(54) Title : ELECTROMAGNETIC DEVICE FOR CAPTURING FREE SPACE ELECTRONS TO GENERATE ELECTRICITY

(55) Resumo : A invensão refere-se a um dispositivo que compreende por menos três partes (A, B, C, D) de pelo menos um dispositivo para a geração de um campo eletromagnético (3) e (4), alimentado por um tipo de energia — sem um centro ou pelo menos um centro — os centros daquela ou qualquer extensão daquela, preferencialmente, a envoltura de volta e um campo de envoltura de volta, sendo circundado por pelo menos um parceiro de conexão em ambos os campos de envoltura de volta, formando uma polarizada e energizada circuito fechado com si mesmo (5), e seção de campos eletromagnéticos de gerador de dispositivos (3) e (4) de quando se encontrarmos um dos polos opostos para o efeito da interação dos campos eletromagnéticos daquela, que são preferencialmente atribuídos entre dois campos metálicos metade-sferas (1) e (2) para concentrar e aperfeiçoar os campos eletromagnéticos daquela, estas interconexões causando, como um novo efeito técnico, a emergência de uma corrente elétrica que circula, com ou sem tensão, no elemento eletromagnético, formando um circuito fechado com si mesmo (5) - ponto de conexão de carga externa, mesmo se a carga não estiver a place thereon.
A invenção refere-se a um equipamento que compreende pelo menos três conjuntos (A, B, C, D) de pelo menos um dispositivo gerador de campo eletromagnético (3) e (4), alimentados por uma fonte de energia elétrica - sem um núcleo ou com pelo menos um núcleo - tendo os seus núcleos ou qualquer extensão deles, preferentemente as suas espiras ou conjuntos de espiras, envolvidos por pelo menos um mesmo elemento condutor em circuito fechado em si mesmo (5) polarizado com tensão, sendo tais conjuntos de dispositivos geradores de campo eletromagnético (3) e (4) ligados entre si com seus pólos em confronto, para promover a interação de seus campos eletromagnéticos, sendo, preferivelmente, alocados entre duas semi-esferas metálicas ocas (1), de modo a concentrar e potencializar os seus campos eletromagnéticos - interligações estas que provocam, como efeito técnico novo, o surgimento de uma corrente elétrica que se mantém circulando, com ou sem tensão, no elemento condutor em circuito fechado em si mesmo (5) - ponto das ligações das cargas externas - mesmo sem haver uma carga de consumo ligada a ele.
Relatório Descritivo da Patente de Invenção para
“EQUIPAMENTO ELETROMAGNÉTICO CAPTOR DE ELÉTRONS DO
ESPAÇO LIVRE PARA GERAÇÃO DE ENERGIA ELÉTRICA”.

Campo Técnico

A presente invenção refere-se a um equipamento eletromagnético para geração de energia elétrica e, alternativamente, para geração de energia térmica. Mais especificamente um equipamento capaz de produzir energia elétrica e energia térmica abundantes a partir de um consumo ínfimo de energia elétrica.

Descrição do Estado da Técnica

Segundo a Lei de Lenz, qualquer corrente induzida tem um sentido tal que o campo magnético que ela gera se opõe à variação do fluxo magnético que a produziu. Matematicamente, a Lei de Lenz é expressa pelo sinal negativo (−) que aparece na fórmula da Lei de Faraday, conforme a seguir.

O módulo da força eletromotriz induzida (ε) em uma espira condutora é igual à taxa de variação do fluxo magnético (ΦB) com o tempo:

\[ε = -\frac{dΦ_B}{dt} \]

Equação 1

Como exemplo de aplicação da Lei de Faraday, pode-se calcular a força eletromotriz induzida numa espira retangular que se movimenta entrando ou saindo, com velocidade constante, de uma região de campo magnético uniforme. O fluxo do campo magnético através da superfície limitada pela espira é dado por:

\[\varphi = xLB \]

Equação 2

e sua variação no tempo é:

\[\frac{Δ\varphi}{Δt} = \left(\frac{Δx}{Δt}\right)LB = vLB \]

Equação 3

Assim:

\[ε = vLB \]

Equação 4
e, se a espira tem uma resistência \(R \), a corrente induzida é:

\[
i = \frac{\varepsilon}{R} = \frac{\nu LB}{R}
\]

Equação 5

Um condutor percorrido por uma corrente elétrica mergulhado em um campo magnético sofre a ação de uma força dada por:

\[F = IL \times B\]

Equação 6

Assim, por efeito da corrente induzida na espira, aparecem as forças \(F_x \), \(F_z \) e \(F_M \). As duas primeiras se anulam mutuamente e a terceira é cancelada por uma força externa \(F_{EXT} \), necessária para manter a espira com velocidade constante.

Como a força \(F_M \) deve se opor à força \(F_{EXT} \), a corrente (i) induzida na espira pela variação do fluxo magnético deve ter o sentido indicado na figura 1. Este fato constitui um exemplo particular da Lei de Lenz.

Considerando as atividades experimentais discutidas com a Lei de Faraday, quando um ímã é aproximado de uma espira, a corrente induzida na espira tem um sentido conforme mostrado na figura 2. Assim, gera um campo magnético cujo pólo norte se confronta com o polo norte do ímã. Os dois polos se repleem, ou seja, o campo gerado pela corrente induzida se opõe ao movimento de aproximação do ímã.

Quando o ímã é afastado da espira, a corrente induzida na espira tem um sentido contrário ao mostrado na figura 2, gerando assim um campo magnético cujo pólo sul se confronta com o pólo norte do ímã. Os dois polos se atraem, ou seja, o campo gerado pela corrente induzida se opõe ao movimento de afastamento do ímã. Este comportamento, presente nos geradores de energia atuais e conhecido como freio-motor, é altamente indesejado por elevar a resistência e, consequentemente, aumentar a perda de energia.

Quando duas bobinas são colocadas frente a frente, não existe corrente em nenhuma uma delas. No instante em que uma chave de alimentação de uma das bobinas é fechada, surge uma corrente na bobina correspondente, gerando uma corrente induzida na segunda bobina. Ao se fechar a chave, a corrente da bobina correspondente vai de zero até um certo valor máximo que, a partir daí, permanece constante.
Dessa forma, quando a corrente está mudando, o campo magnético gerado por ela, cujo pólo norte confronta a segunda bobina também está mudando e o mesmo acontece com o fluxo magnético deste campo através da segunda bobina. Então, surge uma corrente induzida na segunda bobina, cujo sentido é tal que o campo magnético que ela gera tende a diminuir o fluxo mencionado, ou seja, apresenta o pólo norte confrontando o pólo norte do campo da primeira bobina.

Quando a chave de alimentação é aberta, a corrente na primeira bobina vai do seu dado valor máximo até zero, o campo correspondente diminui. O fluxo desse campo magnético na segunda bobina também diminui, de modo que a corrente induzida tem agora um sentido contrário. Este sentido é tal que o campo que a corrente induzida gera se soma àquela, ou seja, apresenta um pólo sul confrontando o pólo norte daquele campo.

Deste modo, tem-se uma realização do princípio de conservação da energia, expresso na Lei de Lenz, no qual qualquer corrente induzida tem um efeito que se opõe à causa que a produziu.

Supondo que a corrente induzida atue no sentido de favorecer a variação do fluxo magnético que a produziu, o campo magnético da bobina teria um pólo sul confrontando o pólo norte do ímã que se aproxima, fazendo com que o ímã seja atraído no sentido da bobina.

Se o ímã fosse, então, solto, sofreria uma aceleração em direção à bobina, aumentando a intensidade da corrente induzida que, assim, geraria um campo cada vez maior. Este campo, por sua vez, atrairia o ímã com uma força cada vez maior, e assim sucessivamente, com um aumento cada vez maior na energia cinética do ímã.

Se fosse retirada energia do sistema ímã-espíra na mesma taxa com que a energia cinética do ímã aumenta, haveria um fornecimento infindável de energia. Assim ter-se-ia um motor-perpétuo, o que violaria o princípio da conservação da energia.

Portanto, pode-se concluir que os atuais geradores apresentam uma grande perda de energia na geração de energia elétrica.

Objetivos da Invenção

A presente invenção pretende contribuir com a geração de energia elétrica sustentável, propondo um equipamento eletromagnético
capaz de produzir energia elétrica abundante a partir de um consumo ínfimo de energia elétrica.

O objetivo acima, e outros objetivos, são alcançados pela presente invenção através de um equipamento que compreende pelo menos três conjuntos de pelo menos um dispositivo gerador de campo eletromagnético - sem um núcleo ou com pelo menos um núcleo – alimentados por uma fonte de energia elétrica, tendo os seus núcleos ou qualquer extensão deles, preferentemente as suas espiras ou conjuntos de espiras, envolvidos por pelo menos um mesmo elemento condutor em circuito fechado em si mesmo, polarizado com tensão, sendo que tais conjuntos de dispositivos geradores de campo eletromagnético são dispostos com seus pólos em confronto, para promover a interação de seus campos eletromagnéticos, sendo, preferivelmente, alocados entre duas semi-esferas metálicas ocas, de modo a concentrar e potencializar os seus campos eletromagnéticos - interligações estas que provocam, como efeito técnico novo, o surgimento de uma corrente elétrica que se mantém circulando, com ou sem tensão, no elemento condutor em circuito fechado em si mesmo - ponto das ligações das cargas externas - mesmo sem haver uma carga de consumo ligada a ele.

O equipamento objeto da presente invenção funciona da seguinte forma: os conjuntos de dispositivos geradores de campo eletromagnético ao serem alimentados por uma fonte de energia elétrica, produzem um campo eletromagnético que induz uma corrente elétrica no elemento condutor em circuito fechado em si mesmo, criando uma interação um entre os seus polos magnéticos, passando a haver - através de atração e repulsão eletromagnética – um fornecimento infinidável de elétrons para o elemento condutor em circuito fechado em si mesmo. Os elétrons atraídos se somam à corrente presente que circula no elemento condutor em circuito fechado em si mesmo, de onde é disponibilizada energia elétrica para alimentação de cargas externas de elevadas potências, embora o equipamento objeto da presente invenção seja alimentado com uma pequena potência. Desse modo, de maneira vantajosa, o equipamento objeto da presente invenção revela-se um captor de elétrons de espaço livre, para geração de energia elétrica.

Vantajosamente, as interligações dos componentes do captor de elétrons objeto da presente invenção provocam, como efeito técnico novo, o surgimento de uma corrente elétrica que se mantém circulando com ou sem tensão no elemento condutor em circuito fechado em si mesmo, mesmo sem haver uma carga de consumo ligada a ele, enquanto o captor estiver ligado.
Vantajosamente, o presente equipamento eletromagnético de geração de energia elétrica ou geração de energia térmica possibilita o acesso a essa nova fonte de energia através de um campo eletromagnético.

Vantajosamente, o captor proposto pode ainda ser utilizado para a geração de energia térmica, dependendo da forma que se pretenda utilizar o efeito do fluxo da corrente elétrica produzida no presente equipamento eletromagnético.

Este campo gera um fluxo de corrente elétrica, induzido por bobinas através de eletromagnetismo, que surge nos elos de interligação dos dispositivos geradores de campo eletromagnético com eletroimãs, indutores ou ímãs. Esta corrente atua no sentido favorável à variação do fluxo magnético produzido pelo campo magnético no captor de elétrons. Desta forma, criam-se um pólo norte e um pólo sul, proporcionando um fornecimento infindável de corrente elétrica sem resistência entre os elos de interligação dos dispositivos geradores de campo eletromagnético. Assim, gera-se corrente elétrica induzida com ou sem tensão nos elos de interligação dos dispositivos geradores de campo eletromagnético, dependendo da forma de ligação do circuito elétrico no captor.

O captor de elétrons do espaço livre pode gerar corrente alternada (CA) ou corrente contínua (CC). A relação de consumo de energia elétrica dos dispositivos geradores de campo eletromagnético do captor é de 1 x 100, ou seja, a geração pode ser 100 vezes maior que o consumo quando tiver pelo menos um elo/espira condutor(es) entre as bobinas e os indutores ou eletroimãs. Essa relação, contudo é não limitada, pois depende da forma construtiva do captor e de seus objetivos.

Outra vantagem do captor de elétrons do espaço livre da presente invenção é que, com o isolamento térmico dos componentes do circuito elétrico, é possível produzir energia térmica de baixa, média ou altas temperaturas, através da movimentação dos elétrons no elo(s)/espira(s) condutor(es) entre as bobinas e/ou indutores e/ou eletroimãs. A temperatura gerada está relacionada diretamente à quantidade de voltas que o elo(s)/espira(s) condutor(es) dá nas bobinas.

A geração de energia térmica realizada pelo captor pode ser utilizada para a ebulação e a evaporação de líquidos a serem utilizados em outros tipos de geração de energia, substituindo o uso de carvão e gás natural, por exemplo.

Outra vantagem do captor de elétrons proposto na presente invenção, é que o captor pode transportar elétrons de um ponto “A” para um
ponto "B", sem queda de tensão no elo condutor – caso ele esteja polarizado – independentemente da distância entre os pontos, dependendo da potência e quantidade dos dispositivos geradores de campo eletromagnético. É também possível transportar elétrons quando o elo(s)/espira(s) condutor(es) dos dispositivos geradores de campo eletromagnético não está polarizado. Deste modo, a corrente elétrica é transportada sem tensão, apenas através do campo magnético formado entre as bobinas. Esta metodologia pode ser utilizada em diversas áreas.

Por ter uma forma construtiva simples, o captor de elétrons é um equipamento simples, compacto, de baixo custo para a geração de energia e pode ser utilizado em todos os tipos de máquinas, equipamentos e objetos de todas as naturezas, segmentos, setores ou áreas de aplicação que necessitem de energia elétrica para o seu funcionamento. O captor de elétrons pode ser monofásico, bifásico ou trifásico, podendo ser utilizado em todos os segmentos de geração de corrente elétrica em baixa, média ou alta tensão, em qualquer potência.

A presente invenção será, a seguir, descrita com auxílio de desenhos, mas que não são absolutamente limitativos, onde podem ser observados outros detalhes e vantagens da presente invenção, em um exemplo de execução com quatro conjuntos de bobinas/indutor/eletroimãs.

Breve Descrição dos Desenhos

As figuras mostram:

Figura 1 – uma representação da Lei de Faraday.

Figura 2 – uma representação da Lei de Faraday em que um ímã é aproximado de uma espira.

Figura 3 – uma vista superior da semi-esfera metálica.

Figura 4 – uma vista inferior da semi-esfera com as bobinas.

Figura 5 – uma vista lateral do captor de elétrons do espaço livre.

Figura 6 – uma vista inferior do captor de elétrons do espaço livre, com as bobinas e os eletroimãs.

Figura 7 – uma vista superior do captor de elétrons do espaço livre, com as bobinas e os eletroimãs.
Figura 8 – uma vista em perspectiva da bobina com o elo/espíra condutor com o eletroímã ou indutor.

Figura 9 – uma representação do diagrama elétrico do dispositivo, mostrando o efeito campo eletromagnético.

Figura 10 – uma representação do diagrama do circuito elétrico de ligação das bobinhas com os indutores, nos conjuntos (A, B, C e D).

Figura 11 – uma representação do diagrama eletromagnético dos pólos norte e sul das bobinhas dos conjuntos (A, B, C e D).

Figura 12 – uma representação dos elétrons sendo atraídos e repelidos no dispositivo.

Descrição Detalhada dos Desenhos

A figura 3 mostra uma vista superior de uma das duas semi-esferas metálicas ocas 1 que é parte do captor de elétrons do espaço livre proposto na presente invenção. Esta semi-esfera 1 é feita preferencialmente, mas não limitadamente, de alumínio, tendo abas de fixação.

A figura 4 mostra uma vista inferior de uma das semi-esferas metálicas 1. Observa-se, ainda, quatro dispositivos geradores de campo eletromagnético, no presente caso, quatro bobinas/indutor 3 dispostas ao redor da semi-esfera 1 e fixadas em um suporte 6 que é fixado à semi-esfera 1 através de abas de fixação 2.

Uma visão lateral do captor de elétrons do espaço livre é mostrada na figura 5. Pode-se observar as duas semi-esferas metálicas 1 (formando uma esfera imperfeita e três bobinas 3 fixadas nas abas de fixação 2 e conectadas a três indutores 4 através de elementos condutores em circuito fechado em si, no presente caso elo(s)/espíra(s) condutor(es) 5. O suporte 6 dá toda a sustentação ao captor e seus componentes.

As figuras 6 e 7, respectivamente, mostram vistas inferior e superior da semi-esfera metálica 1, que acomoda quatro bobinas 3, fixadas sobre o suporte 6 (não mostrado), que é fixado à semi-esfera 1 pelas abas de fixação 2. Observa-se ainda na figura 6, os indutores 4 – ou eletroímãs – interligados às respectivas bobinhas 3 através de elo(s)/espíra(s) condutor(es) 5. Cada bobina 3 forma um conjunto com seu respectivo indutor 4. Nas figuras 6 e 7 observam-se quatro desses conjuntos A, B, C e D.
Envolvendo as espiras da bobina 3, há pelo menos um mesmo elo(s)/espira(s) condutor(es) 5 - podendo ter outros formatos - fazendo pelo menos uma volta ao redor das espiras da bobina 3, preferencialmente duas voltas se o objetivo for geração de energia elétrica, e preferencialmente quatro voltas se o objetivo for geração de energia térmica. Tanto esse enrolamento, quanto o número de voltas ao redor das espiras da bobina 3 estão diretamente relacionados à quantidade de corrente a ser gerada no(s) elo(s)/espira(s) condutor(es) 5. Os elo(s)/espira(s) condutor(es) 5 podem ser formados por um ou mais elementos condutores de seção transversal dimensionada de acordo com a potência desejada.

Nos conjuntos A, B, C e D, as bobinas 3 apresentam suas espiras enroladas por pelo menos um mesmo elo(s)/espira(s) condutor(es) 5, que deve se dar pelo menos uma volta em torno das espiras das bobinas 3. Este enrolamento é interligado aos respectivos eletroímãs 4 de cada conjunto A, B, C ou D, conforme as figuras 6 e 7. Ressalta-se que os indutores ou eletroímãs 4 podem ser quaisquer tipo de indutor, ou mesmo utilizar outras tipos de bobinas.

A figura 8 representa a ligação das espiras do elo de condutor de interligação 5 em qualquer um dos conjuntos A, B, C ou D formados por bobina 3 e indutor 4. Conforme representado nas figuras 6 e 7, o elo(s)/espira(s) condutor(es) 5 é fechado entre as bobinas 3 e os respectivos indutores 4. Assim, tem-se que os pontos 5.1 da figura 8 devem ser conectados entre si, assim como os pontos 5.2. Deste modo, os elos de interligação 5, são fechados ainda as bobinas 3 e seus respectivos indutores ou eletroímãs 4. Observam-se ainda os condutores de alimentação 7.1, 7.2, em que os pontos 7.1 devem ser conectados entre si, bem como os pontos 7.2. Para que as bobinas 3 e seus respectivos indutores 4 sejam alimentados, deve-se alimentar um dos condutores de alimentação 7.1, 7.2 com a fase, enquanto o outro condutor 7.1, 7.2 deve ser alimentado com o neutro.

No captor de elétrons do espaço livre proposto na presente invenção, as bobinas 3 podem ser de qualquer potência monofásica, bifásica ou trifásica. Ainda, as bobinas 3 podem ser alimentadas por qualquer valor de tensão (V).

A alimentação da bobina 3 pode ser fornecida de qualquer fonte de alimentação de energia elétrica com potencial eletromagnético, tal como de uma rede de energia elétrica. E o captor de elétrons pode ser construído com configuração para corrente contínua ou com configuração para corrente alternada. Assim, se a fonte de energia for de corrente elétrica alternada -
CA, o captor fornece corrente elétrica alternada - CA. Se a fonte de energia for de corrente elétrica contínua - CC, o captor fornece corrente elétrica contínua – CC. O captor de elétrons da terra pode ser monofásico, bifásico ou trifásico, de baixa, média ou alta tensão.

A figura 9 mostra uma representação do diagrama elétrico do captor com os quatro conjuntos A, B, C e D de bobinas 3 e indutores 4. Observa-se a indução 9 ao redor do núcleo dos conjuntos de bobinas 3 A, B, C e D. O efeito da interação dos campos eletromagnéticos 11 é mostrado. Com a indução 9, ocorre a circulação da corrente elétrica 10 no elo(s)/espira(s) condutor(es) 5, atraindo os elétrons livres, através do campo eletromagnético do captor. Então, os elétrons se juntam com a corrente gerada por indução no elo(s)/espira(s) condutor(es) 5, circulando entre os pólos magnéticos norte-sul, e sul-norte.

De forma exemplificativa, as bobinas 3 são formadas por um núcleo monofásico, tipo coluna, com enrolamento e sistema isolante de espira ao redor do núcleo, mas também pode ser utilizado bobinas de qualquer gênero e formato. O captor de elétrons proposto pela presente invenção pode ser construído com outro tipo de dispositivo gerador de campo eletromagnético, tal como pelo menos uma bobina eletromagnética ou indutor eletromagnético ou eletroímã, de qualquer gênero e formato, com qualquer combinação entre eles, e em quantidades ilimitadas em cada fase do captor de elétrons.

A captação ocorre através de um campo eletromagnético que se forma com o fechamento das bobinas 3 com os eletroímãs ou indutores 4, através do elo(s)/espira(s) condutor(es) 5 entre os oito elementos.

Este fechamento produz o deslocamento dos elétrons da bobina 3 do conjunto (A) (por simplificação, denominada por bobina 3-A, atraídos pelos prótons da bobina 3 do conjunto (D) bobina 3-D, e são repelidos pelos elétrons do campo eletromagnético da própria bobina 3-D. Esses elétrons da bobina 3-D são atraídos pelos prótons da bobina 3-B, e são repelidos pelos elétrons da própria bobina (3-B). Esses elétrons da bobina 3-B são atraídos pelos prótons da bobina 3-C, e são repelidos pelos elétrons do campo eletromagnético da própria bobina 3-C. Analogamente, os elétrons da bobina 3-C são atraídos pelos prótons da bobina 3-A, e são repelidos pelos elétrons do campo eletromagnético da própria bobina 3-A. Esses elétrons da bobina 3-A são atraídos pelos prótons da bobina 3-D, e são repelidos pelos elétrons do campo eletromagnético da própria bobina 3-D. De forma análoga, os elétrons da bobina 3-D são atraídos pelos prótons da bobina 3-B, e são repelidos pelos elétrons do campo eletromagnético da própria bobina 3-B.

No captor, a tensão é estável. Independente da quantidade de corrente gerada – que pode ser altíssima –, a tensão será a mesma no circuito elétrico do captor, porque a corrente se movimenta através da atração e repulsão dos elétrons, independente de tensão.

A figura 10 ilustra uma representação do diagrama do circuito elétrico de ligação entre as bobinas 3 e os indutores 4, nos conjuntos A, B, C e D. Observa-se que, os conjuntos A, B, C e D são fechados entre as bobinas 3 e seus respectivos indutores ou eletroímãs 4. Os condutores de alimentação 7.1, 7.2, em que os pontos 7.1 dos conjuntos A, B, C e D devem ser conectados entre si, bem como os pontos 7.2. Para que as bobinas 3 e seus respectivos indutores 4 sejam alimentados, deve-se alimentar um dos condutores de alimentação 7.1, 7.2 com a fase, enquanto o outro condutor 7.1, 7.2 deve ser alimentado com o neutro.

Os conjuntos A, B, C e D após serem alimentados com tensão geram corrente elétrica através da atração e repulsão dos elétrons no elo/espira condutor 5, onde há pelo menos uma saída de carga 8.1, que devem ser conectadas unindo os conjuntos A e C, e pelo menos uma saída de carga 8.2, que devem ser conectadas unindo os conjuntos B e D. Os pontos de saída 8.1, 8.2 são as respectivas fases ou neutros dos pontos de alimentação 7.1, 7.2.

Desta forma, constitui-se um captor de elétrons do espaço livre monofásico, em que a fase e o neutro são formados, cada um, por dois pares de conjuntos de bobinas/indutores 3 e 4.

O conjunto bobina 3 / eletroímã 4 pode ser substituído por um conjunto bobina 3 / bobina 3, sem prejuízos ao captor.

Os conjuntos A, B, C e D, estão inseridos em uma semi-esfera metálica oca 1 constituida preferencialmente – mas não limitadamente – de alumínio. A semi-esfera 1, que tem como função concentrar e potencializar os seus campos eletromagnéticos, simulando uma eletrosfera, é fixada ao chão por um suporte 6 e apresenta abas de fixação 2, onde são fixadas as bobinas 3.
A figura 11 mostra o diagrama eletromagnético dos pólos norte e sul das bobinas 3 e indutores 4 dos conjuntos A, B, C e D do captor. O comportamento eletromagnético explicado para a figura 9 é novamente demonstrado, através da formação do conjunto de ímã com pólo norte e pólo sul sendo atraído e repelido pelas linhas de força do ímã partindo do ponto "A" para o ponto "D" do ponto "D" para o ponto "B", do ponto "B" para o ponto "C" do ponto "C" para o ponto "A", e assim sucessivamente, enquanto houver o campo eletromagnético.

O captor de elétrons do espaço livre proporciona, portanto, que a corrente elétrica induzida através do campo eletromagnético circule no sentido favorável à variação do fluxo magnético que a produziu. Assim, o campo magnético cria um pólo norte e um pólo sul em cada um dos conjuntos A, B, C e D, conforme mostrado na figura 11.

Ao alimentar as bobinas 3 do captor com uma tensão desejada, é gerado um campo magnético nas bobinas 3, entre os quatro conjuntos A, B, C e D que forma um fluxo de elétrons. Este fluxo em deslocamento forma a corrente elétrica – movimento ordenado dos elétrons – que circula no elo(s)/espira(s) condutor(es) 5 do captor fechado, gerando assim a captação de elétrons do espaço livre.

O campo eletromagnético da bobina 3-A circula no sentido norte-sul, o campo eletromagnético da bobina 3-B circula no sentido norte-sul, o campo eletromagnético da bobina 3-C circula no sentido sul-norte, e o campo eletromagnético da bobina 3-D circula no sentido sul-norte, conforme a figura 11. Ressalte-se que os conjuntos A, B, C e D podem ser formados por qualquer combinação entre bobina, eletroimã e ímã.

O que induz a bobina 3-A é o campo eletromagnético sul-norte, o que induz a bobina 3-B, é o campo sul-norte. O campo que induz a bobina 3-C é o campo norte-sul. E o campo que induz a bobina 3-D é o campo norte-sul. Assim, é criado um campo eletromagnético induzido, no conjunto de bobinas, podendo ter qualquer potência, monofásica, bifásica ou trifásica.

A figura 12 mostra os elétrons sendo atraídos e repelidos entre as bobinas 3 e os indutores 4. Sendo repelido e atraído por indução eletromagnética, a corrente elétrica se movimenta sem resistência.

O captor produz ondas eletromagnéticas que podem ser utilizadas para diversos fins, entre eles os de transmissão de sinal em qualquer frequência para qualquer finalidade.
A captação é provinda através dessas ondas eletromagnéticas. Pode-se chegar ao mesmo efeito físico da captação com a combinação de equipamentos de outras tecnologias, entre eles eletromecânicas, eletromagnéticas, eletroeletrônicas ou através da combinação de ímã ou qualquer outro tipo material imantado.

O captor de elétrons do espaço livre da presente invenção é ainda uma fonte renovável de produção de corrente elétrica e uma nova forma de geração de energia através do efeito de captação, geração de fluxos de elétrons, gerando movimento ordenado dos elétrons – corrente elétrica – conforme mostrado nas figuras 9, 11 e 12. Os elétrons podem circular sem tensão no elo(es)/espira(s) condutor(es) 5, podendo, alternativamente, ser polarizado em qualquer tensão.

O tipo de estrutura do circuíto elétrico – aberto e fechado – torna possível a geração de corrente elétrica através de eletromagnetismo no elo(es)/espira(s) condutor(es) 5 – local onde a corrente é gerada e se movimenta com ou sem tensão. Deste modo, a presente invenção proporciona um novo conceito de geração de energia elétrica, conforme mostrado nas figuras 9, 11 e 12.

Embora a presente invenção tenha sido descrita com referência a modalidade preferida e aplicações práticas da mesma, é evidente para aqueles versados na técnica que uma variedade de tipos, formatos, modelos, gêneros, modificações e mudanças que podem ser feitas ou utilizadas sem se afastar do escopo da presente invenção que é pretendido para ser definido pelas reivindicações anexas.

Será entendido que cada um dos elementos descritos acima, ou dois ou mais em conjunto podem também encontrar uma aplicação útil em outros tipos de equipamentos e efeitos que diferem do tipo descrito acima.
REIVINDICAÇÕES

1. “EQUIPAMENTO ELETROMAGNÉTICO CAPTOR DE ELÉTRONS DO ESPAÇO LIVRE PARA GERAÇÃO DE ENERGIA ELÉTRICA”, caracterizado por um equipamento que compreende pelo menos três conjuntos (A, B, C, D) de pelo menos um dispositivo gerador de campo eletromagnético (3) e (4), alimentados por uma fonte de energia elétrica - sem um núcleo ou com pelo menos um núcleo - tendo os seus núcleos ou qualquer extensão deles, preferentemente as suas espiras ou conjuntos de espiras, envolvidos por pelo menos um mesmo elemento condutor em circuito fechado em si mesmo (5) polarizado com tensão, sendo tais conjuntos de dispositivos geradores de campo eletromagnético (3) e (4) ligados entre si com seus pólos em confronto, para promover a interação de seus campos eletromagnéticos, sendo, preferivelmente, alocados entre duas semi-esferas metálicas ocas (1), de modo a concentrar e potencializar os seus campos eletromagnéticos - interligações estas que provocam o surgimento de uma corrente elétrica que se mantém circulando, com ou sem tensão, no elemento condutor em circuito fechado em si mesmo (5), que é o ponto das ligações das cargas externas, independentemente de haver ou não uma carga de consumo ligada a ele.

2. Equipamento eletromagnético, de acordo com a reivindicação 1, caracterizado pelo fato de que o pelo menos um dispositivo gerador de campo eletromagnético (3) e (4) tem pelo menos um núcleo.

3. Equipamento eletromagnético, de acordo com a reivindicação 1, caracterizado pelo fato de que o pelo menos um dispositivo gerador de campo eletromagnético (3) e (4) é desprovido de núcleo.

4. Equipamento eletromagnético, de acordo com a reivindicação 1, caracterizado pelo fato de que o elemento condutor em circuito fechado em si mesmo (5) é polarizado com uma tensão.

5. Equipamento eletromagnético, de acordo com a reivindicação 1, caracterizado pelo fato de que o elemento condutor em
circuito fechado em si mesmo (5) é desprovido de polarização com tensão, para gerar energia térmica.

6. Equipamento eletromagnético, de acordo com as reivindicações 1, 2 e 3, caracterizado pelo fato de que o dispositivo gerador de campo eletromagnético (3) e (4) é dotado de isolamento térmico eficiente, para gerar energia térmica.

7. Equipamento eletromagnético, de acordo com as reivindicações 1, 4, 5 e 6, caracterizado pelo fato de que o elemento condutor em circuito fechado em si mesmo (5) envolve com um maior número de voltas os núcleos ou qualquer extensão deles, preferentemente as espiras ou conjuntos de espiras de todos os dispositivos geradores de campo eletromagnético (3) e (4), para oferecer maior resistência à passagem de corrente elétrica, para gerar energia térmica.

8. Equipamento eletromagnético, de acordo a reivindicação 1, caracterizado pelo fato de que é configurado para uso com corrente contínua – CC.

9. Equipamento eletromagnético, de acordo a reivindicação 1, caracterizado pelo fato de que é configurado para uso com corrente alternada – CA.

10. Equipamento eletromagnético, de acordo as reivindicações 1 ou 9, caracterizado pelo fato de que é configurado para uso em redes elétricas de baixas, médias e altas tensões.

11. Equipamento eletromagnético, de acordo qualquer uma das reivindicações 1, 9 ou 10, caracterizado pelo fato de que é configurado para uso em redes elétricas monofásicas, bifásicas ou trifásicas, em qualquer potências.
INTERNATIONAL SEARCH REPORT

International application No.

PCT/BR2013/000014

A. **CLASSIFICATION OF SUBJECT MATTER**

H02N 11/00 (2006.01), H02K 53/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. **FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

H02N 11/00 ; H02K 53/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SINPI

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

Banco de Patentes INPI - BR - SINPI ; EPODOC ; USPTO

C. **DOCUMENTS CONSIDERED TO BE RELEVANT**

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>BR PI0906033 A2 (LUTZER EDEGAR SAMUEL [BR]) 14 December 2010 (2010-12-14)</td>
<td>1 – 11</td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:

 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed

 “T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 “X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 “Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 “Z” document member of the same patent family

Date of the actual completion of the international search

27/02/2013

Date of mailing of the international search report

12/03/2013

Name and mailing address of the ISA/BR

INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL
Rua Sao Bento nº 1, 17º andar
cap: 20990-010, Centro - Rio de Janeiro/RJ
+55 21 3037-3963

Authorized officer

Luis Andre Subtil Machado

Telephone No.

+55 21 3037-3493/3742

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Country Code</th>
<th>Application No.</th>
<th>Date</th>
<th>Foreign Application(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>PI0900633 A2</td>
<td>2010-12-14</td>
<td>None</td>
</tr>
<tr>
<td>DE</td>
<td>102006054568 A1</td>
<td>2008-05-21</td>
<td>None</td>
</tr>
<tr>
<td>JP</td>
<td>4317555 A</td>
<td>1992-11-09</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CN 1650502 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EP 1501174 A4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US 2005140231 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WO 03094329 A1</td>
</tr>
</tbody>
</table>

Form PCT/ISA/210 (patent family annex) (July 2009)
RELATÓRIO DE PESQUISA INTERNACIONAL

A. CLASSIFICAÇÃO DO OBJETO

H02N 11/00 (2006.01), H02K 53/00 (2006.01)

De acordo com a Classificação Internacional de Patentes (IPC) ou conforme a classificação nacional e IPC

B. DOMÍNIOS ABRANGIDOS PELA PESQUISA

Documentação mínima pesquisada (sistema de classificação seguido pelo símbolo da classificação)

H02N 11/00 ; H02K 53/00

Documentação adicional pesquisada, além da mínima, na medida em que tais documentos estão incluídos nos domínios pesquisados

SINPI

Base de dados eletrônica consultada durante a pesquisa internacional (nome da base de dados e, se necessário, termos usados na pesquisa)

Banco de Patentes INPI - BR - SINPI ; EPODOC ; USPTO

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoria</th>
<th>Documentos citados, com indicação de partes relevantes, se apropriado</th>
<th>Relevante para as reivindicações Nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>BR PI0900633 A2 (LUTZER EDEGAR SAMUEL [BR]) 14 dezembro 2010 (2010-12-14) todo o documento</td>
<td>1 – 11</td>
</tr>
</tbody>
</table>

- **X** Documento publicado após a data de depósito internacional, ou de prioridade e que não conflita com o depósito, porém citado para entender o princípio ou teoria na qual se baseia a invenção.
- **A** Documento publicado antes do depósito internacional, porém posterior a data de prioridade reivindicada.

Documentos adicionais estão listados na continuação do quadro C

Ver o anexo de famílias das patentes

Data da conclusão da pesquisa internacional:

27/02/2013

Nome e endereço postal da ISA/BR

INSTITUTO NACIONAL DA PROPRIEDADE INDUSTRIAL
Rua Sao Bento nº 1, 17º andar
cep: 20090-010, Centro - Rio de Janeiro/RJ
+55 21 3037-3663

Nº de fax:

Formulário PCT/ISA/210 (segunda página) (Julho 2009)

Funcionário autorizado

Luís André Subtil Machado
Nº de telefone: +55 21 3037-3493/3742
<table>
<thead>
<tr>
<th>Documentos de patente citados no relatório de pesquisa</th>
<th>Data de publicação</th>
<th>Membro(s) da família de patentes</th>
<th>Data de publicação</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR PI0900633 A2</td>
<td>2010-12-14</td>
<td>Nenhum</td>
<td></td>
</tr>
<tr>
<td>DE 102006054568 A1</td>
<td>2008-05-21</td>
<td>Nenhum</td>
<td></td>
</tr>
<tr>
<td>JP 4317555 A</td>
<td>1992-11-09</td>
<td>Nenhum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1650502 A</td>
<td>2005-08-03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1501174 A4</td>
<td>2005-10-05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005140231 A1</td>
<td>2005-06-30</td>
</tr>
</tbody>
</table>