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ABSTRACT

Holophonv is in acoustics what holography is in optics. Just as might claim to
be the ideal optical illusion, so might claim to be the perfect auditory illusion.
As illustration of general principles theoretical basis was obtained by the Bourbaki
group, and otherwise by Gabor theory. It is shown that using limited number of
secondary Huygens sources one can provide a very presentable auditory illusion
imaging the primary sound source.

1. FOREWORD

In this lecture in memorial to Dennis Gabor, let us remember first of all his
two remarkable papers in our field; in which he formulated a theory of communi-
cation' and applied it to hearing problems2. In many of his postulates regarding the
functions of the ear and brain, he anticipated finding which have been experimentally
confirmed only during the last decade. Gabor recognised the importance of investi-
gating the simultaneous relationship between time and frequency aspects. The basic
relationship involved is the "Uncertainty Relation": 41 t. p f > 1. where 44 t is the
effective duration and f the effective frequency resolution.

The widely used Fourier analysis can be basically applied to analysing an
infinitely long signal. Gabor malt with the problems as to haw a signal of limited
duration can then be evaluated. He recommended a Gaussian probability function,
since with this particular shape of elementary signal, consisting of a eontinous
harmonic oscillation modulated by a suitable window function, the uncertainty rela-
tionship becomes an equality. A Gaussian window function has the property that its
Fourier transform has the same envelope as the time function. Other windows such as
the Harping window have subsequently been found to give satisfactory results.

Introducing an information diagram with tine and frequency coordinates, which
incorporates the limitations imposed by the uncertainty principle, an elementary
signal can be represented by one information cell on a diagram with area d t. 21f.
Gabor postulated that one such information cell with an unit area is the smallest
allowable quantum of information, which he called a "logon ".

The application of this principle led to important knowledge about the preoep-
tion of sounds. As the approaches a more or less steady state, higher frequency
resolution is required to be able to estimate the pitch and pitch changes for a
longer time. During a transient, rapid changes coeur in all the acoustic parameters.
The maximum time resolution is then required with a corresponding lower frequency
resolution. The shortest response time for the critical bands is 10 ms. The best
reported frequency resolution in the case of musical sounds up to now is about 3 Hz,
which would recuire a duration of at least 330 ms /Zwicker3 /.
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2. ACOUSTICAT, WAVEFRONT RECONSTRUCTION

The techniques developed for holography are particularly applicable, with regard
to both the phase requirements and the dynamic signal utilization needed in order to
produce a special pattern or an interference trace ensuring that a source is unique
regardless of the wave propagation path. This helps in building the time interference
patterns required. For this purpuse, we extend the optical holographic correlation
filtering technique to acoustics. Our noise source is now analogous to the desired
filtered Gaussian image. The acoustical hologram is now the complex spatial filter.
This filter can be obtained by recording the diffraction pattern of the desired pic-
ture detail together with a coherent, background in the Fourier transform arrangement.
Ordinary acoustical holograms do not diffract acoustic waves as laser light holograms
do light waves, because the thickness of the acoustic recording element is not of the
same order as the acoustic wavelength. Therefore we have to transform the acoustical
hologram obtained /the complex filter /, into a form which satisfies the diffraction
laws for acoustic waves. The used background in optical holography of our latter
detailed investigation is included in the Appendix /7/.

In optical radiation, the radian frequency is so great that no detector exists
which can detect the amplitude and phase separately. A square -law detector is there-
fore used to measure intensity. Using phase -only acoustical holograms, one can use
a linear detector to measure the phase and amplitude of acoustic waves separately.
The advantages of phase -only acoustical holograms are: they require only half as
many data as compared to ordinary holograms and thus save digital computing time.
Furthermore, the dnamic range problem is avoided, which often plaques ordinary
Fourier holograms.

In optical holographic correlation filtering, the filtered image /g /x,y/ can
be written in the form

g /x,y/ = f /x,y/ ® h /x,y /,
where f /x,y/ is the text being filtered and h /x,y/ the Fourier transform of the
holographic filter function H /u'v'/ and ® indicates a convolution /see Fig.l /.

Record the phase -only acoustical hologram, the holographic spatial filter funo-
tion,

H' = e1e + A e
/1/

using the object wave = /H /ele
ele

and a reference wave = Ike /see Fig.2./

With reference to Fig.l the complex amplitude of the sound field transmitted
through the filter is

F /u',v' /I /u'v'/ = F /u'v' //1 + Ati/ + F /u',v' /Aoe
i°

+ F /u',v' /AOei° /2/

/I /u'v'/ intensity recorded on filter/

The sound field transmitted through the filter is now subjected to a Fourier
transformation of /2/ which gives the following field components:
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F/u'v'//1 + A2 / -- f/u'v'/ ® T/1 + A/
/a dc term centered at x = O, y = O/

F/u'v'/ óé o/f

F/u'v'/óe+4--- ó/f

® h/x+b, y+c/centered at x = -b, y = -c/

x h/x-b, 17-c/centered at y = +b, y = +c/

/x indicates a correlation/

/3/

/4/

/5/

The desired noise source is in this case, f $ h. For the hologram, we shall use
the sonosensitive plate develoed by Greguss, and all the lenses used here are acous-
tical lenses.

The acoustical hologram assumes linear superimposition of acoustic signals
which occurs only with weak acoustic signals. In the case of strong signals, there
will be harmonic distortion, wave -wave interaction and induced secondary flows
which cause phase distortion and hence affect the accuracy of the phase component of
our noise interference pattern. This phase distortion can be calculated using Light-
hill's theory.

Hence the acoustical hologram does not satisfy the diffraction laws for the
acoustic waves which involve phase distortion. In order to obtain the acoustical
correlation filtering arrangement shown in Fig. 1, our complex filter /acoustical
hologram/ must therefore have the ability to diffract the acoustic waves. We there-
fore have to transform the obtained phase -only acoustical hologram to in a form
which satisfies the diffraction laws for the acoustic waves. This transformation
can be done by modifying the properties of the recording material cf the sonosensi-
tive plates.

It is a widely known fact that just as in optics, the acoustic sound field can
be completely reconstructed in the whole space, provided that the sound pressure in
a surface is completely known in terms of both amount and phase. This principle can
be made use of for near -field measurements /NAH/ of the sound - velocity distribution
on the surface of an acoustic radiator and the simultaneous determination of the
local characteristics of sound field paraneters.5'6'7 Acoustic imaging through
holography has a rich history spanning over the last 30 years and has been applied
in many different fields such as shortwave ultrasonics, as well as the long wave-
length audio range. At first, the resolution was limited by the wavelength of the
sound field probing. First in 1980 it was shown that one can image without any
wavelength resolution limitation. From the measurements of the acoustic pressure
obtained by two hydrophones placed near the surface of the radiator, the complete
theree- dimensional sound field can be reconstructed using a computer technique.
This generalized nearfield acoustical holography /GENAH/ is unlike conventional
holography because it provides a high resolution image of the sound pressure field
from the surface of the radiating source to the farfield. FLoin two-dimensional
measurements, LEAH reconstructs the vector velocity and the vector intensity fields
/energy flow / in the nearfield of the source, and identifies modes of surface vibra-
tion on the sound source.8

The audition involves not only recording a message conveyed by sound waves but
also identifying, albeit imperfectly, the sound source emitting the message. The
isolated message has one dimension, that of time. The spatial localization can be

Holography / 41
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in one, two or three dimensions, depending on whether it determines the direction of
the sound source by means of a single angle on a horizontal plane, two angles /one
horizontal and the other vertical/ or, in exceptional circumstances, two angles and
a distance. All in all, one can speak of 1 -D, 2 -D, 3 -D and 4 -D perception, by adding
to the time dimension one, two or three spatial dimensions. Experiments have already
demonstrated the existence of 3 -D perception. However, the techniques currently used
are aimed only at 2 -D perception.

3. HOLDPHONY

Holophony must be to acoustics what holography is to optics. Just as the latter
might claim to be the ideal optical. illusions, so migYt the former claim to be the
perfect auditory illusion. But both are merely illustrations of a general principle,
the theoretical basis of which was obtained by analory with the process used success-
fully in mathematics by the "Nicolas Bourbaki's" group of mathematicians: holochory
which comes from the Greek duos bolos, "whole ", and xosi.aa, .og o , or xv,03 chorion,
of any given physical field. In other words, the method proposed for reconstructing
a field does not depend on the physical nature of the field in question, but is valid
and can be stated independently from the relations existing between various field
components. /Table 1./

Nicolas Bourbaki considered one kind of mathematics from a much more general
view point than that adopted previously9. Basic axioms were applied not to objects
clearly specified in advance, but to mathematical structures, that is to say, enti-
ties not specified from the outset, except that certain relations exist between
them. By increasing the number of axioms on which the elements of a structure may
depend, or by specifying the content, problems which had been treated directly and
separately in the past emerged as so many illustrations of one general principle.

The greatest advantage of this approach is that any theorem which has been
demonstrated for a general structure can provide, simply by applying it to particular
cases, a whole family of theorems each of which is valid individually in a branch
where the theory complies with the same axioms as the initial general structure.

The phenomenon of waves or fields extending to a certain area from points refer-
red to as sources yields an abstract structure if the nature and medium involved,
are not specified beforehand. It will simply be assumed that between the field F and
its sources S there is a very general type of relation, such as OP F = S for example;
this formula means that a certain sequence of operations symbolized by operator OP
can be carried out on the components of field F, making it possible to go back to the
sources S of the phenomenon under consideration.

Quite fundamental structural theorems can be demonstrated on the basis of simple
premises of this kind. One of the most direct theorens is that of 'reshaping'. The
reshaping of field F' means replacing it by a field MF', in which M is a modification
operator. This operation can be carried out by resorting to secondary sources S ",
the reshaping theorem of which can be stated as follows: S" _ /OP M -M OP /F'.

4. PARTICULAR CASES OF ACOUSTICS: HOLOCHORY BECOMES HOLOPHONY

In space V /reproduction space /, a field F is assumed to have been created ear-
lier in space Vp /projection or propagation space /. The reshaping theorem shows how
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to carry out this reconstitution: secondary sources S" must be constituted in accord-
ance with the general formula stated above and provided with appropriate inputs. To
avoid repeating ourselves we shall now consider the case of acoustics and turn our
attention to holoprny. Space Vp will for exanpie be a concert hail /Fig.3/ equipped
with a stage and an orchestra pit where there are sound sources S producing the
acoustic field F. The field I" which existed in a selected area in V during the
performance is to be reconstructed in an auditorium. V. /which could be any music
lover's living - roan /. According to our theory this would. require a nunber of appro-
priate sound sources /groups of loudspeakers/ to be deployed in VA which, for lis-
teners L sitting in VR /the central part of VA/ would replace the sources S that
they would hear if they were sitting in seats L' in theatre Vp.

In principle, the secondary sources S" should fill the whole of volunene Z, the
space surrounding VR and each of them should be piloted by the values of field F
picked up by microphones placed in Vp in areas similar to areas S ", if one imagines
the reproduction space in the appropriate positin whithin the projection space.
These are ideal conditions, but they do offer an approach and a research programme
which could be adapted to bringing about improvements in 3-D and 4 -D sound relief.
In any event, they identify several shortcomings in current sound -relief technology,
be it in the area of real-tine sound systems or play -back.

In theory, holophony requires a host of individual sources filling the entire
volume between the walls of the roan to be fitted and that part of the roam corre-
sponding to one acoustical hologram where the sound reproduction is required to be
identical with the original. However, many arguments can be adduced to suggest that
a fairly limited number of secondary sources might suffice to provide a very pre-
sentable 'auyditory illusion'.

5. BASIC HOIOPHONY

Sound information originates from sound sources, and is carried by sound waves.
They can be a classified as "wanted" or desired, and "unwanted" /i.e. noise /. One
approach to wave and field physics can be said to deal with the gap between simple
propagation and diffraction. The first is governed by Green- Kirchoff theorem, and
the second by particular integral equations. Jessello and later Resconi and Jesselli
gave great importance to the abstract entities /the secondary Huygens sources/ which
replace the primary sources in the wave propagation and account for the basic diff-
raction phenomena. In Gabor's12 theory it is further pointed out that the Huygens
secondary waves carry the common original information about the primary source.

In practice secondary additional information is usually superimposed on the
carried sound waves /reflections, wave scattering, absorption, dispersion, noise
waves arising from noisy surroundings etc. / To take into account all the source in-
formation carried by the acoustic waves, let us introduce the following definitions.

- Codin3 information on sound waves; corresponds to "generating" the sound with
defined source characteristics in time and space and putting them "on" carri-
er sound waves /emission of sound waves /.

- Decoding information from sound waves corresponds to the "read out" process
of original sources information "from" carrier sound waves /detecting by
microphone / .
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- Recoding information on sound waves, corresponds to the process "putting"
the modifies -sound source information "onto" the carrier sound waves /sound
control /. The result of this information -recording can be a reshaping of the
sound field.

The key to reshaping is the notion of an operator M / "modifier" or "reshaper " /,
the definition of which involves reversing the common way of reasoning11,13,14; This
reverse approach may be called reproduction ": it is combined with deduction in order
to appropriately analyse a feedback loop mechanism.

Another essential feature of FRT is the formulation of the secondary reshaping
sources S" as the "Lie product" oftwo operators OP and M. This product just acts
on the field F' which is to be reshaped. We have 15

/a/ S" = /OP M -M OP /F' /Theorem I/ and:

/b/ q" = /grad m /.v' ; f" = p' /grad m/ : g" _ /grad m/ x v'

According to Gabor, every Huygens source carries all the information conveyed
by the whole wave, however ooMplex its primary sources may be. For instance, any
piece of a broken hologram still contains the same 3-D image as the unbroken one:
only the sharpness of its details will have deteriorated. A similar assertion may
be deduced from our r'ET formulas /a/ or /b /: the primary field F' /resp. p' v'
completely depicts the behaviour of its sources S' as well as the secondary sources
S" /resp. q ", f ", g "/ given by /a/ or /b /. However, with Active Absorption, field
intensity also has to be accounted for: its overall value has to be maintained in
anti - source discretization!

/6/

Gabor pointed our the importance of Huygens' Principle in his analysis of wave
propagation which led him to holography. However, as he had to deal with square -law
detection, he relied exspecially on energy and field- intensity computations. His
basic formula was that of the energy flux W entering the photographic emulsion or
the detecting antenna:

/c/ W = F.FK + R.RK + F.R' + R.FF /m = complex conjug./

The significant terms are FR' and RFx which express interference between the
main field F and the reference field R. When printed into a photographic emulsion,
these interference patterns compose a hologram.

In Gabor's theory, this reference wave R plays the same role as the reshaping
operator M in FRT: it seems possible to regard R as a special form of a modifier M.
A complete identification would deserve further detailed study. Here it is only
mentioned in connection with holochory.

Hologhony lies within the confines of acoustics. There exists a holophonic
theory of binaural hearing: using Gabor's formulation /c/ we may ragard F as the
perceptual effect of a sound wave having entered one ear, while R would be the
effect of the same sound having entered the other ear. This theory can be related
to a holographic approach to brain function, memory and perception.

6. DECODING SOURCE INFORMATION BY HOLOPHONY

Sound source information is as follows:
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- existence of the source /it has energy!,
- time history of the source,
- intensity of the source as well as that of any parts of the source,
- spectral content of the source,
- radiating properties of the source,
- geometry and the spread out of the source,
- location of the source,
- source distance fran the observer,
- kind of radiated sound source information /signal shape, speech or music
signals, sound signals of noise sources e.g. working machine/

- existence of other sources in the neighbourhood of the investigated source,
- disturbing mise emission from the source, or beyond the investigated source.

These, and some other source information is coded into the sound field by carri-
ed primary sound source. The aim of the source recognition process is to distinguish
which belong to the wanted information. In the most practical cases it is necessary
to recognize only some parts of the source information /location of the source, the
radiated signal content or other special properties of the source /.

During the wave propagation, further new secondary information is coded into
sound field. This "unwanted information" disturbs the primary source information. In
practice one can distinguish between the following typical steps of sound field
manipulation:

a/ Decoding the wanted source information from carrier sound waves - Directed
Source Recognition /DSR/

b/ Reconding the Modified Source Information into a determined part of the
sound field, in order to reshape and eliminate the unwanted sound waves in
the assigned area /RMSI /.

In the DSR holophonical methods can be applied. A further extension can be ex-
plained by the analogues mechanisms of the binaural hearing system including some
kind of acoustical wave recognition. In the natural organismes the sound source are
identified by the two ears, and the diffraction effects aroung the head. This is the
basic feature of wavefront reconstruction: diffraction at the diffraction pattern".
In acoustics we can assume the natural superimposition of sound field parts as a
hologram in the form of wave interference. Blauert16 pointed out that some typical
hearing processes have an analogy with signal processing techniques. Mbst of them
are equivalent to the recognition of typical source information. A parallel view is
given as follows.

hearing proces source information

frequency analysis
binaural summation
autocorrelation in single ear channels
short time correlation
binaural cross- correlation
interaural coherence
rotation effects on the head

spectral content
imaging
activity
varying in time
location
spatial extension, dimension
extented location, stability

The application of the general theory of wave -front reconstruction /Fig.4/ for
several source- identifying tasks is based according to the binaural hearing process
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on summation of the input ear operators /S1 and S2/17. The acoustic field is assumed
to be linear and time invariant. The input operators are linear operators, they char-
acterize the transmission of sound waves between the source and the measuring detec-
tors or the ears and carry the original source information /Fig.5 /.

The head diffracted sound field can also be considered as an acoustical holo-
gram. The wanted source information is that resulting from the wavefront, and re-
construction of this, is based on a process similar to that involved is natural bina-
ural senstion.18

The multiplication of input ear operators results in the reconstruction of the
characteristic source features. Fig. 6 gives contains four terms. The first two terms
correspond to the intensities at the ears, and the source image /the surface interr
sity and the localisation of the source/ can be derived from the mixed terms. In
practical cases the source is extended, or has more separable source parts /n sources /,
moreover the sound is propagated and received in a diffuse sound field. In this case
the deduction of the mixed terms fields the results in sets of information /Fig.7 /.
Here we have the separated information term about the propagation /field and room
components /, and about the source components. /e.g. the source intensities: Qi /.
Analysing the source components using the well -known signal processing methods
/ coherence, crosscorrelation technique, adaptive filters method, etc. / makes the
wanted source information avaible. The holophonical treatment results in simple
mathematical expression formulated source separation and the possibility of source
identifying.

The method described here produces similar effects to the well known "cocktail
party" effect on the auditory system.

Subjective investigations on sound image quality support our statements. We
refer to psychological studies performed by Kurozumi and Ohgushi.19 There analysis
of the experimental data showed that:

a/ sound image quality depends mostly on the width and the distance of the
sound image,

b/ the width of the sound image depends on the crosscorrelation coefficient,

c/ the distance of the sound image depends on the crosscorrelation itself,

d/ with respect to the physical and psychological factors governing sound image
quality, there is no fundamental difference between the results of investi-
gations carried out in anechoic chambers, and these with echoic surroundings.

The strength of the lathes statement lies in the proof that the influence of
reflexted waves, i.e. the interference in the sound field, does not disturb the
source -identifying! This fact seems to be a typical "holophonical" phenomenon.

7. APPENDIX

7.1. Backround - optical holography

The starting point of Gabors Wavefront Reconstruction was to think out a method
for overcoming the theoretical and practical limits in such optical imagine systems
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as the electron microscope was in 1947. Overcoming the barrier a "trick was needed"
it was the use of coherence2O,21. Adding a known simple wave to the unknown complex
wave they produce interference fringes. This fringe system contains all the informa-
tion and from which the object could be reconstructed by a simple, general and direct
solution. Illuminating the fringe - pattern with a plane monochromatic light wave the
diffraction at the diffraction pattern must be reconstructed. As a component the
original wave, can reconstruct the original undistorted waveform, and one true image
of the object. This was the principle of Wavefront Reconstruction.

Practically there are a reference beam with complex amplitude A /x,y,z /exp / -jwt/
and an object beam coherent with it, with amplitude B /x,y,z /exp / -jwt/ added vectorial -
ly on any energy detector /e.g. photographic plate /. Such a detector completely ig-
nores the phase factor and records only the resultant energy which is proportional to
the joint intensity

I = /A + B/ . /A + Bx/ = AA" + BB" + /AB" + AFB/ /7.14

The first two terms are the intensities of the beams, the last is the inter-
ference term.

Assuming the perfect coherence, the Van Cittert Zernicke coherence factor is
expressed in form:

I

Imin
/7.2./

max min

I Iwa, are the maximum and the minimum of the intensity in interference
patterb74e A and B are equal. ' is zero for incoherent light and unity for full
coherence. A correction is needed only when the optical paths for A and B differ by
not less than the coherence length.

Illuminate the hologram with the reference beam A. We obtain the transmitted
amplitude:

22

/AA" + BB "/A + /AA "/B + A2BB" /7.3./

where the first term is essentially the illuminating beam unmodified; the second term
is the reconstructed wave; and the third term is the twin image.

In the case of plane reference wave parallel to the plane of the energy detector,
the second term differs from the "Twin object" only by all its phases changed into
the apposite. /In this case A2 = AA "/. Let incidence the reference beam at an angle
e to the energy detector plate normal. This means that the factor BK now modulates a
wave which is turned by twice the angle O. The twin object has suffered an "affine
transformation" by the angle 2e.

It is clear that the equations here hold true for every thin layer of a tick
emulsion in the recording. There can be difference in the reconstruction, because the
holograms in the various layers will interferre with one another. These effects are
the colour selectivity and directional selectivity.
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Thin holograms which ones has been taken with one wavelenght can be illuminated
with any other wavelength, and they will give reconstruction. Illuminates one with a
wavelenght X times longer than the original the diffraction angles will be tncreased
in the ratio X.

A deep or volume hologram will give good reflectances only for narrow range of
wave lengths /holography in natural colours /. If the illuminating light with wave -
number k' is different from the original one k, assuming that the emulsion thickness
d has rit changed in the process, for small incidence angles the first zeros of the
reflectance are at

-X_+
n

where A and are the wavelengths in the emulsion.

/7.4./

Later the wide researches of holographers have shown that in holograms the phase
is much more important than the intensity. This has been demonstrated also by
Metherell 23 in acoustical holography.

In 1964 Leith Upatnieks published the first "diffused" holograms, which were
taken with diffuse wide angle illumination of the object. It's the superposition of
a very great number of "regular" holograms, thrown over each other, and distributed
over the whole area, at random. It has two very important consequences:

- the illumination is diffused over the whole hologram, looking- through the
hologram with two unaided eyes, one could see the object in three dimensions.

-Any small area of hologram contains the inforration on the whole object.

The formulation of the spread out the information in wave fields was the
Huygens' Principle. It states that if one known all the data on a closed surface
which contains all the sources one can calculate the light effects everywhere. But
it's physically impossible to measure the light vector as a function of space and
time at any surface. A resonable formulation expressed in modern form, states that
the information in light beam is an invariant22. The same information can be extrac-
ted from it at any cross section. Such a physical description of natural incoherent
light is very complicated. The spectrum of white light is not the Fourier transform
of the amplitude as function in time, but a periodogram; it contains only the power,
that is the squared amplitudes, integrated over time. It is known that the power
spectrum is the Fourier transform of the autocorrelogram 0 of the amplitude A /t/

lim 1 r
0 /x/ _co 'TT A /t /A

/t+ l /dt /7.5/

In order to put physical sense into Huygens' Principle it is necesarry to take
a full spatial -temporal representation of natural light in terms of measurable data.
Moreover we must specify more clearly what we mean by a "point ". Introducing the
degrees of freedom of a light beam /F/ can we say that the number of independent
data in a coherent beam is invariant

F - Beam Area x Solid Angle of Beam
Wavelength swuared

This formulation is not quite precise it applies well only to compact areas.
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But it's good enough for almost all practical applications.

In optics and also in c munication theory two descriptions have equal import-
ance: spatial distribution and Fourier description. The first is the representation
of a complex but coherent beam by dividing it up into Gaussian beamlets. The second
will be the representation by "eigenfunctions ". The Fourier description is equiva-
lent to the expansion of the distribution in terms of plans waves with spatial
frequencies k , k . At the small incidence angles used in holography one can state
that a beam x y which is Gaussian in one plane remains Gaussian all other planes.
Furthermore is to say the Gaussian beam spreads, at great distances, like a spheri-
cal wave centering on Z = O.

The well known theorem of Fourier Theory states that a beamlet cannot be limi-
ted both in x and in the corresponding spatial frequency kx so as to infringe the
uncertainty relation.

<x2> .<k> ) i /7.6/

Both x and kx are measured from centroids of their distribution in terms of
energy.

Gabor has shown22, that the information in a light beam, in the Shannon sence
and taking only photon noise into consideration is finite and invariant in every
cross section of one light beam so long as no energy is lost. It is same in the
object plane and in the Fourier /Fraunhoffer/ plane of a lens. It even remains the
same putting a diffuser into the light beam /unless it diffuses some energy back-
wards/ and we can extract the information from it anywhere by holography.
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But it's good enough for almost all practical applications.

In optics and also in communication theory two descriptions have equal iirport- 
ance: spatial distribution and Fourier description. The first is the representation 
of a complex but coherent beam by dividing it up into Gaussian beamlets. The second 
will be the representation by "eigenfunctions". The Fourier description is equiva­
lent to the expansion of the distribution in terms of plans waves with spatial 
frequencies k^, k . At the small incidence angles used in holography one can state that a beam ^ which is Gaussian in one plane remains Gaussian all other planes. 
Furthermore is to say the Gaussian beam spreads, at great distances, like a spheri­
cal wave centering on Z = 0.

The well known theorem of Fourier Theory states that a beamlet cannot be limi­
ted both in x and in the corresponding spatial frequency k so as to infringe the 
uncertainty relation. x

<*2>-<kx>>1 I1-6-'

Both x and k are measured from centroids of their distribution in terms of 
energy.

22Gabor has shown , that the information in a light beam, in the Shannon sence 
and taking only photon noise into consideration is finite and invariant in every 
cross section of one light beam so long as no energy is lost. It is same in the 
object plane and in the Fourier /Fraunhoffer/ plane of a lens. It even remains the 
same putting a diffuser into the light beam /unless it diffuses some energy back­
wards/ and we can extract the information from it anywhere by holography.
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FIG.3. Holophony principle: (a) sound projection area (Vp); (b) reproduction
area (VA).
S = True primary sources; S' = Auxiliary primary sources producing real or differed
echoes; VR = Precise volume of reproduction; Z = Area related to secondary
reproduction sources S"; C = Acoustic field produced by sources S and S'.
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S = True primary sources; S' = Auxiliary primary sources producing real or differed 
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reproduction sources 5"; C = Acoustic field produced by sources 5 and S'.
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