033]

(4) Method for Contacting an Aqueous Solution of a Titanium Compound, an Aqueous Solution of a Barium Compound, and an Aqueous Solution of a Calcium Compound First, the alkali concentration of the aqueous solution of a barium compound is adjusted so that the pH during contact and reaction is maintained at 13 or higher, preferably 13.5 or higher, and more preferably 13.8 or higher.

(4) チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液の接触方法 ま
ず、接触時及び反応時の pH が 13 以上、好ましくは 13.5 以上、より好ましくは 13.8 以上
に保持されるようバリウム化合物水溶液のアルカリ濃度を調整しておく。

In order to maintain a predetermined pH during the reaction, it is also possible to supply a necessary amount of an alkaline aqueous solution such as an aqueous NaOH solution from a separate system.

反応中、所定の pH を保持するため、別系統から NaOH 水溶液等のアルカリ水溶液を必要量供給
することも可能である。

Preferably, an alkaline aqueous solution prepared to a predetermined concentration is
poured into a reaction vessel, and the aqueous titanium compound solution, the aqueous
barium compound solution, and the aqueous calcium compound solution are added to this
alkaline aqueous solution and brought into contact with each other.

好ましくは、予め反応容器に所定濃度に調製したアルカリ水溶液を注入し、このアルカリ水溶液中に前記チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液それぞれを添加し接触させる。

In this case, the aqueous alkaline solution is preferably heated in advance so that the reaction temperature reaches a predetermined reaction temperature after the aqueous titanium compound solution, the aqueous barium compound solution, and the aqueous calcium compound solution are added.

この際のアルカリ水溶液は、予め、反応温度が、チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液を添加した後に所定の反応温度になるよう加熱しておくことが好ましい。

In this way, by maintaining a constant pH during the reaction, a uniform reaction is maintained, resulting in the production of uniform calcium-doped barium titanate with a controlled atomic ratio of Ca, Ba, and Ti.

このように、反応中一定の pH を保持することによって、均一な反応が保持され、結果として Ca、Ba 及び Ti の原子比が制御された均一なカルシウムドープチタン酸バリウムを製造することができる。

[0034]

Furthermore, the calcium compound aqueous solution may be mixed with the titanium compound aqueous solution before contacting with the titanium compound aqueous solution and the barium compound aqueous solution to prepare a mixed aqueous solution of the titanium compound and the calcium compound, and this mixed aqueous solution may then be contacted with the alkaline aqueous solution of the barium compound.

さらに、上記カルシウム化合物水溶液は、チタン化合物水溶液及びバリウム化合物水溶液と接触させる前に、予めチタン化合物水溶液と混合し、チタン化合物とカルシウム化合物の混合水溶液を調製し、この混合水溶液をバリウム化合物のアルカリ水溶液と接触させてもよい。

[0035]

Furthermore, when the aqueous titanium compound solution, the aqueous barium compound solution, and the aqueous calcium compound solution are brought into contact with each other and reacted, it is necessary to control the molar ratio of the titanium compound, the barium compound, and the calcium compound. However, in order to carry out a uniform reaction, it is also preferable to maintain not only the molar ratio but also the absolute concentration of the titanium compound, the barium compound, or the calcium compound in the reaction system as constant as possible from the beginning of the reaction to the end of the reaction.

また、チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液を接触させて反応させる際に、チタン化合物、バリウム化合物及びカルシウム化合物のモル比を制御することも必要であるが、モル比だけでなく、チタン化合物、バリウム化合物あるいはカルシウム化合物の反応系内における絶対濃度を反応初期から反応終了までの間、なるべく一定に保つことも均一な反応を行うために好ましい様態である。

Therefore, in the method described above in which an aqueous alkaline solution is poured into a reaction vessel in advance and then an aqueous titanium compound solution, an aqueous barium compound solution, and an aqueous calcium compound solution are added thereto, the concentrations of the titanium compound, barium compound, and calcium compound are diluted in the early stages of the reaction, and the reaction occurs in a dilute state, so calcium-doped barium titanate with the specified atomic ratio of Ca, Ba, and Ti is not produced.

そのために、上述したような反応容器に予めアルカリ水溶液を注入し、その中にチタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液を添加する方法においては、反応初期の段階では、チタン化合物、バリウム化合物及びカルシウム化合物の濃度が希釈され、希薄状態で反応されるため、所定の Ca、Ba 及び Ti の原子比のカルシウムドープチタン酸バリウムが生成されない。

Therefore, the barium compound used in the barium compound aqueous solution, or the titanium compound used in the titanium compound aqueous solution, or a mixture of the titanium compound used in the titanium compound aqueous solution and the calcium compound used in the calcium compound aqueous solution is added to the alkaline aqueous solution in the reaction vessel.

そこで、反応容器中のアルカリ水溶液に予めバリウム化合物水溶液に使用したバリウム化合物、あるいはチタン化合物水溶液に使用したチタン化合物、あるいはチタン化合物水溶液で使用したチタン化合物とカルシウム化合物水溶液で使用したカルシウム化合物の混合物を添加しておく。

Among these, it is particularly desirable to add a barium compound to the alkaline aqueous solution in the reaction vessel, since the concentration of the barium compound affects the atomic ratio of Ca, Ba and Ti in the calcium-doped barium titanate produced.

このうち、特にバリウム化合物の濃度が生成するカルシウムドープチタン酸バリウムの Ca、Ba 及び Ti の原子比に影響するため、バリウム化合物を反応容器のアルカリ水溶液に添加することが望ましい。

[0036]

Next, the aqueous titanium compound solution, the aqueous barium compound solution, and the aqueous calcium compound solution, or the mixed aqueous titanium compound solution

and the aqueous calcium compound solution and the aqueous barium compound solution, are instantaneously and continuously supplied at a constant flow rate from their respective storage containers through pipes into the reaction container, and brought into contact with each other.

次いで、チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液を、もしくはチタン化合物水溶液とカルシウム化合物水溶液との混合水溶液及びバリウム化合物水溶液を、それぞれの貯蔵容器から配管を経て、一定の流量で瞬間的かつ連続的に反応容器内に供給し、接触させる。

The temperature at which the titanium compound aqueous solution, the barium compound aqueous solution, and the calcium compound aqueous solution are brought into contact is set to 80 to 200°C, preferably 80 to 100°C, more preferably 85 to 95°C, and is kept approximately constant to within $\pm 1^\circ\text{C}$ of the set temperature.

ここで、チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液を接触させる際の温度は、80～200°C、好ましくは80～100°C、より好ましくは85～95°Cに設定し、その設定温度に対し $\pm 1^\circ\text{C}$ となるようにほぼ一定にする。

[0037]

Then, the titanium compound aqueous solution, the barium compound aqueous solution, and the calcium compound aqueous solution are brought into contact with each other in a reaction vessel and reacted for a sufficient time to produce particulate calcium-doped barium titanate.

そして、反応容器内でチタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液を接触させ、充分な時間反応させることにより、粒子状のカルシウムドープチタン酸バリウムが生成する。

The calcium-doped barium titanate produced can be withdrawn by a method of continuously withdrawing it in a slurry state during the reaction (continuous reaction) or by a method of withdrawing it after the reaction has been completed in the reaction vessel (batch reaction).

生成したカルシウムドープチタン酸バリウムは、反応中にスラリー状態のまま連続的に抜き出す方法（連続反応）、あるいは反応容器で一旦反応を終了した後、抜き出す（バッチ反応）方法によつて抜き出すことができる。

[0038]

The calcium-doped barium titanate thus produced is preferably subjected to a heat treatment in a slurry state after the reaction (aging reaction).

このようにして生成したカルシウムドープチタン酸バリウムは、反応後にスラリー状態で加熱処理を行うことが望ましい（熟成反応）。

The temperature of this heat treatment is usually 80 to 100°C, which is the same as the reaction temperature mentioned above, or higher, for example, 100 to 200°C.

この加熱処理の温度は、通常、上記の反応温度と同じ80～100°Cあるいはそれ以上の温度、例えば100～200°Cで行われる。

The heat treatment time is usually from 1 minute to 30 hours, preferably from 1 minute to 1 hour.

また、加熱処理時間は通常1分～30時間、好ましくは1分～1時間である。

This heat treatment allows the unreacted titanium compound, barium compound and calcium compound to react completely, and also heat-treating the resulting particles can improve the crystallinity of the particles.

この加熱処理によって、未反応のチタン化合物、バリウム化合物及びカルシウム化合物を完全に反応させ、また生成粒子を加熱処理することによって粒子の結晶性を向上させることができる。

As a specific method, the produced slurry containing calcium-doped barium titanate is placed in a reaction vessel or transferred from the reaction vessel to an aging tank, and treated at a predetermined temperature for a predetermined time.

その具体的な方法としては、生成したカルシウムドープチタン酸バリウムを含むスラリーを、反応容器内、あるいは反応容器から熟成槽に移し、所定温度で所定時間処理する。

[0039]

After the heat treatment, the calcium-doped barium titanate is washed to thoroughly remove unreacted compounds, alkali components, and replicated alkali salts, and the calcium-doped barium titanate is separated.

加熱処理の後、カルシウムドープチタン酸バリウムを洗浄し、未反応の化合物及びアルカリ成分また複製したアルカリ塩等を充分に除去し、カルシウムドープチタン酸バリウムを分離する。

For this washing and separation, a common method such as decantation, centrifugation or filtration can be used.

この洗浄、分離には、デカンテーション、遠心分離あるいはろ過などの一般的な方法を採用することができる。

After separation, the powder is dried by heating in air or an inert gas at 50 to 300°C or in a vacuum at 20 to 300°C, and finally the alkali components are removed to purify the calcium-doped barium titanate powder.

分離後、空气中又は不活性ガス中において50～300°Cで加熱するか、もしくは真空中において20～300°Cで加熱することにより乾燥し、最終的にアルカリ成分を除去し、カルシウムドープチタン酸バリウム粉末を精製する。

Furthermore, in the present invention, the calcium-doped barium titanate powder obtained by the above method can be heated at 1000 to 1300°C. to enhance the crystallinity.

さらに、本発明においては、上記した方法により得られたカルシウムドープチタン酸バリウム粉末を1000～1300°Cで加熱し、結晶性を高めることもできる。

[0040]

The calcium-doped barium titanate powder produced as described above is a uniformly spherical ultrafine particle with an average particle size of 0.05 to 0.5 μm, a narrow particle size distribution, and good crystallinity.

以上のようにして製造されたカルシウムドープチタン酸バリウム粉末は、一定の球状であり、平均粒径が0.05～0.5μmの超微粒子であり、粒度分布が狭く、結晶性が良好なものである。

Furthermore, this calcium-doped barium titanate powder has a high and stable atomic ratio of [Ca+Ba]/Ti, and the content of each of the Ca, Ba, and Ti atoms can be stably controlled at a high concentration. It also has excellent dispersibility when made into a slurry or paste, and has good sintering properties.

また、このカルシウムドープチタン酸バリウム粉末は、[Ca+Ba]/Tiの原子比が高濃度で安定しており、かつCa、Ba及びTiの各原子の含有率を高濃度で安定的に制御でき、スラリー化又はペースト化した際の分散性に優れ、良好な焼結特性を有するものである。

Furthermore, this calcium-doped barium titanate powder has ferroelectricity.

さらに、このカルシウムドープチタン酸バリウム粉末は、強誘電性を有するものである。

[0041]

(5) Others The present invention also includes calcium-doped barium titanate, which is obtained by adding and contacting an aqueous solution of one or more titanium compounds selected from halides, hydroxides, nitrates, sulfates, acetates, perchlorates, and oxalates with an aqueous solution of one or more calcium compounds selected from halides, hydroxides, nitrates, sulfates, acetates, and perchlorates, and one or more barium compounds selected

from halides, hydroxides, nitrates, sulfates, and perchlorates, and an aqueous solution of one or more alkali metal hydroxides and barium hydroxide as an alkali source, to an aqueous solution of alkali metal hydroxide.

(5) その他 本発明は、ハロゲン化物、水酸化物、硝酸塩、硫酸塩、酢酸塩、過塩素酸塩および
しゅう酸塩から選択される 1 種又は 2 種以上のチタン化合物水溶液と、ハロゲン化物、水酸化物、
硝酸塩、硫酸塩、酢酸塩および過塩素酸塩から選択される 1 種又は 2 種以上のカルシウム化合物水
溶液との混合水溶液と、ハロゲン化物、水酸化物、硝酸塩、硫酸塩および過塩素酸塩から選択され
る 1 種又は 2 種以上のバリウム化合物を含み、アルカリ源としてアルカリ金属の水酸化物と水酸化
バリウムの中の 1 種以上を含むアルカリ水溶液を、アルカリ金属の水酸化物からなるアルカリ水溶
液中に添加、接触させて得られることを特徴とするカルシウムドープチタン酸バリウムをも含
む。

In addition, in this calcium-doped barium titanate, it is preferable that the calcium content is 4 moles or less per 100 moles of barium titanate.

また、このカルシウムドープチタン酸バリウムにおいては、カルシウム含有率がチタン酸バリウム 100 モルに対し 4 モル以下であることが好ましい。

Furthermore, the present invention also includes a multilayer ceramic capacitor using the calcium-doped barium titanate.

さらに、本発明は、上記カルシウムドープチタン酸バリウムを使用した積層セラミックコンデンサをも含む。

[0042]

The present invention will now be described with reference to examples.

以下、本発明を実施例によって説明する。

The following aqueous solutions were prepared using ion-exchanged water.

なお、下記の水溶液はイオン交換水により調製したものである。

Example 1 A 1.0 mol/L aqueous NaOH solution was poured into a stainless steel reaction vessel equipped with a stirrer and maintained at 90°C.

＜実施例1＞攪拌装置を備えたSUS製反応容器内に、1.0 mol/LのNaOH水溶液を予め注入し、90°Cに保持した。

Next, a 0.5 mol/l TiCl₄ NER20 aqueous solution and a 0.03 mol/l CaCl₂ NER21 aqueous solution, each of which had been kept at 40°C in advance, were mixed, and the resulting mixed solution was kept at 40°C.

次いで、それぞれ予め40°Cに保持した0.5mol/lのTiCl₄水溶液と、0.03mol/lのCaCl₂水溶液を混合し、この混合溶液を40°Cに保持した。

Also, a 3.0 mol/l NaOH aqueous solution with a BaCl NER22 concentration of 0.26 mol/l was prepared from which undissolved matter had been removed in advance, and was heated and maintained at 95°C.

また、予め未溶解分を除去したBaCl₂濃度0.26mol/lの3.0mol/l NaOH水溶液を調製し、95°Cに加熱保持した。

[0043]

Next, the mixed solution of the titanium compound and calcium compound and the aqueous solution of the barium compound were continuously supplied into the reaction vessel containing the aqueous NaOH solution maintained at 90°C at flow rates of 1 L/min and 2 L/min, respectively.

次に、90°Cに保持したNaOH水溶液を注入した上記反応容器内に、上記チタン化合物とカルシウム化合物との混合溶液、及び、上記バリウム化合物水溶液を、それぞれ1l/min及び2l/minの流量で反応容器内に連続して供給した。

Next, the temperature inside the reaction vessel was maintained at 90°C. during the reaction, and the mixture was stirred for 2 minutes to produce calcium-doped barium titanate according to Example 1 of the present invention.

次いで、反応中の反応容器内の温度を90°Cに保ち、2分間攪拌して本発明の実施例1のカルシウムドープチタン酸バリウムを生成した。

Thereafter, the resulting slurry containing calcium-doped barium titanate was continuously extracted from the reaction vessel into an aging tank maintained at 90°C., and stirred for 5 minutes.

その後、生成したカルシウムドープチタン酸バリウムを含むスラリーを反応容器から90°Cに保持してある熟成槽に連続して抜き出し、5分間攪拌した。

Subsequently, the supernatant was separated from the precipitate by decantation, followed by centrifugation. After that, the operations of washing with pure water, decantation and centrifugation were repeated several times to obtain the calcium-doped barium titanate powder of Example 1.

続いて、デカンテーションを行って上澄みと沈殿物を分離し、遠心分離を行い、その後、純水洗浄、デカンテーション、遠心分離の操作を数回行い、実施例1のカルシウムドープチタン酸バリウム粉末を得た。

[0044]

Comparative Example 1 A 1.0 mol/L aqueous NaOH solution was poured into a stainless steel reaction vessel equipped with a stirrer and kept at 90°C.

＜比較例1＞攪拌装置を備えたSUS製反応容器内に、1. 0 mol/LのNaOH水溶液を予め注入し、90°Cに保持した。

Next, a mixed aqueous solution of a 0.5 mol/l TiCl NER23 aqueous solution, a 0.26 mol/l BaCl NER24 aqueous solution, and a 0.03 mol/l CaCl NER25 aqueous solution was prepared.

次いで、0. 5 mol/LのTiCl₄水溶液、0. 26 mol/LのBaCl₂水溶液、及び0. 03 mol/LのCaCl₂水溶液の混合水溶液を調製した。

[0045]

Next, the mixed aqueous solution of the above three compounds and a 1.0 mol/l NaOH aqueous solution heated to 90° C. were continuously supplied into the reaction vessel at a flow rate of 1 l/min each.

次に、上記3種類の化合物の混合水溶液と、90°Cに加熱した1.0 mol/lのNaOH水溶液を、それぞれ1 l/minの流量で上記反応容器内に連続して供給した。

Next, the temperature inside the reaction vessel was maintained at 90° C. during the reaction, and the mixture was stirred for 2 minutes to produce calcium-doped barium titanate of Comparative Example 1.

次いで、反応中の反応容器内の温度を90°Cに保ち、2分間攪拌して比較例1のカルシウムドープチタン酸バリウムを生成した。

The resulting calcium-doped barium titanate was then aged in the same manner as in Example 1, washed, decanted, centrifuged, and recovered to obtain calcium-doped barium titanate powder of Comparative Example 1.

その後、生成されたカルシウムドープチタン酸バリウムを、実施例1と同様に熟成させた後、洗浄、デカンテーション、遠心分離を行い、回収し、比較例1のカルシウムドープチタン酸バリウム粉末を得た。

[0046]

Comparative Example 2 A calcium-doped barium titanate powder of Comparative Example 2 was obtained in the same manner as in Comparative Example 1, except that ion-exchanged water was poured into a stainless steel reaction vessel equipped with a stirrer.

＜比較例2＞攪拌装置を備えたSUS製反応容器内にイオン交換水を注入しておいた以外は、比較例1と同様にして、比較例2のカルシウムドープチタン酸バリウム粉末を得た。

[0047]

The calcium-doped barium titanate powders of the Examples and Comparative Examples obtained as described above were measured for average particle size, CV value, and atomic ratios of Ca, Ba, and Ti, and their dielectric properties were evaluated.

上記のようにして得られた各実施例及び比較例のカルシウムドープチタン酸バリウム粉末について、平均粒径、CV値、Ca、Ba及びTiの原子比を測定し、誘電特性を評価した。

These results are shown in Tables 1 and 2.

これらの結果は表1及び表2に示す。

The average particle size, CV value, atomic ratio of Ca, Ba and Ti, and dielectric properties were measured and evaluated by the following methods.

なお、平均粒径、CV値、Ca、Ba及びTiの原子比及び誘電特性は以下の方法で測定、評価した。

[0048]

(Average particle size, CV value) The average particle size of the calcium-doped barium titanate powder was measured using an electron microscope photograph (SEM diameter).

(平均粒径、CV値) カルシウムドープチタン酸バリウム粉末の平均粒径は、電子顕微鏡写真によって測定（SEM径）した。

Based on this measurement value, the CV value (standard deviation of particle size/d₅₀ (median diameter of particle size distribution)) was calculated.

そして、この測定値に基づき、CV値（粒径の標準偏差／d₅₀（粒度分布のメジアン径））を求めた。

[0049]

(Atomic Ratios of Ca, Ba, and Ti) The [Ca+Ba]/Ti atomic ratio and the Ca/Ti atomic ratio of the calcium-doped barium titanate powder were determined by quantifying barium, calcium, and titanium by X-ray fluorescence analysis as follows.

(Ca、Ba及びTiの原子比) カルシウムドープチタン酸バリウム粉末の [Ca+Ba] / Ti 原子比及び Ca / Ti 原子比は、バリウム、カルシウム及びチタンを以下のようにそれぞれ蛍光X線分析により定量することによって求めた。

[0050]

(Dielectric Properties) Regarding the dielectric properties of the calcium-doped barium titanate powder, the calcium-doped barium titanate powder of each Example and Comparative Example was fired in a reducing atmosphere at 1300°C for 2 hours to produce a molded body with a thickness of 1.14 mm, and the relative permittivity and dielectric loss ($\tan \delta$) of the fired body were then measured using an LCR meter (frequency 1 kHz, applied voltage 1 V).

(誘電特性) カルシウムドープチタン酸バリウム粉末の誘電特性については、各実施例及び比較例のカルシウムドープチタン酸バリウム粉末を還元雰囲気で 1300°C で 2 時間焼成して厚さ 1.14 mm の成形体を作製し、その後焼成した成形体について比誘電率、誘電損失 ($\tan \delta$) を LCR メーター (周波数 1 kHz、印加電圧 1 V) のより測定した。

[0053]

As is clear from Table 1, the calcium-doped barium titanate of Example 1 has a low CV value, which indicates a narrower particle size distribution, and the [Ca+Ba]/Ti atomic ratio and Ca/Ti atomic ratio are stable at high concentrations, indicating excellent reaction stability.

表1から明らかなように、実施例1のカルシウムドープチタン酸バリウムは、CV値が低いことから粒度分布がより低く、[Ca + Ba] / Ti 原子比及びCa / Ti 原子比が高濃度で安定していることから、反応の安定性が優れていることが示された。

Furthermore, the Ca content was also a predetermined amount, which indicated that the content of each atom could be controlled with high precision.

また、Ca含有量も所定量含有しており、精度良く各原子の含有率を制御できていることが示された。

Furthermore, as is clear from Table 2, it was shown that the calcium-doped barium titanate of Example 1 had excellent dielectric properties.

さらに、表2から明らかなように、実施例1のカルシウムドープチタン酸バリウムは誘電特性に優れるものであることが示された。

In contrast, in Comparative Example 1, in which a titanium compound aqueous solution, a barium compound aqueous solution, and a calcium compound aqueous solution were contacted in advance as a mixed aqueous solution and then supplied to an alkaline aqueous solution, and in Comparative Example 2, in which a titanium compound aqueous solution, a barium compound aqueous solution, and a calcium compound aqueous solution were contacted in advance as a mixed aqueous solution and then supplied to ion-exchanged water, the average particle size was somewhat large and the CV value was high, indicating variation in particle size, the $[Ca+Ba]/Ti$ atomic ratio was lower than in the Examples and was less than 1, and the Ca/Ti atomic ratio was also lower than in the Examples, indicating that the reaction was not sufficiently stable.

これに対し、チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液を、混合水溶液として予め接触させた後、これをアルカリ水溶液中に供給した比較例1、並びに、チタン化合物水溶液、バリウム化合物水溶液及びカルシウム化合物水溶液を、混合水溶液として予め接触させた後、これをイオン交換水中に供給した比較例2では、平均粒径がやや大きく、C V値が高いことから粒度にバラツキが見られ、 $[Ca + Ba] / Ti$ 原子比が実施例よりも低く1未満であり、 Ca / Ti 原子比も実施例よりも低く、反応が十分に安定ではないことが示された。