
I
UC-NRLF

B M ESQ b7a jRY or
WAVE 1KANSM1SSION

GEORGE CONSl'ANTINESCO









THEORY OF
WAVE TRANSMISSION

A TREATISE ON TRANSMISSION

OF POWER BY VIBRATIONS

BY

GEORGE CONSTANTINESCO

SECOND EDITION, REVISED

Price I OS. 6d.

WALTER HADDON
PROPRIETOR OF PATENTS CONTROELINU

WAVE TRANSMISSION
132 SALISBURY SQUARE, E.G. 4

1922





CONTi:XTS

CHAPTER I

Introductory

CHAPTER H
Elementary Physical Principles

CHAPTER HI

definitions

Alternating Fluid Currents; Alternating Pressures; Friction; Dis-
placement; Capacities and Condensers; Consideration of Several
Springs acting together; Capacity of Liquid Columns in Pipes;

Capacity due to Elasticity of the Walls of the Pipes; Inertia;

Leakage; Capacity due to a Circular Plate; Inertia of a Circular

Plate 13-2S

CHAPTER IV

effects of capacity, inertia, friction and leakage on
alternating currents

Relation between Current, Capacity and Hydromotive Force; Relation
between Current, Inertia and Hydromotive Force; Leakage; Fric-

tion ; Combined Effect of Friction, Capacity, Inertia and Leakage in

a Pipe ; Mechanical Work ; Potential Energy of a Capacity ; Kmetic
Energy of an Inertia ; Examples -';)-^4

CHAPTER y

waves in long pipes

Alternating Flow in Long Pipes; Formulae; Application of the Theory
of Proportional Pressures and Currents; Examples; Graphic Method
of Calculating Currents in Pipes; Examples; Uniformly Loaded Pipes;

Wave Transmission in Metallic Springs ; Capacity of Condensers taking

into account the Inertia of the Spring; Wave Transmission in Fluids

contained in Pipes of Non-uniform Section; Examples . . . 45-74

CHAPTER VI

alternating flow in long pipes allowing for FRICTION

General Formulae; Damping; Efficiency; Percentage Drop of the Line;

Effect of Changes of Frequency in Long Pipes ;
Stability :

Notes on

the Law of Friction ; Examples 75*95

931924



iv CONTENTS

CHAPTER VII

THEORY OF DISPLACEMENTS—MOTORS
lAr.E

Displacements ; General Consideration of Motors ; Synchronous Motors
;

Asynchronous Polyphase Motors ; Asynchronous Monophase Motors

;

Collector Motors; Collector Motor with Connections in Parallel . 96-122

CHAPTER VIII

THEORY OF RESONATORS

General Consideration of Resonators; Amplitude Optima; Deformation
of the Current; Free Oscillations; Decrement; Case of Continuous
Oscillations with Amplitude Maxima; Application of the Theory;
Maximum Useful Effect 123-138

CHAPTER IX

HIGH-FREQUENCY CURRENTS

Consideration of Transmission Lines of Variable Section; Hysteresis;
Infinitely Long Pipes; Conical Pipes of Infinite Length with Gener-
ator near the Apex; Power Factor 139-153

CHAPTER X
CHARGED LINES

General Consideration; Discontinuities; Equivalent Uniform Line;
Conditions Necessary for Equivalence ; Mechanical Power ; Efficiency

;

Wave Velocity ; Examples . . . ^ 154-166

CHAPTER XI

TRANSFORMERS

Definition; Mutual Coefficient of Inertia; Capacity; Examples . 167-170

APPENDIX
Tables 171-209



A TREATISE ON
WAVE TRANSMISSION OF POWER

CHAPTER I

INTRODUCTORY

One of the fundamental problems of mechanical engineering is that

of transmitting energy found in nature, after suitable transformation,

to some point at which it can be made available for performing useful

work.

The methods of transmitting energy known and practised by
engineers are broadly included in two classes : mechanical, including

hydrauhc, pneumatic and wire rope methods; and electrical methods.

The present volume deals with a new method by which the problem

has been solved by the author.

All methods of transmitting power through liquids, known as

hydrauhc m.ethods, as hitherto applied, depend on the continuous

transmission of pressure through a liquid so that pressure generated

at one end of the line is utilised at the other end. The liquid in

this form of transmission merely acts as an incompressible flexible

connecting-rod.

The known pneumatic methods involve a flow in the pijx^s always

in one direction, pressure being generated at one end of the system and

utilised at the other end, but in tliis case the elasticity of the air

employed is sometimes taken advantage of in the power utilisers.

In the wire-rope methods, the motive power is, as it were, attached

by a string, as near as possible ine.xtensible, to the power utilisers ; the

system depends on the longitudinal motion of the wire as a whole.

In all these known methods of applying mechanical means to the

transmission of power from one point to a distant point elasticity has

no direct function and is generally avoided or ignored.

The author's system depends on the -elasticity of the medium

through which the energy is transmitted. The essential feature of
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the system is that the particles of the medium employed, wliether

sohd, hquid, or gaseous, are in a state of vibration about a mean
position.

According to the new system, energy is transmitted from one

point to another, which may be at a considerable distance, by
means of impressed periodic variations of pressure or tension pro-

ducing longitudinal vibrations in sohd, liquid, or gaseous columns.

The energy is transmitted by periodic changes of pressure and volume

in the longitudinal direction, and may be described as wave trans-

mission of power, or mechanical wave transmission.



CHAPTER II

ELEMENTARY PHYSICAL PRINCIPLES

There are many instances in nature of transmission of energy by
vibrations ; wave motion may almost be said to be the naturaljnethod

of transmitting energy-.

Let us consider some known phenomena of vibrations of particles

of matter.

The transmission of sound through air is due to a vibratory motion

set up by the source in the surrounding air ; each particle of air in the

neighbourhood of the source is put into a state of vibration about a

mean position.

A common method of producing sound is to cause an elastic

diaphragm to vibrate, impressing its vibrations on the surrounding

air. By isolating the air to which the vibrations are transmitted, as,

for instance, by means of a speaking-tube, the sound can be directed

and a given quantity of energy of vibration produced can thus be

transmitted over great distances.

Consider what is taking place in the tube when the contained air

is set in motion by a diaphragm in a plane normal to the axis of the

tube and vibrated about a mean position.

The first movement of the diaphragm in the direction of the tube

displaces some air along the tube ; this displacement is resisted by the

still air further along the tube, so that a zone of compressed air is

produced in the immediate neighbourhood of the diaphragm. At the

same time the moving diaphragm is giving velocity to the particles

of air in its immediate neighbourhood, and these particles communi-

cate their velocity to those beyond them, and thus any disturbance

once produced by the diaphragm must travel forward along the tube.

On the return movement of the diaphragm, the compressed air in

its immediate neighbourhood, being elastic, expands, and we have

then a zone of low-pressure air in contact with the diaphragm.

The continuing vibrations of the diaphragm produce alternate

zones of liigh and low pressure, and the disturbances so produced

travel forward along the tube until the whole of the air particles in

3
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the tube are in a state of vibration ; it has been found that the

zones of high and low pressure travel along the tube with a definite

velocity of about 330 metres per second, this velocity varying slightly

with the diameter of the tube.

In a similar manner sound energy travels through other elastic

media. The velocity through water has been found to be about

1435 metres per second.

As hitherto employed for the transmission of power in hydraulic

and telpherage systems, liquid and sohd connections have been con-

sidered as movable en bloc, and for practical purposes incompressible

and inextensible. Both liquid and sohd columns, however, are

elastic, and this property can be made use of to transmit energy by
vibrations of the particles of matter of which they are built up. We
will first consider the case of liquid columns.

Assume that we have 150 metres of wrought-iron steam-pipe, of

2*5 cm. diameter and 05 cm. thickness of metal, closed at one end

and filled with water ; and suppose a fluid-tight piston is forced into

the pipe under a steady pressure of 35 kg. per sq. cm. If the liquid

were incompressible the increase in volume of the containing pipe

under the pressure would allow the piston to enter about i'5 cm.

If the pipe were absolutely inexpansible the pressure would com-

press the water to an extent that would allow the piston to enter

about 26 cm.

It is seen, therefore, that the compression of the water in a wrought-

iron steam-pipe of the size considered is the chief factor in the changes

of volume which take place under pressure, and that the expansion

of the containing pipe is almost negligible.

On removing the pressure from the piston, the water will again

expand to its original volume. With other liquids similar results

will be obtained. Assume now that the pipe, instead of being closed

rigidly at one end, is closed by a light floating piston held always in

contact with the liquid column, but free to move with the liquid

;

assume further that the working piston, instead of being slowly

pushed into the pipe, is connected to a rapidly rotating crank, so that

it moves with a simple harmonic motion, and that in addition to the

piston impulses a steady pressure acts on the liquid column at both

ends. The only resistance to the movement of the piston is then the

inertia of the liquid column, and if the column is short the liquid will

move as a solid mass. If, however, the column is of considerable

length, the motion of the layers of liquid nearer the working piston is

resisted by the inertia of the more remote layers, and on the in-stroke

of the piston the liquid in its neighbourhood will be compressed

and its volume diminished; it follows that the motion of the layers
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of liquid remote from the piston will be less than that of layere

nearer to it.

At any given speed of rotation of the crank there will be a point

in the liquid column at which, on the completion of the in-stroke of

the piston, no movement of the liquid has occurred. The liquid

between this point and the piston will at this moment be in a state

of compression varying from a ma.ximum at the piston to zero.

At the moment of maximum velocity of the piston, the velocity

of the layer of liquid in contact with it will necessarily be greater

than the velocity of the more remote layers, and the kinetic energy

of the layers nearer the piston will, therefore, be transmitted in the

forward direction along the column. The energy e.xpended by the

piston in its forward stroke at the end of this stroke is present in

the liquid column, partly in the form of potential energy due to

the decreased volume of the liquid under compression and partly as

kinetic energy.

On the return stroke of the piston, the compression of the layer

of liquid in contact with it decreases, and expansion of the liquid takes

place between the piston and the point in the column at which the

pressure is a maximum. As the point of maximum pressure moves away
from the piston at the commencement of the return stroke, the velocity

of the layer of liquid in contact with the piston is reversed, while the

pressure of this layer diminishes until the piston is at the end of its

out-stroke. At the end of this out-stroke the layer of liquid in

contact with the piston is instantaneously at rest.

As the crank continues rotating, there are thus impressed on the

liquid column a series of impulses sending a series of changes of

pressure and volume along the column, the particles of liquid each

vibrating about a mean position.

The considerations dealt with above as regards vibrations in liquid

columns apply also to solids ; this may be shown by considering the

case of a long helical spring, one end of which is subjected to periodic

shocks in the longitudinal direction. At each shock the end of the

spring will be compressed and will again expand when the impulse is

removed; the effect of the impulse, however, will travel along the

spring in the direction of the shock with a definite velocity. The

inertia of the coils of the spring remote from the end provides the

resistance necessary to compress the first coils, but on the removal of

the impulse expansion takes place in both directions, so that the wave

of pressure and displacement travels along the spring.

An example of this occurs in practice in the case of the recoil

springs of heavy ordnance, in which it has been noticed that pulses

in the movements of the gun take place, due to the zones of
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compression in the recoil springs produced by the sudden shock

of firing.

Consider now a very long steel wire connected to a crank so that

the end is given a simple harmonic motion in the longitudinal direction,

and suppose that the tension given by the crank is superposed on a

steady tension in the wire so that no part of the wire is ever in a state

of longitudinal compression.

As the crank rotates the end of the wire will be subjected to

alternate maximum and minimum tensions occurring periodically

;

under certain conditions the wire, being elastic, will not move en bloc,

but the periodic changes of tension will produce periodic displacements

of the particles of the wire in the longitudinal direction, each particle

vibrating about a mean position as in the case of the fluid columns

discussed above.

In the transmission of sound through air we have seen that a

series of vibrations is imparted to the air particles, causing them to

move about a mean position ; and thus a series of waves of alternate

compression and rarefication travels forward from the source. If

these waves fall on a sensitive receiver, such as the drum of the human
ear, the receiver is set in vibration and the sound is heard. Tliis is,

in fact, an example of the transmission of energj^ by mechanical wave

motion. Similarly, sound is transmitted through liquids and solids.

In order that a receiver may be able to respond to the vibrations

falling on it, certain conditions are essential. The part of the receiver

which is to be put in motion must be capable of vibrating at the

periodicity of the vibrations which fall on it.

In the case of the human ear very sensitive* receivers are found,

which are tuned to or capable of adapting themselves readily to

vibrations of different periodicity within certain limits oi frequency.

When, however, we come to the problem of detecting vibrations by

mechanical means, and still more so when it is desired to transmit

power economically by means of these vibrations, it is necessary that

the part moved should be designed so that it can respond to the par-

ticular periodicity of vibration by which the power is transmitted.

It is further necessary, if the part moved has to perform useful

work, that the work should be performed in such a manner that

the ability of the receiver to vibrate in unison with the impressed

vibrations is not interfered with.

Although in some cases in which energy has been heretofore trans-

mitted by vibrations in matter—as, for instance, the case of a tuning-

fork made to respond to sound waves of its own frequency—the

question of the period of vibration of the receiver has been considered
;

in no case, up to the present, has the tuned receiver been adapted
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to the performance of work. For the transmission of power by
mechanical wave motion it is therefore necessary to devise means by
which the vibrations in the transmission hne may be received and
converted to use.

Let us now consider further the case of a rapidly rotating crank
causing a piston to reciprocate at the end of a long pipe containing
liquid. We have seen above that a series of zohes of high pressure
and compression of the liquid alternating with zones of low pressure
and expansion of the liquid are produced, and that these zones travel

forward along the pipe.

In Fig. I suppose the crank a to be rotating uniformly, causing

\-x

Fig.

the piston b to reciprocate in the pipe c, wliich is full of liquid. At

each in-stroke of the piston a zone of high pressure is formed, and

these zones of high pressure , shown by shading, travel along the pipe

away from the piston ; between every pair of high pressure zones

is a zone of low pressure shown light in the figure. The pressure at

any point in the pipe, therefore, will go through a series of values

from a maximum to a minimum, and these values will repeat periodi-

cally. Let the line ox represent the value of the mean pressure, then,

with the piston in the position illustrated, the instantaneous pressures

at different points along the pipe may be represented by the ordinates

of the sine curve efg... k. As the rotation of the crank is uniform,

it will be evident that the distances between successive points of

maximum pressure will be equal. This uniform distance along the

pipe at which the values of the pressure are re{>eated is the wave

length of the vibrating movement of the liquid.

If V is the velocity with which these waves travel along the pipe,

and n is the number of revolutions in unit time of the crank a, it

will readily be seen that the wave length A must be
^

.

Assume now that the pipe is of finite length and is closed at the

point r at a distance from the piston b equal to an e.xat t nmltiple of
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the wave length, and suppose that the stroke of the piston is small

compared with the wave length as shown in Fig. 2.

The wave of compression will be stopped at r and reflected, and

the reflected wave will travel back along the pipe.

Fig. 2.

If the crank continues its rotation at uniform speed, with the

length of pipe and speed of rotation we have taken

—

i.e., with the

distance from the piston h to the stop r an exact multiple of the wave
length—a zone of maximum pressure will be just starting from the

piston at the instant the reflected zone of maximum pressure reaches

it ; so that we, shall have a wave of double the original amplitude

travelling forward along the pipe. The next revolution of the crank

will again add to the amplitude of the wave sent forward ; and so

on with successive revolutions. The result of this continual pouring

in of energy is that the maximum pressure increases without limit

till ultimately the pipe bursts.

It should be noticed that, in a wave of greater amplitude, the

maximum pressures are increased, and the maximum velocities and
distance of travel of the oscillating particles are also increased.

Suppose now that instead of closing the pipe rigidly at r we have

at y a piston m connected to a crank n similar to a as shown in Fig. 3.

/V^^—T MWIIIIIlM m^-f^"
Fig. 3.

Suppose that the crank n is rotating at the same angular velocity

and in the same phase as the crank a. If the liquid column were

continued beyond the piston m, it is evident that the movement of

the piston would produce in this column a series of waves which

would be exactly similar to and a continuation of the waves between

b and m.
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The piston w, therefore, if moving synclironously with 6, will be

able to take up the whole energy of the waves produced by b and
travelling along the pipe.

It will be seen, further, that the piston will be able to take up
and utilise the whole of the energy of the waves travelling to it if

placed at any point of the pipe, provided its time period of reciprocation

is the same as that of the piston a, and provided that the phase of'

its movement is such as would produce a continuation beyond it of

the impinging waves ; that is to say, provided the piston movement is

in phase with the movement of the layer of liquid in contact with it.

In the transmission of power by wave motion in this e.\ami>le,

the maximum pressure in the pipe will at no point exceed the maximum
pressure in the neighbourhood of the working piston, however long

the transmission line may be ; and will be the same whether the line

Fig. 4.

is a single wave length or any number of wave lengths. Also the two

pistons may be moving in the same or in opposite directions, and

their motions may differ in phase by any angle according to the

relation between the distance from one to the other and the wave

length.

In the example above discussed, the whole of the energy put into

the liquid column by the piston b can be taken up by the piston m. If

more energy is put in by b than is taken up by the piston m, assum-

ing no frictional losses, it is obvious that reflected waves must be

formed as the direct waves fall on the piston m. The result of this

will be that the surplus energy will remain in the liquid and the con-

tinuation of the rotation will continually pour in energy, increasing

the maximum pressure indefinitely till ultimately, as in the case

of the closed pipe, the pipe will burst.

Suppose that, in the case of a closed pijie having a length of

several wave lengths, a vessel d completely filled with liquid, of

considerable volume in proportion to the stroke volume of the

piston b, and with rigid walls, is placed in communication with the

pipe in the neighbourhood of the piston, as shown in Tig. 4. At
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each in-stroke of the piston a flow will take place through the

entrance to the vessel d, and the liquid in this vessel will be com-
pressed, and at each out-stroke of the piston the liquid in the vessel

will again expand ; according to the volume of the vessel more or less

liquid will flow into it and out of it at each revolution of the crank.

The capacit}' d will thus act as a spring, taking up the energy of the

direct and reflected waves when the pressure is high, and giving back

this energy \\'hen the pressure falls ; the mean pressure in the vessel

d and in the pipe will be the same, so that when the successive

reflected waves in the pipe have been produced and have reached a

certain amplitude equivalent to this mean pressure, the piston will

merely exert energy in compressing the hquid in the vessel d on its in-

stroke, and the Hquid acting as a spring will restore this energy to

the piston on its out-stroke. The result of this is that when the

reflected waves have been produced, there will be a series of stationary

waves in the pipe, and no further increase of energy in the liquid

m n I

Fig. 5.

will take place and the pressures in the pipe will never exceed the

fixed hmit.

By using a vessel such as d, therefore, the pipe can be completely

or partially closed. It is therefore possible to place at the far end or

other point of the pipe apparatus for utiHsing only part of the energy

of the wave, and the rotating crank a will only require to perform

work to the extent of the energy actually utilised.

Consider now a case (Fig. 5) in wliich waves are transmitted by a

reciprocating piston a along a line eee provided with branches. Assume
that the pipe e is closed at ^ at a distance of one complete wave length

from the wave generator a ; and that there are branches bed at the half,

three-quarter and full wave-length distances respectively. We know
from the cases discussed above that if the cock p is closed and the cock

d opened, leading to a motor / rotating at the synchronous speed, the

motor / will be able to take up the whole of the energy put into the

liquid by the pump.

We also know that if all the cocks are closed stationary waves

will be produced in the p^ipe e having maximum variations of pressure

at the end p and at the half wave length b. At these points the flow
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will alwaj's be zero, while the pressure will alternate between maximum
and minimum values determined by the capacity/, consisting of a

closed vessel filled with liquid. At the quarter and three-quarter

wave length g and c respectively the flow will alternate between

maximum and minimum values, but the variation of pressure will

remain zero.

In this case the points of ma.ximum pressure and maximum
movement do not travel along the pipe, but are fixed in jxjsition,

and theoretically no energy flows from the generator. At the points

of maximum movement no variation of pressure will occur; and at

the points of maximum pressure variation there will be no movement

of tlie liquid.

It is evident, therefore, that if the cock b leading directly to a motor

m be opened, the motor m, running at the synchronous speed, will be

able to take up all the energy given to the line. The stationary half

wave between a and b will therefore disappear, its place being taken

by the forward travelling wave, while between b and p the stationary

wave will persist. If the cock c leading to the motor n at the three-

quarter wave length be opened, all other cocks being closed, since at

the point c the variation of pressure is always zero, no energy can be

taken up by the motor, and the stationary wave will persist in the

whole length of the pipe.

If the motor be connected at any intermediate point, part of the

energy will be taken up by the motor, while the stationary wave will

persist but will be of reduced amplitude between the generator a and

the motor. The state of the liquid between the generator a and the

motor may be considered as the resultant of two superposed waves

:

one a stationary wave and the other a travelling wave of flowing

energy.

Assume now that the motor / is not capable of taking up all the

energy which can be transmitted to the line by the generator a ; then we

shall have superposed in the pipe a system of stationary waves and a

system of waves travelling along the pipe, so that there will be no pcnnt

in the pipe at which the variation of pressure will always be zero, con-

sequently a motor connected at any point of the pipe will Ix? able to

take up and utilise a portion of the energy which is transmitted to

the line.

We see, therefore, that if we have a number of motors all connected

to the hne, every one of them will be able to take some energy and

do some useful work. It is only when no energy is being utilised

that points at which the variation of pressure is permanently zero

can exist.

It is seen from the preceding discussion that periodic variations
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of pressure and volume can be impressed on columns of ^ases limnH.



CHAPTER III

DEFINITIONS

Alternating Fluid Currents.—For any flow of fluid in full

pipes, if

w = the sectional area of the pipe in square centimetres,

V = the velocity of the fluid at any instant in centimetres per

second,

and
/' = the flow of liquid in cubic centimetres per second, we have,

Suppose that the current is produced by a piston moving in a

cylinder of section Q sq. cm. with a simple harmonic motion.

Let

r = the equivalent length of the driving crank in centimetres,

a = the angular velocity of the crank or the pulsation in radians

per second,

n = the number of revolutions of the crank per second,

Then the flow from the cylinder to the pijDe at any instant will Ix?

I = I sm {at + <t>)
(i)

where

and if

we have

J = ran = the maximum alternating flow in cm.' sec, or

the amplitude of the flow.

/ = the time in seconds, ,

(fi
= the angle of phase,

T == the period of one complete alternation, equal to the

time of one complete revolution of the crank,

a = 2nn,

(V 1
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Let us define the effective current /e^. by the equation

i

and the effective velocity

ll,,^-^JxHt = ^^ (2)

U)

The stroke volume 8 will be given b}- the relation^

—

S = 2rn = 2 -
a

This corresponds to the volume displaced by the piston in the

cylinder during a single stroke and is measured in cubic centimetres.

Thus the stroke /of the Hquid in the pipe in the immediate neighbour-

hood of the piston will be

—

f - 1=^

Alternating Pressures.—The consideration of alternating pres-

sures is similar to that of alternating currents. In a pip)e in which

the current is flowing the pressure ^ will be of similar form ; and we

have

p =: i/ sin {at -i- .//) + /'..,. (3)

where

and

H = the maximum alternating pressure in kilogrammes

per square centimetre,

i// = the angle of phase,

^,„ = the mean pressure in the pipe.

The minimum pressure in the pipe will then be

Aui... = /'..,. - a

and the maximum pressure will be

• />,nnx. =Pr..-^H

If ^1 is the pressure at any point in the pipe and p., the pressure

at another point,

the difference

h = p,- p., = H sin {at + ip) (4)

will be defined as the instantaneous hydromotive force between the

two points, and H is its amplitude.
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The effective hydromotive force will be

H - ^
'"• ~ V2

Friction. In an alternating current of liquid flowing in a pipe,

certain friction will occur at the surface of the pipe and in the body of

the liquid itself; we shall assume that the pressure difference or

hydromotive force required to produce the flow is sul)stantially

proportional to the current.*

The relation between the hydromotive force and current may
therefore be written

h = Ri (5)

where

R = coefficient of friction in °'
,

"

cni.=

From the best experiments at present available the value of R may be

calculated from the formula

—

A^ = c^^"'", (6)

where

y = the density of the liquid in kg. cm.^,

I = the length of pipe in centimetres,

g = the acceleration due to gravity in cm. sec.-,

w = section of the pipe in square centimetres,

v^^ = the effective velocity in cm. sec,

d = the internal diameter of the pipe in centimetres,

and for water

—

.
o-i8

e = 0-02 + 7— J

Exact experiments are lacking on this subject, so this formula nmst

only be considered as an approximation.

From (6), substituting for e, we have
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we get

I
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It should be noted that comparatively greater effective velocities

may be employed in pipes of greater diameters for the same value of k.

The loss of power W due to friction will be

W =^/hidt (8)

h = Ri

if R r^ RPw =^yRm = jj i^dt
^

'^- (9)

We have, therefore

—

„, RP HI „W =^^= ^ = H,a. X I,a.

Example

It is required to transmit power between two points. Find the relative

weights of metal when the transmission is made through one, or through m pipes

;

the conditions being that the same power is transmitted, the same hydromotive

force employed and the loss of power equal in the two cases.

Assume that the diameters d are large enough to allow of the simplification

looft ~ -^
a

Let V and w be the effective velocity and section respectively of the single pipe,

and t/, and w, the same quantities for one of the m pipes.

As the same power is to be transmitted we must have

J = vuj = mv^u'j^ = ih/j

In order that the loss of power may be the same we must have

hence
mR = h\

But from (7) , as the length of each pipe is the same

—

it follows that

Also we have

therefore

9 ./vl

k ~
di V 1 ,9 Iv div

V \ d

V, du>
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but since

So that
d

«i

The weight G and G^ of the tvvo systems of pipes will be api)r. iximar.

proportion to their sections, so that

Gi _ mdi* _ I

G = d»
-^

The single pipe, therefore, is the more economical solution.

Thus if two pipes are used m = 2

and
G^^ = 2'=II5

So that it is more economical to employ a single pipe.

Numerical Example

Find the power lost in a pipe 10 km. long having an internal diameter

10 cm. and in which there is flowing an alternating current of water with

effective velocity 100 cm. per second.

We have
ir = RIU.

and
/.(I.

go,

Vtn. , 009 /v^tt.

d '^ d ^ d

From which
:3i h.p.

Capacities and Condensers.—A hydraulic capacity is a reser-

voir to receive the flow of an alternating current, sucli as a large

vessel filled with Hquid, an elastic bottle, a diaphragm, or a light

piston working in a cylinder and held by a spring device placed in

communication with a pipe in which an alternating current of liquid

is flowing. Its value dej^ends on elasticity.

Hydraulic condensers are apphanccs for makin;^ alterations in the

value of currents, pressures or phases of alternating currents. The

apparatus usually consists of a movable solid body dividing the liquid

c
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column and supported elastically in a mean position so that it follows

the movements of the liquid column. An example of a condenser is

shown at Fig. 6.

y.'////^///>

^//VAV/f'

Fig. 6.

The principal function of hydraulic condensers is to counteract

inertia effects due to moving masses.

The capacity C of a condenser consisting of a piston of section w

on which the liquid pressure is acting, held in a mean position by
means of springs, is given by the equation

where

and

AF = wA/= Cl\p (10)

A F = the variation of volume of the space for liquid,

A/ = the variation of longitudinal position of the piston,

A/) = the variation of pressure in the liquid.

If the piston is held by a spring we have at any instant

/= AF

A = z. constant depending on the spring

F = the force acting on the spring.

In the condenser we have

AF = (uA^

/Sf=Ai>>/Sp

From equations (lo) and (ii) we get

C =^0)2

where

and

consequently

and

F f _R
A C

(II)

(12)
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For springs of wire of circular section wound on a cylinder wc
have

where

B = volume of metal in the sjuing in cubic centimetres,

o- = the allowable stress of the metal in kilogrammes per

square centimetre,
and

G = the coefficient of transverse elasticity of the metal.

This may be written simply

—

B = mFf (13)

m being a constant depending only on G and it.

If d is the diameter of the wire of the spring and D the mean
diameter of the spiral, we have

F^o-4^-r

so that

o-4<T

or simply

d = ni/FD

n being a constant depending only on a.

The values of m and n for steel springs for different values of <r are

given in the following table

—

1500 1750
067 049
o-ii8 0113

2000 I 2250
I

2500 2750 3000
j

3250 3500
0-38 0-30 0-24 0-20 0-17 ! 0-142 0-123

0-107 0-103 o-ioo
I

0-096
, 0-094

I

0"09i 0089

These equations, therefore, enable us to calculate the springs

required for a condenser of a given capacity required to work at a

given maximum stress.*

For springs made of wire of square section, taking the same values

for C, D, f, and G, if B' be the volume of the spring and d' the side of

the square of the section,

we have
B' = T^B

and
d' = o-88</

B and d being the volume and diameter of wire of the equivalent

spring with wire of circular section.

* A table of springs will be found in .Appendix.
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Tlie square-sectioned wire will thus require a much heavier spring;

which would be about 25 per cent, longer when fully compressec

than the spring made with wire of circular section. Other forms wil

;ils() be less economical than the circular section

Consideration of Several Springs acting together. — II

several springs act directly on the piston of a condenser, the springs

exert pressures given by

C„

The resultant pressure

F = 2F„

If we denote the resultant capacity by C

we have

c~c,^c,^ • • + c„

Tliis equation is general whether the springs are on the same side of

the piston or some on one side and some on the other ; and whether

they are under initial pressure or not, provided they are in contact

with the piston throughout its stroke. Suppose the piston is controlled

by a number of springs under different degrees of compression at

the instant at which the change of pressure occurs

we still have

fn
2F,. = a>22^

If we vary the pressure

AF= A2F„ = o>2A2^"

but

/,/, . . . /„ all vary with A/

so that

and

AF = a>2A/2^ =<.j2A/^

and

C " c„
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Thus if we have a condenser in wliich the piston is held by two
equal springs acting on opposite sides and C\ be the capacity of one
spring; the capacity of the condenser will be given by the relation

and

Capacity of Liquid Columns in Pipes.—Capacity C has alx)ve

been defined bv the relation

^ ~ A/)

where A V is the change in the volume of the liquid under a change
of pressure A/>.

If E is the coefficient of elasticity of the liquid

we have

so that

^ "E
V being the volume of liquid in cubic centimetres.

For water the value of E is about 2 x 10*.

For steel E is about 2 x 10^.

So that the value for water is about a hundred times smalk-r than

for steel.

For lubricating oil E = 1-4 x lo'* approximately.

Thus the capacitv of a volume of liquid V for water will l>e

c= ^
20000

and for lubricating oil

14000

It should be noted that the coefficient of elasticity is not al:>s()hitely

independent of the pressure, but increases as tiie pressure increases.

A table of coefficients of elasticity of different liquids under various

pressures is given in Appendix.

Capacity due to Elasticity of the Walls of the Pipes. The

change of volume of a pipe of length / and internal diampt«T 2r will

be
^ F = 27rr/Ar + Tr^A/
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The capacity will therefore be

l\p Ap A/)

If £1 is the coefficient of elasticity of the metal of the pipe and a

and T the tension per unit section in the walls circumferentially and

longitudinally respectively

and

but if e is the thickness of the walls

ae ^ r Ap = Ire

so that

E^ E^e

and

and

^ E^e E^e

where d is the diameter and w the section of the pipe.

The total capacity of a pipe full of liquid, taking into account the

compressibility of the liquid and the elasticity of the metal, will

therefore be

^-'"[l + ^lf©]
For iron pipes and water

E^ = 100 E approximately

so that

^ = !"('+ si)

As the term „' is in practice small in comparison with unity, we
ooe

may treat the pipe as rigid, and we have

^ /to

and take or h^ the value
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Inertia.—We have seen that capacity is a characteristic depending
on elasticity. Inertia is a property which depends on the mass in

motion. Let us consider a body of mass M kept in motion by a pres-

sure acting in one direction over a surface of w square centimetres
normal to the direction of movement.

If ^ = A/) is the hydromotive force at a given instant and v the

velocity of the mass M we sliall have the equation of motion
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Leakage.—Under the term leakage we shall include all loss of

liquid througli joints or small apertures or even due to the porosity

of the material of which the pipe is made.

The loss of a fluid under pressure through small apertures is

proportional to the difference of pressure.

Denoting by S a coefficient which we shall term the coefficient oj

porosity we have the general law

i = Sh

cm ^

With the units we have selected S will be measured in ,
' , and it

kg. sec.

wiU be seen that the dimensions are the inverse of the dimensions of

friction.

In dealing with a long pipe whose joints are not perfect, we may
regard the total loss of hquid as uniformly distributed along the pipe

;

and the coefficient of porosity due to leakage through joints may be

defined per unit length of the pipe.

Example I

Capacity due to Circular

/»2

Fig.

Plate. — Consider a condenser

formed by a circular elastic

plate restrained at its edges as

shown in Fig. 7. A pressure

difference Ap = P\ —
P-2

^'^'Jll

correspond with a displacement

of liquid A V represented by the

volume displaced by the elastic

plate during its deformation to

the position indicated by the

dotted line.

Let 12 be the area of surface

of the plate, then the total force

acting on this plate is F = O A/)).

If f is the deflection of the plate at its centre, we have

f = AF = AnAp (I)

where A is a constant depending only on the dimensions and nature

of the plate and the method by which it is held at its periphery. For

the volume displaced we have

A F = Zizf'yxdx = -^Xyd^^xr)
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Let

then this expression is simplified to

The form of the deflected surface may be generally defined by a
relation of the form

y =f<t>{z)

<f>{z) being a function of z

so that

A F = iifpcf>(z)dz (2)

By definition C = -^—7 ; if. therefore, we replace A V and A/> by their

values we get

C = An~{^ct>{z)dz

If the pressure is only acting on a part of the surface of the plate

near the centre, as, for instance, where the pressures are applied through

a piston of sectional area w the equation (i) will become

f=AF== Au^APi

and the change of volume A F is the volume swept by the piston on

the small area w.

Tliis volume is

AFi=/co
and we get

^-4:=-^"^ '3)

In this case, therefore, the diaphragm acts like a spring and the

formula (3) may be compared with that found for the capacit>- of a

spring {see p. 18).

From the theory of elasticity of circular plates we have generally

where

« = a constant depending on the method of hoKling the plate

and the distribution of pressure,

E = the coefficient of elasticity of the plate,

and

s = the thickness of the plate,
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Let Oj be the area of a piston which would produce the same
displacement A F as the circular plate for the same stroke /; by
definition we have

AV ^nj = nf/'-cj>{z)dz

so that

and we get

n
{z)dz

C = AClQi

and in the case in which the pressures are applied to the plate b}' a

piston over a small surface co around the centre of the plate, we have

C = Aw^

1

f^^ Ir H'

II

i_l

IV

^ KM
Fig. 8.

In the following table the values of the constants u and tc = - •

are given for the four cases illustrated in Fig. 8.

w
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"•3 = 0-43^2 l06(^)

/ 2a \F

F in each case being the total pressure on the plate.

The function ct>{z) is given by the theory of elasticity of circular

plates, and we have in the four cases

<^.(.) = (2 - 1)2

<i>.,{z) = I — 1-242 + 0-245;*

•^3(2) = I - ^ + 2 log 2

<f>^{z) = I - 2 + 0-4 log z

Example II

Inertia of a Circular Plate.—Let dM be the mass of an element

of the plate at a distance x from the centre.

The force due to the inertia of this mass would be

dF = f^dM
dr

but

dM = ^S2irxdx = ^^ ^ dz = dz

•here

y = the density of the plate in kg. cm. 3

g = the acceleration due to gravity and

P = the weight of the plate of radius r.

But we have found

y = f(fi{z), SO that as z is independent of the time

•
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If we denote by ^i the equivalent weight assumed concentrated

at the centre of the plate, and which would produce the same inertia

force F on the stroke /, we have

Pi = wP
Comparing this with the relation found between fij and fi we have

P, fi,

^^'=^P =fi

We therefore come to the conclusion that a vibrating plate may be

considered as a piston of the same thickness and density as the plate

having a surface Q^ given by the formula ^- = iv ; this piston being

held by a virtual spring device giving a capacity C = Ann^.

In the analysis given above it is assumed tliat the plate is vibrating

in the direction normal to its surface, points situated on circles of

the same radius having equal movement ; and it is assumed that there

are no vibrations in the radial direction. For frequencies usually

employed, this assumption is accurate ; but for very high frequency

other phenomena occur, and other vibrations take place. For practical

purposes the analysis given above is sufficiently accurate and for

calculation of condensers in which circular plates are used instead of

springs, the formulae arrived at are substantially correct.

Exercises

1. Find the capacity due to the expansion of a sphere of diameter d and

thickness e, the coefficient of elasticity of the metal from which the sphere is

made being E^

Answer C = _

-

2. Find the capacity due to the expansion of a cylinder of length / and

diameter d, the ends being closed by two hemispheres.

Answer C = 0-98-^(1 + 0-4-)



CHAPTER IV

EFFECTS OF CAPACITY, INERTIA, FRICTION AND LEAKAGE ON

ALT E R N AT I XG C U R R L N T S

Relation between Current, Capacity, and Hydromotive
Force.— If we consider a current flowing in a line containing a

capacity, say a condenser, the variation of volume due to the current

will be

< F = fidt

but

so that

If

we have

= ^^sin(a^+<^-^)

Thus the maximum value of the hydromotive force will be

//= '

aC
and at any instant we have

h = H sin (a/ + <^ - ^j
= H sin {at + ^)

where

We see, therefore, that the hydromotive force varies according to

a sine law and is of the same period as the current in the condenser.

but the phase angle i^ is less than that of the current by ^.

h
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If, then, in Fig. 9 we take a vector OA = I to represent the current,

the hydromotive force will be represented by the vector OB = H

turned back through an angle '^. The two vectors turn as though

rigidly connected to each other and their projections on the axis OX
represent at any instant the values of i and h respectively.

Since numerically

H I

aC

we may. write symbolically

I
(H) = -

i

Fig. 9

aC

— / being a symbol indicating

that the vector /Z^ is
'^

or 90°
2

behind the vector /.

Multiplying both sides of the symbolic equation by jaC

we have

- fl = jaCH

which represents that the quantity — /^Z is - in advance of the

hydromotive force H.

But we have found that the h\dromotive force H is - behind the
2

current /, i.e., the current 7 is
'^

in advance of the hydromotive force

H. It follows, therefore, that — f = 1 and f = — i.

Thus — / X — j = f = — 1 will signify a retardation of phase of

— ^ — ^ = — TT, and j X j = f ^ — 1, an advance of phase of

+ ,=-

The equation found may be written

(/) = jaCH (I)

We shall use the equation connecting the current capacity and

hydromotive force in this form.
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Relation between Current, Inertia, and Hydromotive
Force.—Let L be the coeflkient of inertia, then if the curn-nt i«.

of the form of

t = / sin {at + 4>)

we have

h = L^J = Lla cos {at + <^)

= Lla sin (^a/ + +
)

If we put H = Lla we have

h = H sin (at + «^ + '^^

It is seen, therefore, that the hydromotive force is of a sine form

and is - in advance of the current; we may, therefore, write, using

the symbolic notation
{H) = jLal (2)

which indicates that the h\dromotive force is represented by the

projection on OX of the vector H equal numerically to Lai and in

advance of the vector representing / by the angle ^.

Leakage.—If the current is of sine form, since we have » = Sh

where 5 is the coefficient of porosity, h is, therefore, of sine form and in

phase with the current, and we may write {sec p. 24)

I = SH (3)

Friction.—For friction also we have

H = RI (4)

in phase with the current {sec p. i.S).

Combined ESect of Friction, Capacity, Inertia and Leakage

in a Pipe.—If we have in series in a pipe, friction, capacity, inertia

and leakage, and we write

H, = RI. H, = - i^^, H, = jLal, H, = ^

the hydromotive force between the ends of the pipe will be

{H) =H,+ H, + H, + //,

(i? + ^)/+;(I.-JJ/ (5)
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It will be seen that the vector H is the resultant of one vector

{r +-<^) /, in phase with 7; and another vector ( La — ^A I, -

in advance of I.

Drawing the vector diagram it is seen that the numerical value of

H will be

H=I^(R^'^\{La-l
Co)

and that the vector H will be in advance of the vector I by the angle \p

given by the equation

I
La

tani/^ = Ca

^+3
We see that xp = o when LCa^ = i.

(^-i)i

This condition corresponds with a state of resonance between the

capacity and the inertia.

The quantity La — ^ we shall term reactance; it is of the same

dimensions as the coefficient of friction, but differs from friction in

that the hydromotive force due to a frictional resistance is in phase

with the current, while the hydromotive force due to a reactance

differs in phase by 90° from the current.

It should be noted that the reactance may be considered to be

produced only by inertia putting L^ = ^ ^ and considering capacity as

a negative inertia ; thus the reactance would be simply

(L - L,)a

An inertia may be considered as a negative capacity given by

C, =
La^
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In the same way we nia\- consider a resistance as a symbolical
inertia {R) =- jaL^

;
and a leakage as a syml)olical capacity (5) = jaC

;

for example, the value of the equivak-nt iiu-rtia fur a resistance /e

would be

The effect of putting resistances, inertias, capacities and leakages
in parallel may be similarly found.

In this case, if we denote b\- A', .V, /,,
(' the several valuf> in

parallel we have —

(»c-^)h

(3 ^+)H
Fig. II.

(r)=(5+]^)H+;(«C-4)//

tan i/'.

aC,-

S +

at,

R

If we have several resistances, inertias, capacities and leakages

in series, we have generally

and the condition of resonance will l)e

In the same way for several currents at a jxiint we have

/ = /, + /2 -F- /, :. . .

/ being the geometrical sum of the \ectors representing

/,./.„/.„ etc.

Similarly we get the formula for /
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If the current or sonomotive pressure are general functions, we
liave the corresponding relations

liy = Ri ; 7/2 = ,- fidt ; A., = L^ ; h^=
^

and the sonomotive pressure between the ends of a pipe having friction,

capacity, inertia and leakage in series will be

h = /?, + ^2 + ^3 + Jh

di
, r

= ^'+c>^ + 4/ + s

and similarly the current required in a pipe to which friction,

capacity, inertia and leakage are connected in parallel or to a common
point is given by

J-Jhdi +
J^

^=^^ + C + r>^^ +

Mechanical Work.—The mechanical work done by an alternating

current may be calculated as follows :

Let dx be the movement of a cross section of the liquid in a pipe

of area w during a time dt. The work done by the displacement of

the liquid between two points under a hydromotive force h would be

dW = hudx = hJ^Jt
at

dx
but since , represents the instantaneous velocity in the pipe

dx

-dt = '

so that we have
dW = hidt

and

W =fhidi

If h and i are simple sine functions of the form

A = // sin [at + </'i)

i = I sin {at + i//._,)

we have

W = hi/"sin {at + i/^j) sin {at + f,)<//

taking into consideration that

sin {at + ip^) sin {at + fJ = ^ cos (.//j
- «//.,)

- cos {zat +
•/'i -r </',,)
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we get

W = -y [it - to) COS (^, - ^., :^ ^^] sin {2al + .A, + f,)

- sin (2al^+iP^ + ^.^)|1

/ and /o being the limits of time between which we are considering the
work done.

We see from this formula that the mean work per second during
one period is

W HI
cos {4^1 - ip^)

The angle if/^
— i//., = <^ is the angle

between the vectors representing H
and I in Fig. 12.

Since

HI
2

H I

\^2 y/2
H,„ X /,

we can write

W = H, X I^„ X cos <^

Fig. 12.

Thus the work per second is represented by the product of the

vectors representing the effective hydromotive force and tlie effective

current multiplied by the cosine of the angle between these vectors.

This cosine may be termed the pou-er factor.

If, as in Fig. 13, we represent the current by / and the hydro-

motive force by

we see that

W

{H) =H,+ jH,

IHI cos <^ = \HJ

Thus only the component H^ produces

work, the other component of H , namely //..,

is a workless component. Generally we may
say that work is produced only by vectors H and / which are jxiraliei

or in phase.

If we have

[H] = H, -V jH,

(/) = /, + ;/,

the work would be the sum of the work corresiv>nding to the two
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pairs of vectors which are parallel to each other, namely, H^ and /,,

and H2 and /j ; thus

VV = \HJ^ + WJ^

This result can be arrived at in another

way; noting that if y (Fig. 14) is an
arbitrary angle and we have

—

Hi = H cos
{<f) + y)

H^ = H sin {<!> + y)

/j == / cos y

/g = / sin y

we ha\'e

cos ^ = cos y COS (</) + y) + sin y sin {4> + y).

Multiplying this expression by hHI we find the formula given above

W = },HJ, + IHJ2

Care must be taken not to multiply the symbolical values of H and
/ in order to get the work in symbolic form, because the work cannot

be expressed in symbolic form. The mean work per second is not a

periodic function of the time, but is simply an arithmetical value ; a

symbolic expression for the work, therefore, is meaningless.

In order to obtain the expression for the mechanical power or the

energy per second from the symbolic expressions of H and /, we must
take the mean of the products of the parallel components. As a

general rule components of H and / which are parallel are performing

work, and components which are in quadrature [i. e. which differ in

phase by go°) do not perform work.

Thus the pressures which result from a current passing through

inertias or capacities do not produce work or do not require any work
to maintain the motion, because these pressures difter in phase by 90°

from the current.

Potential Energy of a Capacity.—The work stored in a capacity

C can be calculated from the formula

W - Jhidt

but we have found that the relation between the current and hydro-
motive force is

r/""

idt = Cdh
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Substituting, we get

n- = cfhdh ^ ^^'
+ AJ 2

A being a constant of integration.

If we assume that the work is zero wlien h = o, we get simply

If h is a periodic function the maximum vahie of If would be

u- =
'"'

Kinetic Energy of an Inertia.— In the same way we get the
work accumulated in an inertia by the formula

W = fhidt

but we have found that

h = L
d̂t

So that by a method similar to that followed above we get for the

maximum value of the kinetic energy stored in an inertia

IF = ^^

2

The following are examples of the application of the theory to

certain cases of alternating currents in circuits containing separate

capacities and inertias.

Example I

Find the period of resonance of a vibrating circular plate {sc(

page 24).

The coefficient of inertia of the ecjuivalent piston wouUl be

L= '''

The capacity of the plate

C - Ailili

The condition of resonance of such a plate is LCa- 1. a beinq

equal to 2irn where n is the number of vibrations per second. Thus

we have

I = ACfl* = ' , „' - „ "-
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but

and
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^--C-'
APa^

yip ='nY
Eg

where y is the specific gravity of the plate.

Example II

Assume we have a generator a producing an alternating flow of

liquid in pipes be which are connected between the points h, c by a

pipe containing a condenser d whose capacity is C.

Fig. 15.

Suppose that the circuit is closed through a reciprocating imple-

ment e, whose coefficient of inertia as above defined is L. We can

find the different currents and the hydromotive force.

Let

/ = current in ab

/i = current in bdc

12,
= current in bee

H = hydromotive force between b and c.

Then, considering the circuits bdc and bee separately

(//) = jLah

ih) = JCaH

/, = - LCaH^

/ = /i + J-i

and

from which

but
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therefore

/ = /2(i - LC<r-)

hence

j _ LCa^
^» ~ ~

I - LCa^-

and

- LCa'

It will be seen that /j may be greater than / and that // and the

currents /^ 12 become infinite if the condition of resonance LC'a* = i

is fulfilled.

Assume that there is friction R in the circuit bee.

Then we have
{H) = {R + jLa)Io

So that

and

If

we have

i.e.

and

(/,) = jCaH

(/) = (I - LCa^ + jRCa)!^

LCa^ = I, the condition for resonance,

(/) - jRCal^

ih) = - iJca

L J

So that arithmetically

With R sufficiently small and tlie frequenc\- sutTuitMitl\ hi^h to

neglect the term i in comparison with

we get

CR'^ R
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Example III

Let a (Fig. i6) be a generator producing alternating currents in

pipes which are connected by two pipes containing capacities, inertias

and resistances C^L^R^ and C^L^R^ respectively, the two connecting

pipes being in parallel. This corresponds in practice with the case

of two working implements placed in parallel across the transmission

lines.

Find the currents /j and I^ which will give a hydromotive force H.
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we have

I _/ /^i^ + («n^
^' -^V R^ + a^'L^

_ IR,^ + (air-
^' ~^\ R^ +ay.^-

while for the numerical value of H we have

H = / /
[A\-^ + (aLQ^JiAV + (aUr)

V /?» + a^L^

Example 1\'

Suppose, as in Figure 17, we have a generator a having a single

piston generating an alternating current in a single line. An iron

vessel containing a volume of liquid of capacity C is placed in parallel

on the line near the generator. Such a capacity may be considered as

an ordinary condenser one of whose sides is maintained at a constant

pressure equal to the mean pressure in the main pipe. In such a case

the difference of pressure on the two sides of the condenser is equal

Cr) }. I

^'~* wmmm—h-^—lie.

Fig. 17.

c

to the variation of pressure in the main pipe ab)ve and l)el<»w the

mean pressure. Let 7? be a friction device absorbing energy, for

example a tube of small diameter adapted to be heated by the alter-

nating current, and let fj be a second capacity formed by a second

iron vessel. Assume that we know the current / and the angular

velocity a of the equivalent crank. Find the h\dromotive force H
and the work done by the generator and absorbed in heating the

friction device.

We have the equations
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from which

{!,)- ^"^^
I + jaC^R

and

Arithmetically

and

^ ja{C + Ci) - a^CC^R ^
I + jaCyR

_ fr^ I jC + C^)^ + {aCC^^~
V I + («Ci/?)2

_ / / i + Ki7?)=^

In s5niibolic notation we may write

_ [j{C + Q) - aCC^R][i - /«CxJ?]

The current / thus has a component in phase with H given by

, _ JIRaH\^
~

i + {aC^R)^

so that the mechanical power absorbed will be

^ _Hr _ H^a^C^^R

2 2[I + («Q/?)2]

Or, replacing H by its aritlmietical value in terms of /,

2[(C + Ci)2 + [aCC^RY]

'The value of the friction for which the mechanical power W is a

maximum is that given by

dW

^- acar
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If R has this value, we have

IT/m»i. _ ' "^1

4aC{C + C\)

and

Xiitiierical F.xam[^le

Suppose we have a generator consisting of an oscillating piston whose stroke

is 6 cm., section of piston 5 sq. cm. and number of revolutions per minute 955.

Assume that the capacity C is a steel bottle of volume 5000 cubic cm. and the

capacity L\ a steel bottle of volume 2000 cubic cm., the liquid employed being

water having a coefficient of elasticity 20000 kg. per sq. cm. ; neglecting the effect

of the liquid in the pipes,

we have

a = 2irn = 2ir ^^^ = lOO
60

/ = ruji = 3 ; 100 X 5 = 1500 cm.' sec.

C = 1 = ^°°°

20000

The maximum mechanical power at the generator will correspond to a

resistance

y. ^ ^+^1=. 025 +01 ^^,j^
aCL\ 100 025 01

and the power will be

l|.
_ 1500* ,; 01

4 X 100 X o-25(o-25 + 01)

= 6440 kg. cm. = 085 h.p.

The hvdromotive force H will be

w= ^500 /^ ^ 01 _^
i/oiy

100(0-25 + 01) > 025 2 \o-25/

= 52 kg. cm.*

It is interesting to note that the product

/// _ 52 1500 = 39000 kg. cm.

gives an apparent horse-power of 51, so that the power factor at thr jimcrator

will be

cos <^ = ° ^ = 0167

The numerical value of /, and /.. can also be found.

We have
/,= aCH = 100 025 52

= 1300 cm.' sec.

'• ~
v'l + (a i/.)»

~
\'i + (100 - o-i » b-i4)«

= 302 cm.* sec
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Assume that the friction is in the form of a tube of 06 cm. internal

diameter; the section w will be

o) = " 0-62 = 0282
4

1 he maximum velocity will be

and the effective velocity will be

1070
756 cm. sec.

The coefficient of friction from Chapter III will be

9 /tV,

lood ^ d

t'cfl.

\ood

7.56
,

9 . /756
100 •< 06 100 06 * 06

= I7'9

So that the coe:i.cient of friction

'^ -
\.i < lo" = l^<'-<^o^28^=

°'^4

which gives us
, 014 X 10* X 0-282
'
= .- = 2280 cm.

17 9

We see that such a tube is too long to use in practice, so that it will be necessary

to employ a tube of smaller diameter.

If we take a tube of diameter 032 cm. we get

0.' = ^ (03-)^ = 008 cm.-
4

The velocity
^00

V = -^ „ = 3750 cm. sec.
008

Ve(T. = 2650 cm. sec.

A = 105
and

, 014 X io« 008 ^^^ ^^
/ = ^ =107 cm.

105

It .should be noted what a great difference in resistance is produced by a small

change in the diameter of the pipe which forms the friction de\ice.



CHAPTER V

WAVES IN LONG PIPES

Alternating Flow in Long Pipes.—In the preceding chapter

we have discussed the theoretical conditions governing flow of alter-

nating currents in circuits containing capacity, inertia and resistance,

without consideration of the distributed capacity- and inertia of the

liquid in the pipes. In long-distance transmission it is necessary to

consider the effect of the capacity and inertia of the liquid itself.

Let the resistance, inertia, leakage and capacity of a long pijie l^e

per unit length K, L, S and C respectively; and consider a pcjrtion dx

of the pipe; and let (//), (/) be the symbolic or vectorial values of the

h\ dromotive force and current respectively.

If d{H) be the hydromotive force causing movement of the liquid

mass in the portion dx, and d{I) the difference of current between the

ends of the portion dx, we have (see pages 31, ^i)

d{H) = {I)Rdx + ia{I)Ldx

so that
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Differentiating these equations, we get

If we now put

we get

and

^ = aV{LJ{C)

The general solution of these equations is

(//) = /I sin /A^t + 5 cos /i.;^ (i)

(I) = Ai sin IJ.X + Bi cos fjiX (2)

To determine the constants, let us consider the end of the pipe

remote from the generator, and let the hydromotive force and current

at this end be (//) and (/) respectively.

Then we have for x =
B = {H)

and
B,^{I)

From equations (i) and (2) we get by differentiation

^ ' = ja[L){I) = /x(^l cos fxx — B sin /xx)

y'= ja{C){H) = fji{Ai cos /xx — B^ sin ixx)

so that for x = o

and

If [Hq) and (/{,) be the values of (//) and (/) at the generator end, the

length of the pipe being /, we have

(//o) = [H) cos /x/ + /(/) ^® sin /x/ (3)

(/o) = (/) cos t.1 + i{H)
^I^J

sin /x/ (4)
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These equations are general, and give the complete solution of the

problem. The quantities (L) and (C) are symboli«-, so that /a = aV(L){C)
will also be a symbolic quantity.

If R and S are very small, or when a is very large, the values

of (L) and (() are practicallv equal to L and (', the complex terms i
^

and / becoming negligible. Under these conditions the general

formulae (3) (4) become

{Ho) = {H) cos ,.1 + i{I)yj'^ sin,.

I

(/o) ^(/)cos/./ + /(//)^/^sin/J

and we see that the movement follows a sine law with reference to

the variable / as well as with reference to the time. It will also be

seen that for values of / given by

(^o) = W
and

ih) = {!)

i.e., [Hq) and (/q) are harmonic functions of /.

The length A given by
ix\ = 2k

is the wave length.

These conclusions, however, only hold in so far as and are
•^ a a

negligible in comparison with L and ('.

The general formulae (3) (4) may also be written

{Ho)V{C) ^ {H)V{C) cos /x/ + /(/) V{L) sin W
{Io)V{L) = (/) V(L) cos /x/ + i{H)V{C) sin /x/

putting

h = {H)V{C) i = {I)V{L)

ho={Ho)V{C) to-{Io)V(L)
and

The equations become
Jiq = h cos a + ji sin a ...
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We shall call the quantities h and i proportional pressure and

proportional current.

To change formulae in terms of h and i to formulae in terms of

(//) and (/) we have only to replace h by {H)y/{C) and i by (/)'\/(X].

It will be seen that, neglecting R and S, the proportional pressure

h = HVC
and the proportional current

i = IVL

The maximum value of the potential energy in unit length of

pipe is

IPC
2

and the maximum value of the kinetic energy is

PL
2

We see, therefore, that in this case the proportional pressure is

equal to the square root of twice the maximum potential energy,

while the proportional current is equal to the square root of twice

the maximum kinetic energy.

Since we have

/?o
= h cos a + ji sin a

and
z'o
= i cos a + jh sin a

we see that arithmetically

h^2 + 2^,2 = /j2 cos2 u + i^ sin2 a + i^ cos^ a + h^ sin2 a = h^ + z2

So that the sum of the maximum kinetic and potential energy per

unit length is constant along the pipe.

It will be convenient to apply these ideas of proportional currents

and proportional pressures to cases in which appliances such as con-

densers and inertias are connected to the pipes. Thus the equations

giving the relation between current and hydromotive force found in

Chapter IV, namely
(/) = jaCH

and
{H) = jaLI

may be written

{HW{C) =jaLlV{L)sJ^^^
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If we put

we have

and

=v
{£)

«/" = M'h (9)

// = jaLd'i (10)

It will be seen that these are identical with the ordinary fornuilie,

/ being replaced by tpi and H by h.

Inversely, to transform formulae in terms of i ami // into the

ordinary formulae it is only necessary to replace h by i//// and 1 by /.

If K and S are negligible, or if the frequency is very high, we have

For unit length of pipe we have found

L = y

and

so that

For water

For mineral oil

approximately.

F _ 0,

E ~ E

i

Some Useful Formulae.— If R and 5 are negligible, we have

found above
/xA = 2n-,

but
a = fxl

and
/x = aVlC

Also we have found

VLC =\/->. = constant.

The wave velocity v equals the wave length divided b\ the period

of one pulsation.
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so that

_ A. ^ a

2n- fx

Vlc V^

_ fl _ 27r _ 2wn _ a

1^ ~ V~ k ~ V ~ I

For water v is 146000 cm. per second, and the wave velocity is

equal to the speed of sound in water. The wave velocity varies to a

certain extent with the pressure and the temperature ; a table giving

the values of v and 1/^ for different pressures and temperatures is given

in an Appendix.

For mineral oil v is about 125000 cm. per second.

Application of the Theory of Proportional Pressures
and Currents

Example I

Suppose we have a long pipe (Fig. 18) with a condenser at each

end. Let h^, h^ be the proportional pressures at the ends of the line

and ij, 72 the proportional currents at these points.

hp
1

1 hi hi

Fig. 18.

Let Aq - hi be the fall of proportional pressure in the first condenser

and h2 - h that in the second.

Let /jJ = a as above. Then we have
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If the capacities of the condensers be Cj and C,

•/"o = /«Ci(/;o-/Ji)

K = K - i
"^

aC^'°

//g cos a + // sin a — j-y^tQ

/,. = /,(cos u +
J.^

sin „) + /,[(i - ^,>;,^) sin ,. -
( J_

+
^'J;J

cos u]

and

,
sin a

2

.0 = /COSa+/(/^-/^^^,-)

= if COS a + ^ sin a
j

4- jh sin a

If the capacities of the condensers be chosen equal, so that

C = Ci = C2, and if, further,

d/ I — cos a ^ a
V^ = . = tan
aC sin a 2

we have

I'o = 7- + jh sin a

and

/?o = h

The condition assumed gives

C = ^ cot - = ^ tan (i

If, instead of (i). we have the condition

lb cos a — I ^ a ^ / a\
--^ = . = — cot = cot

I
TT — )

aC sm a 2 \ 2/

c=^-^-:) ^
so that

/o
= - 1 + jh sin a

and

If the condition (i) is observed, we see that the value of the

capacity C diminishes to zero as a approaches r, while under the

condition (2) C approaches infinity as u approaches «-.
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It should be remembered that the condition a = tt is fulfilled when

I = , i.e., when the length of the pijxj is one-half the wave length.

It will be seen, therefore, that when a approaches tt it is desirable,

in order that small condensers may be used, to so design the con-

densers that there is resonance in opposition, i.e., so that h^ =-h
and I'o = ~ i-

The smallest capacity necessary in practice when there is resonance

in opposition will be that corresponding to a = -^
, when we liave

c=*.
a

This is also the smallest capacity necessary when there is direct

resonance according to formula (i) with « = ^•

It is to be noticed that the smaller the capacity the greater is the

volume of the springs in a condenser.

A pipe having two equal condensers, one at each end, will be

defined as a balanced pipe when we have
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cos a

The pressure would always be greater at the generator end than

at the receiver end, but still independent of the current i.

Example 11

Suppose we have a long pipe with an inertia at une point. First

assume that the inertia is placed near the right-hand end, as in Fig, 19.

^

Fig. 19.

Let the proportional pressure and current at the left-hand end be

Hq and Iq respectively, and the proportional pressure and current at

the right-hand end h and i.

Let L be the coefficient of inertia and //., the proportional pressure

on the left of the inertia.

Then we have
Iiq = ^2 cos u + jt sin a

to

and

so that

»(, — i cos a -t- jh2 sin a

— h = j^aLi

Iiq = h cos a + ji{\l/aL -{- sin u)

^0 = i cos a + j(h + jij/aLi) sin a

= i{cos a — ipaLi sin a) + pi sin u

If the inertia is at the left, as in F^ig. 20,

^C^0 h,

Fig. 20.

//j = h cos a -f- ]i sin a

i„ = i cos a + ;Vi sin a

K jipaLi,,

hL

= h cos fx + ji sin « + /i/'aA(/ cos u + //» sin <)

/i(cos a — i//rtL sin a) + //(sin a + \i/aL cos u)
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putting

we get
KJ/aL = tan </>

Hq cos
(f)
= h cos (a + <^) + ji sin (a + </>)

From the analogy with the previous example, we come to the

conclusion that a pipe may be balanced by inertias instead of

condensers.

It will also be readily seen that a balanced pipe is a length of pipe

containing such inertia and capacity that it is equivalent, as regards

the hydromotive force and current at its ends, to a uniform pipe of

length equal to a multiple of half wave lengths of the alternating

flow in the uniform pipe at the given periodicity.

Consider now the case in which two inertias are placed at the

ends of the pipe, as in Fig. 21.

A,

Fig. 21.

Since an inertia corresponds to a negative capacity {see page 32)

it is only necessary to substitute in the equations obtained for the

case of two condensers, putting - La for v— ; we then get from the

general equation, Example I,

Jiq = h{cos a — \paL sin a) + ji[{i — xp^a^LiL^) sin a + (L^ + L2)a^ cos a]

Iq == ^(cos a — i/zaLj sin a) + jh sin a

The condition for balance will be

and

or

cos u — i//aL sin u = I .

cos a — \paL sin a = — i

In the first case

and

for values of

,
, cos a — I u ,

\baL = . = -tan- = tan
sm a 2 i'-t)

')<^ or > TT and <

(I)

(2)
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In the second case

55

and

for values of a <
i/zaLj = cot

Example III

Assume we have a capacity C in parallel with a generator .1 on a

closed pipe, as in Fig. 22.

(



56 WAVE TRANSMISSION OF POWER

which the pipe is closed by a plug or cock at the end remote from

the generator.

In this case
i =

and we get

Hq = h cos a

i^ = jhi sin a + cos aj = //?o(tan a
aC \ ,(,_ aO

We therefore have

(/o)
= ;>//o(tan a + ^)
= ;//o('/' tan a + aC)

and arithmetically

ij —-
° aC + ip tan a

//(, is therefore infinite if

-aC
tan a ^ —

—

and is zero if

Example IV

Assume that we have a generator at A, Fig. 24, giving a current

/() at the generator end and / at a working apparatus at B, the value

of the hydromotive force at the generator being Hq

Fig. 24.

We can find the value of H dl B and the available power.

We have
Ao = ^ cos a + ji sin a

if,
= i cos a + jh sin a

In the special case in which the working apparatus at B has no

inertia or capacity, H and / will always be in phase, and we get

arithmetically

/o^
= (/ cos a)2 + ^2(// sin u)2
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If H' be the value of H on shutting off the working apparatus

/ = o

and
/q = \pH' sin a

H' =
,

^°

i/' sin a

It is evident that //' is always greater than // ; but if /„ is con-

siderably greater than / cos a there will be little chanL,'c of sono-

motive pressure at the generator on shutting off the working apparatus.

Numerical Example
Let

/ = 500 cm.'; C03 a = 0-44; sin a = 0-9, i. e. o = 63° 50'

ij/ = 35; H = 100 kg./cm.*
Then we have

lo = V(50ol><"o-44)» +~(90 X 35)2

= 3157 cm.»
and

HI = 3157 = loo kg./cm.

2

35 X 09
The hydromotive force at the generator will be

Hq = -44 X 100 = 44 kg./cm.

when the working apparatus is shut off;

and

= 45-6 kg./cm.*

with the working apparatus in operation. It should be observed that the

hydromotive force at the receiver is more than twice that at the generator.

Graphic Method of Calculating Currents in Pipes

By employing the graphic method given below we can arri\e at

the values of the different quantities which have to be determined

in problems concerning alternating fluid currents in pipes without

arithmetical calculation; the inethod, however, is applicable only if

friction and leakage can be neglected.

Let ho, to be the proportional pressure and current at the generator

and hi the values of these quantities at the receiver. We will take

the general case in which h and i are out of phase.

We may then write

{h) = Ih + P't

hi being the component of {h). which is in phase with i and /;,. the

component which is in quadrature. The general equations connect-

ing these quantities are

(h)o = {h) cos a -h ji sin a

(i)o
--= i cos a + ;(/t) sin a
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Substituting for {h), we get

(A)o = h^ cos a + j{i sin a + /ig cos a)'\

{t)Q = i cos a — ^2 sin a + //?! sin a J
*

In these equations a represents the quantity

T'
I being the length of the pipe and A. the wave length. Let us put

(I)

tan y8 = Ala
Caj

(2)

Fig. 25.

L and C being the inertia and capacity which is producing the differ-

ence of phase in the receiver. The constant i/^ is a known quantity,

its value for water being approximately given by

i/. = yw

(i> teing the sectional area of the pipe.

Let us now construct the diagram Fig. 25, as follows

—

Draw the straight line 01 = i making an angle a with the hori-

zontal OX.
On the line 01 cut off a part OHy = A,.

Draw a straight line Hy^H = h^ at right angles to 01.
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Join HI and on the lino HI as diameter draw a circle; since the
angle HHJ is a right angle this circle will pass through the jx)int //j.

Through H^ draw the horizontal line HJ^ and the ordinate H^H^.
cutting the circle at the points Iq and //„ respectively.

We shall then have the vectors (jq), and [Hq] gi\en b}'

ih) = OIo
and

{ho)
~- OH,

In order to prove this let us consider the points B, C at wliich the

ordinates through H^ and /„ cut the line OX, and let A be the jx)int

of intersection of the ordinate through C with the circle.

The straight line H^A is parallel to OX, so that the figure HJ^AH
is a rectangle.

Similarly, the figure H^IAH is a rectangle.

We have, therefore,

AI = HH^ = //j

On the other hand, we have symbolically

{OH,) =0B + jBH,
but

OB = OHi cos a = /?! COS u

and
BH, = 01 sin a + lA cos a

= i sin a A- ^2 cos a

Substituting these values, we get

{OHq) = h-i cos a + j{i sin u + li^ cos a)

which, from the first of the formulae (i) set out above, gives

h, = OH,
Similarly, we have

ioio) = or 4- 7C/0

but
CIq = BHi = OH

I
sin a -=- //^ sin a

and
OC = 01 cos tt - 7.1 sin a

= i cos a — //g sin u

so that we have

01, ^ i cos u — //2 sin a + //?, sin <i

which, from the second of the formulae (i), gives

'0 = 01,

Join the points and A.
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The angle AOI is of importance, for we have

tan AOI = i,{ =
^>

01 I

Comparing this with the relation (2) given above, we see that

tan AOI = b = ipfla - ^J
= tan /3

so that AOI is the angle (3 of formula (2). We see, therefore, that in

the graphical construction the direction of the lines OX, 01 and OA
depends only on the constants of the pipe and the reactance of the

receiver, and in no way depend on the values of h, i, Jiq and /p.

By the help of this diagram several problems can be solved in a

very simple manner; some of these we will now deal with.

Problem I

Suppose we have given the current i at the receiver, and that the

work to be done gives the component of the hydromotive force

which is in phase with h-^. Assume that we also know the reactance

of the receiver and the angle a. We have to find the hydromotive

force at the receiver, the angle of phase this makes with the

current, and the hydromotive force, current and phase angle at the

generator. We first draw the lines OX, OZ and OV , since the angles

a and /? are known.

Then on the line OZ (Fi,t<. 26) set off the segments

01 = i

and
OH^ =

//i

The centre of the circle of the diagram will lie on perpendicular to

H^I through its middle point.

The centre will also be the middle point of H^A, but as we do not

know the position of the point A on the hue OV we trace the locus

of the middle point of ^^.l for different positions oi A. It is evident

that this locus is a straight line parallel to OV and bisecting the

perpendicular from H^ on OV.
The intersection of this line with the {Xirpendicular to H^I will

give the centre 5 of the circle.

Drawing the circle with centre 5 and radius SI, the points Hq, H
and Iq are at once found, and the diagram is complete. To deter-

mine the values of h, /?„ and i^ it is only necessary to scale the different

lengths OH. OHq and 01^.

The angle HOI is the angle of phase at the receiver, and the angle

H^^OIq that at the generator.
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Problem II

Suppose that we liave given tlie quantities i^, li^, a and fi.

To construct the diagram, with centre and radius O/q describe

a circle, draw the hnes C>A', OZ, OV as before.

On OZ cut off (9//i = III.

Through H^ draw a hne i)arallel to OX. cutting tlie circle at the

point /q.

Through Iq draw a hne perj^endicular to OX; this will intersect

the hne OV at the point .1.

The circle required for the diagram is then drawn on //,.l as

diameter.

It will be evident that when we have found this circle all the

other points are at once readily obtained.

Numerical Example

It is required to drive a pump which takes 2-5 hp. = 19000 kg. cm. sec.

The distance of transmission is 35 metres and frequency of the alternating

current 400 per minute, i. e. 6-7 per second, so that

a =" 27r X 6-7 — 42

The hydromotive force at the pump must not exceed 50 kg./cm.* The
sectional area of the transmission pipe is oi = 2-85 cm.*, so that

vj/ = 7 X 2-85 = 20

The wave length will be

A. = 5 = 214'" = 21400 cm.
6-7

Since the length of the pipe / = 3500 cm.,

we have

„ ^ 2ir/ ^ 360° X 3500 ^ .g.
K 21400

If A, is the component of (A) in phase with the current at the pump (which is

the receiver) and i is the proportional current, we have for tlie mechanical power

W = ——- = 19000 kg./cm.

Let us assume an angle of phase at the receiver of 45°

We then have

H,= f_= 50 =35 kg./cm.*
V2 V2

from which we get

/ = 2 X ^9000 ^ ^^g^ cm.\sec.
35

Since the general formulae for A, t, A^ and j, are homogeneous as regards

these variables, we may replace A, A^ throughout by their corresponding values

H and H, and i, i^ by - and ,'
4, ^
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Thus we can take

K = 35. h= 50, i = ££9o_
20 •'^ -^

_^
The reactance in the pump motor is provided by a spnng whose capacity

We then have

Since the
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From this we get

^0 = 33 kg./cm.-

^0 = 'f'o = 2o X 65 = 1300 cm.»/sec.

As a means of verifying this we know that the product

11= -"^'cos,^
2

^

gives the mechanical power. So that we have

The error is

19000 — 18600 = 400
that is, a relative error of

400~^- = 0-02I
19000

or about 2 per cent., which is quite satisfactory.

63

We will now find the values of the hydromotive force at. the generator and
receiver, and the current at the receiver when pump is running without doing

work. The generator produces the same current Ig. In the case we are

considering
h, = o

and the circle of the diagram, Fig. 27, will pass through the point O.

Also the points //,, B coincide with O. ^
It follows that if we draw a horizontal through O and on this set off 01^ = i,,

we obtain the point /„ on the circle.

Then by drawing the ordinate through /„, meeting OV at A, wc obtain the

point A.

The circle can now be drawn on OA as diameter, so that the pomts /, /y,

and H can be at once obtained.
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Thus we find

t = 0/ = 665

Ao = OHo = 39

h = 0H = 365

The angle of phase at the receiver and also at the generator is 90° ; we have
further

Wo = 39 kg./cm.2

H = 36-5 kg./cm.2

/ = 665 X 20 = 1330

It is of interest to determine the limit of the mechanical power available

at the receiver. We have to lind the particular value of Hi at which the value

of / ceases to be a real quantity. Looking at the diagram, Fig. 28, we see that

this is the case when the points H^ and / on the circle coincide. Under these

^K

.V

conditions the points A and // must also be coincident. The circle, therefore,

will be such that the line OZ is a tangent, also the horizontal through the com-

mon point //,, / should cut the circle at the point /q. The construction to find

the circle is, therefore, as follows

—

With centre O and radius Olg = io describe the arc MIoN; draw the lines

OZ, V, OX as in the previous examples.

Then from any point J on the line OZ draw JK perpendicular to OZ, cutting

OF at K. 4'hrough K draw the vertical line KO', cutting the horizontal through

J at O'. Join 00' and let this cut the arc MI'N at I^.

Draw /p/ horizontally through /„; then the point of intersection of this

horizontal with OZ gives the point /, H^.

Draw /qC vertically through /g ; the point of intersection of this vertical

with OV gives the point A, H.
Draw the circle through the points IIqH.
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Drawing the ordinate througli 1, the point of intersection ui this with the
circle gives the point f/p.

This co.npletely solves the problem ; and vvc have

Aj = t' =^ 0/ = 50

K = OHo = 3«

h = OH = 57 3
or

//i = 50 kg./cm -

//„ = 38 kg./cm.*

^ = 57"5 kg./cm.-

/ = 50 X 20 = 1000 cm.'

The limiting value of the work is, therefore,

„. H,I 50 X 1000 ,

\v = — - = -^ = 25000 kg. cm. sec. = 33 hp.

We see from the figure that H^ and /q are almost in phase, so that cos <p ~ i.

This is confirmed by the known relation

„- ^ HJ, ^ 38 x^i30o ^ ^^g^^ ^g ^^^ ^^^

which only differs by 16 per cent, from the value found above.

This example shows how considerably the calculation is simplified by using

the graphic method. If it is desired to construct the characteristic curves
for different powers absorbed at the receiver the method becomes almost
indispensable.

Uniformly Loaded Pipes

The differential equations for an ordinary pipe, taking into

account inertia and capacity of the Hquid, have been found {see p. 45)

to be

and

Consider now a pipe ha\ing a number of branches uniformly dis-

tributed along its length, these branches supplying equal currents

to a number of receivers of current. Then the variation of the

current / is not only due to the compressibility of the liquid, but also

to an output per unit length. Let this output be q.

Then we have

d{I) = ja{C){H)dx + qdx

and

^]^)=MC){//)-f y (II)
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and for the h\ dromotive force

^f-^
= ja{L)[l) (12)

Differentiating (12) and substituting from (11), we have

^^ = ia{L)'^f^ = ja{L)[ia[C)[H) + q\

= -a\L){C){H) +jaq{L) ..."... (13)

Neglecting friction and leakage, and putting

fx = ay/LC

^"^^,K ^'{H) - jaqL ^ o (14)

and by differentiating (11) and substituting , from (12) we get

^"B + /^'(^) = ° (^5)

From (14), putting

we have

''J,+^^Z = o (16)

The solution of this equation is

Z = .1 cos fjiX + B sin fxx

So that we have

(//) = A cos fjix + B sin fxx + j
^

(17)

and
(/) = Ai cos fxx + Bi sin fix (18)

Take the origin of x at the receiver end, then, for x = o, H and /

are the hydromotive force and current at this end, so that

'aC

and
A, = /

differentiating (17) and (18), and considering (ii) and (12), we have

^ -- = jaL{I) ^ fj.{— A sin /xx -{- B cos fix)

- = jaC[H) + q = fi{— Ai sin fix + Bi cos fix)
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putting

X = o
we ha\e

so that

jaLI ^ Bfx = BaVLC

jaCH +q = B,f, ^ BiuVIC

Substituting in (17) (18) these values of .1, B, A^, B^, we get (or

the hydromotive force and current at the generator end, at a distance

/ from the receiver,

(Hn) = H cos /x/ + / IJ sin fxl + '^A^ - cos fil)

(7o) = I cos fxl + ^ sin
fj.1 + iJj^ cos /xl

If /jlI is very small we may put

sin fil = fjil

and

cos al = 1 — -^
2

and we then have

ih) -I +ql + iyJ^H^l

(//o) =H + jaLl[l +
9^)]

and

(/o) = /+?/ + ;aC7//

(19)

(20)

We may therefore consider the total amount uf uniform current ql as

divided into two equal parts — , one half near the generator and the

other half flowing into the receiver. This rule is easily remembered.

Then the current in the line will be the current of the receiver 7 +
2

which will give a hydromotive force in quadrature equal to aL// 7+ *-\,

and the generator will have to give a total current equal to 7 + ^ +
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plus the current in quadrature aClH due to the compression of the

liquid. This rule is, however, accurate only if the line is very short

relatively to the wave length.

Wave Transmission in Metallic Springs

In the discussion of condensers in the preceding chapters we
have not considered the effect of the inertia of the springs required

to give the necessary elasticity. In cases in which the frequency is

high and in which elasticity is given by metallic springs it is obvious

that such inertia will have material effect.

We may consider a metallic spring as a column having a given

coefficient of inertia L and capacity C per unit length.

In liquid columns the coefBcient L has the value ^J, and C the

value V, where y is the density of the liquid and E its coefficient of

elasticity. If D is the diameter of the convolutions of the spring

whose weight per unit length is q, we may consider the spring as

a tube of this diameter filled with homogeneous matter, having a

coefficient of elasticity given by the relation

EJ = Hn=F
and density given by

where

y = n

and

F = the total force on the spring

;

/ = the compression of the spring in centimetres

;

H = the pressure per square centimetre on the piston

attached to the spring and assumed to have a

sectional area fi;

n =^ the section of the imaginary tube
4

q = the weight of the spring per unit length.

We may then apply to such a spring all the formulae found for

sonic transmission in liquid columns in pipes.

Thus, neglecting friction, an alternating movement applied at one

end of the spring travels in waves having a velocity v = , —, ; but

we know that {see p. i8)
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it follows that
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Thus, for example, for a spring where d = i cm. and t = lo cm., we have

z; = 195 metres per second.

If this spring be subjected to a periodic pressure of 50 periods per second the

wave length will be

A = ^^^ = 39 metres.
50

N
As another example, let us take a spring having /J = 3 cm., = 2 and

d = o-^: 6 = 7rX3X2 = i8-8 cm.

We have

1950
i8-8

41-3 metres per second

Suppose this spring is subjected to alternating pressure at a frequencj- of

50 periods per second. The wave length will be

41-3 0-826 metres

and the half wave length

0-413 metres.

If the spring is of exactly this length, or an exact multiple of this length, it will

be in resonance and may break under the high pressures which will accumulate
in it, even if subjected to a small alternating force.

Capacity of Condensers taking into account the Inertia of

the Spring

In practice the springs employed in condensers are so short rela-

tively to the wave length that the transmission of motion along the

springs may be regarded as instantaneous.
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dL being the coefficient of inertia of the section dx and being propor-
tional to dx. But / is proportional to the movement of the section
dx, we may then put

dH = yfe-^^^Io

:

k being a constant and Lq the coefficient of inertia of the spring
considered as a rigid and entirely free body.

Let us denote by L the coefficient of inertia of a spring defined by
the relation

H = alL ^ fill

I being the current at the distance /, i. e. at the free end of the spring,

and H being the hydromotive force given by

Then we have

so that

xdx = k Lq

^ 2

It follows that the effect of the mass of the spring is the same as that

of two bodies each of half the mass concentrated at the two ends.

This applies to cylindrical springs.

For conical springs a similar analysis gives the proportions of the

mass to be concentrated at the ends to calculate the coefficient of

inertia. As a rule for ordinary cylindrical springs, it may be said

that the inertia due to the springs is equivalent to one-half of the

mass of the spring acting at the end at which the alternating force is

applied.

Thus, to calculate the capacity due to a heavy spring, particularly

for high frequencies, we may proceed as follows. Let C be the

equivalent capacity which will give the same reactance as the spring

and a the frequency. Let C be the capacity of the spring assumed to

be without weight and let L be the coefficient of inertia.

We have

La — ^ = — ,,,
Ca C a

then
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If B is the volume and 70 the density of the metal of the spring, we

have

T _ yoB
~ 2ga^

12 being the section of the piston in contact with the spring.

On the other hand, we have found in Chapter III

_ 2G(/n)2
^

0-2J5

Then

We then have

To
a^^LC = ^« . :,(«/)

If we replace af by 2V, V being the maximum velocity of the

oscillation, we have

It follows that

a^LC = 4^5^72

I _ir y.V^Gl

C I -4'

Wave Transmission in Fluids contained in Pipes of

Non-uniform Section

The equations

^^^^ =ja[L){I) (21)

^^P^
= ja{C){H) (22)

found above at p. 45 are generally applicable. If, however, the pipe

is of section varying throughout its length, the quantities (L) and (C)

are functions of the section of the pipe and are no longer independent

of X, as they would be in the case of a pipe of uniform section.

In a pipe of varying section, differentiating these equations and

considering (L) and (f) as variables, we therefore get

^) = iad/f^ + /.,/,f'
- = - «^,C)(/,,«, + iaiD'^f^

Equation (21) gives

. ,., I d{H)
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so that we have

^^^^ + u^OiDiH) - ' d[L)d[H)_

For simphcity, assume that the friction and leakaj^e are each
zero; in this case the product {C){L) is independent of x, and putting

<^VCL =
H- the equation becomes

but

and

so that

and we get
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The general solution of these is

[H) = {A cos ixx + B sin fj-x)

(7) = Ai{sm ixx — fjix cos /xx) + Bi{cos /j-x + fxx sin ^xx)

Example II

Let the pipe be a horn such as that of a phonograph (Fig. 30)

whose form is given by y = ^0^""'

H



CHAPTER VI

ALTERNATING FLOW IN LONG PIPES ALLOWING FOR FRICTION

In the general equations found at page 46

{Ho) = H cos /.I + ;7^|^j sin W (0

(7o)
= / cos fxl + /^^M sin /x/ . .

where

/. =^ «V{XC), (I) = L - j^, {C)=C -
J]

Assume that is not negHgible, and put

we have then

and
V(C) (C)^(^^)-a(C) a(C)

/(Q _ C _ a(C) _ a{C) _ _a(C)_

12)

If we neglect the loss due to leakage,

we have

(C) =C, {L)^L-^
and

cos fil = cos (a — //3)/ = cos a/ COS /y8/ + siu a/ siu ;'/3/

= cos a/ cosh /3l + / sin al sinh /?/

sin /a/ = sin (a - j^l) = sin al cos 7)9/ - cos al sin//?/

= sin al cosh /?/ — / cos 0/ sinh (31

Substituting in equations (i) and (2), we get

{Ho) = //(cos al cosh (31 + j sin al sinh ftl)

+ / (a - //?)(sin a/ cosh pi - j cos al Sinh ^/)
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The second term on the right-hand side

_ . / fu sin al cosh ftl — ja cos al sinh pi ~|

~ "^
^acL - /y8 sin al cosh ^l - ft cos a/ sinh ^/ J

_ . I Va sin a/ cosh ^l — (3 cos a/ sinh ^/ "I

~ "*"
^ acL- /(a cos a/ sinh ^/ + /3 sin a/ cosh ^/) |

so that

{Flo) =" -^ cos al cosh /3/ + (a cos al sinh ^/ + /? sin a/ cosh ^8/)

+ /
^(a sin al cosh (31 - f3 cos a/ sinh /3l) + H sin a/ sinh /?/ . (3)

+ ;^ 2 a^ «2(« + /)S)(sin Oil cosh )8/ - / cos al sinh y8/)

Similarly, for Iq we have

(/„) = /(cos a/ cosh y8/ + / sin al sinh ftl)

aC

+ /3

from which

(/o)
= / cos a/ cosh pi + H /^ „2(" cos al sinh /?/ + ^8 sin a/ cosh pi)

+ /[ J/ 2^fi2
(« sin a/ cosh ^/ + ^3 cos a/ sinh ;8/) + / sin al sinh ^^1 . (4)

These formulae are general. To determine the c<jnstants a and p,

we have by definition

^=.a -jp = aVC{L) = aVC^L -
j^

from which
a^ - P- - J2ap = aKL - jaRC

equating horizontal and vertical components of these vectors

a2 - /?2 = aKL

2aP - aRC

Further equating the moduli of the expression for fx

a2+ p^ = aK:^L^ + ^l = aCVa^'lX+ R^

from which we get

yJlaCiVa^L^ + R^ + a.L)

p = ^\aC{Va^L'- -\-R^ - aL)
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R x2

.

f tlie frequency is high the termr \ is small compared with unity.

and we may with sutTicient accuracy for practical purposes put

a = aVCL

and

The constant a is the value of /x on the assumption that the pii)e is

frictionless. This constant is then a function of the wave length X

only, and we have
2n

The constant /3
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or putting

a = aVCL /? = -VCL
2

(//o)
- H cosh fSl + I^^ sinh /SI - jl^^yj^ sinh fil . . (5)

(/o)
= / cosh fil + HyJ^^ sinh ^l + I'H^^yJi sinl> l^i (6)

The mechanical power given at the generator will be {see page 36)

Wo = -\ (Hcosh 131 + lJ~ sinh (31){I cosh f3l + hJ^ sinh /SI)

+ HI^^, sinh^
/3/J

= ^[i^7(cosh2 (31 + sinh2 ^/) + (^'a/^ + ^'Vl) ^'"'^ '^^ ^^^^ ^^

The last term may be neglected for high frequency and pipes of large

diameter, and we have in this case

W^ = ^[hI cosh 2(31 + lU"'^^ + ^'Vl) '^"^' ^^^1

We see that the power at the generator is greater than the power at

the receiver

2

The difference is the energy lost in heat in the pipe.

If / is sufficiently small we can put

cosh 2/3/ = I

and
sinh 2(31 = 2(31

in which case

W,~lHl,'<X''*l"1\
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The power required to run the generator when the receiver is not
working is obtained by putting

7 =

and we have for this power dissipated in the line

HV = — i// sinh nil

= \h^^ tanh lil

If /? is large we see that tlie loss of power is considerable, and it is,

therefore, advisable to keep (i as small as possible.

We have found

H = IVCL

but VCL is the reciprocal of tlie speed of sound in the liquid, so that

we have

For water

^= «*
^ 287000

For practical calculation we can use the following formulae. In

the equations (5) (6), neglecting the last terms containing ;, which

are very small if the frequency is high, we have for pipes whose

length is an exact multiple of wave lengths

Ho = H cosh/31 + I^^s\nh(3l f?)

1^ = I cosh (31 + //y^ sinh 131 (8)

\'ote.—The equations (7) (8), using the proportional functions h and », may
be written

ho = h cosh (8/ + i sinh Bl

i, = i cosh 01 + h sinh 01

also
h --= A„ cosh $1 — lo sinh 01

I = i„ cosh al — hg sinh 01

which can be deduced from (15) (16), changing / to - /.
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For an infinitely long pipe we have

h = o, i = o
that is, since for / = cc

co£hj8/ _
sinh $1 = ^

we must have
Ao = »o

or

Wo = h\/~

the energy losi

2 2 V C 2^

c
so that in an infinitely long pipe the energy lost in friction is finite, and equal to

The efficiency r? will be
W

where IF is the work done b}^ the receiver

2

SO that

V

cosh ^fil + KJj^^ + ^^D.M. 2/11

This has its maximum value when the denominator is a minimum,
which is the case when

This relation shows that to obtain maxinunn efficiency in the trans-

mission of energy we must have

LP ^CH^
2 2

that is to say, the kinetic energy and potential energy at the receiver

should be equal. If this is the case, at each point in the transmission

line this condition is fulfilled.

So that

"^ -^ cosh 2/3/ f sinh 2fil
^ ^~'^'

and r) has this value when

IVL = HVC
and we have,

Ho = H (cosh 131 + sinh 131) = He^'
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/ = /„.'- 3'

from which we get

/„ - / hU- II

H =^-^-'

Tlie quantity

would be the percentage drop of the line, and for small values oi (il

is approximately

2V

We see, therefore, that in order to get high efficiency /3 should l)e kept

as small as possible, and the receiver should be arranged so that the

proportional pressure and proportional current at this point are equal.

This conclusion is correct in so far as /3 does not depend on the

current /, but in fact ^ is a function of the mean effective velocity in

the pipe, and thus depends on /.

It follows that the greater the hydromotive force for a given

diameter of pipe the greater should be the current I and the effective

velocity in order to obtain the maximum efficiency; at the same
time we can keep ^ constant by increasing the diameter of the pipe,

and large pipes transmitting large quantities of energy will give

comparatively higher efficiency.

Example

Find the maximum efficiency of a pipe one kilometre in length transmitting

25 horse-power to a receiver at which the value of H is 30 kg./cm.*

W = 25 hp. = 25 X 7600 = 190000 kg.cm. sec.

For water

/C
L

HI = 2ir = jooH^ = 701 X 30^ = 2 X 190000 = 380000

so that

380000 , .^ Jm = '•' = 005 cm.'
7 X 900

Thus the necessary diameter of the pipe would be

d -= 875 rm.

The maximum velocity at the receiver in order to get maximum ctticicncy will l>e

I' = 7// = 7 X 30 = 210 cm. sec.
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and the effective velocity

= ^° = 148 cm./sec.
V2

The value of A will be (see Chapter III)

1-48 ^009/148^^.^^^
875 875V 875

_ A _ 0-2I2

2V 2 X 143500

^^, 0-2I2 X lOOOOO „.,,«
2j8/ = = O"i40

143500

cosh 0-148 = I 01

1

sinh 0-148 = °:i|°
i-i6r

so that

7, =-_^ = 0-86
1-161

Thus the efficiency would be 86 per cent., and the power necessary at the

generator will, therefore, be

-^ = 29 h.p.
o-oo

The loss would, therefore, be

29 - 25 = 4 h.p.

The power dissipated by the line when the receiver is stopped and the generator

kept running would be

H'n' = } X 30* X 7 X 60-5 X 0-150 = 14300 kg. cm.

or

Wft' = 1-9 h.p.

Effect of changes of frequency in long pipes.— If we take the general

formul?e (3) and (4), found at p. 76

—

{Hq) = H cos al cosh pi + ^/ a COS al sinh ySZ + /8 sin al cosh (3l)

+ j\ Ja sin al cosh pi— ft cos al sinh ftl) + H sin al sinh ftl

(7o)
= 1 cos al cosh /3/ + rf a COS al sinh (31 + ft sin al cosh (3l)

+ j\
J.

(a sin al cosh pl + P cos al sinh y8/j + 7 sin al sinh /?^

Remembering that we have

«2 + ^2 _ a2CL



ALTERNATING FLOW IN LONG PIPES 83

and

a = aVCl = ""

V

vvliere v is the velocity of sound as found above at p. 79, we see that

in these formul£E only the quantity a is a function of the frequency
n, or, since a = Ztth, of the pulsation a.

We shall now examine the effect produced on the generator by a
change of frequency from a to rt + Aa ; Art being a very small quantity

compared with a.

Let us first consider the simple case in which there is no movement
at the receiver end of the line.

In this case 7 = and we have for H^, Iq

{Ho) = H{cos al cosh pi + / sin al sinh /?/)

H r
(/„) = -^ a cos al sinh 131 + P sin al cosh fil + /(a sin al cosh fil

+ /3 cos al sinh filU

The work done by the generator would be

+ a sin- al sinh )8/ cosh /S/ + y8 sin* /3/ sin al cos al

= J a sinh fil cosh ^8/ + sin 2a/ cosh 2/3/j

= ^(a sinh 2^3/ + |3 cosh 2/3/ sin 2al)

Suppose, now, that the frequency changes in such a way that tlie

angular velocity a becomes a + Aa. The corresponding increase in

the work W will be

AW = ^^(sinli 2y8/ + 2/;8 cosh 2(31 cos 2a/Ja^

But we have
a

a =
V

so that
^^

Aa =
V

and finally

4rtZ,
AIF - ^^l Tsinli 2^8/ + 2(31 cosh 2(31 cos 2a/ 1"^""



84 WAVE TRANSMISSION OF POWER

If the line is a multiple of Imlf wave lengths we have

cos 2al — I

The part in brackets in this case is positive, and we see that if

the frequency tends to increase, the work done by the generator

increases, with the result that the prime mover driving the generator

is retarded.

If the frequency diminishes Art is negative and All' is also negative,

the work done by the generator decreases and an acceleration of the

prime mover results. We see, therefore, that under these conditions

the working of the generator and of the hne tends to stability. This

tendency is present for all values of a which satisfy the condition

sinh 2/31 + 2/31 cosh 2/3/ cos 2a/>o
that is

tanh 2BI ,^

2^1
+C0S2a/>0

Some interesting conclusions may be drawn from tliis condition.

Suppose the pipe is of great length; the condition becomes

cos 2a/>o
and maximum stability is reached when cos 2a/ is a maximum, i.e.,

when
cos 2a/ = I

giving

2a/ = 2mir

or

tt/ = Wtt

substituting

_ a _ 2irn _ 2ir

~ V ~ V ~ \

where A is the wave length, we have

/ = w
2

From this it follows that the frequency tends to adjust itself in

such a manner that the line is divided up into an integral number of

lialf wave lengths.

The stability may be measured b}^ the ratio

A^F H^ IL/ \
\ = — a/ ^ I sinh 2/31 + 2/31 cosh 2/3/ cos 2a/)

The limit of stability is reached when

Al^
Aa

=^°
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I.e.. when

,
tanh (il

cos 2a/ = — ..f
2/8/

In the case of \ery long pipes this reduces to

cos 2u/ = o
or

, 2in + I 2-iT,
111 = TV — , I

4 ^

which gives

, zm + I,

In this case the equihbrium is indifferent.

When
cos 2a/ = — I

we get the case of maximum instability, and instabihty persists for all

values for whicli

tanh 2)8/
,— 01 + cos 2a/ < O

2/3/

In the case of a ^•ery long pipe, the condition of inaxininm in^tahilitv

reduces to

/ = '"'-±h
4

This shows that it is not possible to keep running with a frequency

which will produce an uneven number of quarter wave lengths in the

line.

These considerations are of great practical importance in that in a

long line the conditions for maximum stability are the best conditions

for the transmission of energy, i.e., when the two ends of the line are

points of maximum pressure variation.

If the line is short we can put

tanh 2/3/ _
2lil -'

and the condition for stability reduces to

I -f cos 2a/ > o

which is true for all values of u.

It follows, therefore, that for short hnes any frequency is com-
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patible with stable equilibrium. The best stability is, however,

Air
obtained when the ratio ^ is a maximum numerically; that is,

Aa J

.

.

when
cos 2al = I

If

cos 2a/ = — I

we have

Aa =°

and we see that in a line of moderate length the equilibrium is

indifferent when the line is divided into an odd number of quarter

wave lengths.

In conclusion, it is evident that a line which is designed to be

approximately a multiple of half wave lengths for the frequency

considered is the best as regards the stability of the power generator.

A similar analysis can be worked out on the assumption that work

is being performed at the receiver end, but it is unnecessary to labour

the matter further. When there is a receiver working at the far end

of the line, there will be a system of travelling waves superposed on

a system of stationary waves in the line ; and the general conclusions as

regards stability of working are similar.

By an extension of the anal}sis it can be shown generally that

any system which is in a state of resonance is also in a state of power

equilibrium. Thus, if resonators are inserted at intervals in the hne

the stability is increased. This is also the case with balanced lines

with condensers or inertias or large synchronous motors working on

the hne.

Note on the Law of Friction

In the analysis which has been given above it has been assumed

that the cocfftcient of friction R and the coefficient of leakage S are

constants ; and the laws connecting the hydromotive force and current

have been taken to be {see pp. 15, 24)

h = Ri (i)

and
i = Sh (2)

In the calculations we have* taken a mean value for R and S assumed

to be constant during the period of \abration. We will now consider

how tar the assumptions can be justified.
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If we have a current / varying as a simple liarnionic function we
have

i = 1 sin at

Assume that the coefficient of friction R is of the form

R^P,± fi,i

The relation (i) gives

so that

h = fij sin at ± (^^l' sin- at (3)

The ambiguity of sign ± is due to the fact that m successive half

periods in which the current is in opposite directions, the friction is

reversed; that is, the coefficient of friction changes its sign but not

its magnitude.

When the current i changes from positive to negative, both terms

of the expression for h}dromotive force h change their sign, although

i- stiU remains positive.

We shall consider separately the term

± (S^P sin2 at = h^

Put

K = PJ'y

the function y being such that for phases between o and ir we have

y = sin^ X

and for phases between -n- and 2ir

y = — sin- X

We can then expand y in a Fourier's series ; thus

y = Aq -{- A-^sin X -\- B^ cos x + A2 sin 2x + B^ cos 2x 4-.

The form of the terms A,„ and B„, being given 1)>- the relations

A„ = — / y sui mxdx

B„ = / y cos mxdx

We nmst divide these integrals into two periods ; between o and t-

y has the v^lue + sin^ x and between tt and iir, y has the value - sin- x.
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Thus we have

A,„ = y sin- X sin mxcLx — j^ sin- .rsin m:«^A;

B,„ =1/ sin- X cos mxdx —J^ sin- x cos mxdx

Making the integrations, we get

Aq = o, B,„ =0, A, = sin x
3^

7r(w — 2)m{m + 2)

and finally

_ Sfsin X _ sin 3^ _ sin $x sin 7^; 1

^ ~ ^L 3 "ir3T5 ~
3-5-7

~
5-7-9 '

' J

This series represents the curve

y = sin- X (for values of x between and -n)

and
y = — sin- X (for \'alues of x between it and 2it)

It should be noted that the first term of the series is the most
important, and if we neglect the remaining terms we can write

approximatelv
8 .

V -^ — sm X
3^

The exact value of the hydromotive force is given by the formula

(3) above, which may be written

7 7 To , n i-8/sin X sin -^x \~1

and approximately

h ^ l{p, + ^^) sin ;.

In Fig. 31 the exact curve for y and the approximate curve taking

into account the first term only of the series are drawn ; and by in-

spection of the curves it is evident that for calculation in practice we
may, without undue error, as a first approximation neglect all but the

fu'st term of the series.

Even in the worst case, when R^ = o, corresponding to turbulent

flow through an aperture, the error is not great.
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If greater accuracy is required the second liarnionic may he taken
into consideration and we get

y = sin % — sin ^x

= 0-85 sin X — 0-17 sin ^x

The mean energy lost in friction is

W = — f hidt

Fig. 31.

Since all the integrals of the form

sin mxdx = J. cos w — i xdx — cos w + i xdxJo s\n X

— ^ [sin m — IX _ sin w + i xX"'_
~

2\_ W — I W+I Jo"~
"

This reduces simply to

W =P((3, +^^'^)/'siu^dx

So that we have

"4^/^.-^')
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It follows, therefore, that if we take only the first term of the series

and neglect the remaining terms, no error is introduced into the value

obtained for the mean work per second. On the other hand, it is

quite possible that in special cases the influence of the higher harmonics

of the series for h may produce important variations in the nature of

the results in certain investigations.

In problems in which closer approximation is required in consider-

ing friction varying according to the square law, since the series of

harmonics for h is very rapidly convergent, it is quite sufficient to take

only two terms.

Thus, taking

for

h = ;82/2(o-85 sin % — 0-17 sin 3^;)

We have

K = ^a/^'io-Ss + 0-17) = 1-02/32/2

which only differs by 2 per cent, from the value given by

h„ = ^2^ sin2 X = PJ^
2

The analysis of cases in which a generator produces current absorbed

in inertias, capacities and friction of the square law type, may be

carried out by the method given above. If a first approximation only

is required we may assume the friction to follow the simple proportional

law
h = Ri

and take for R the value

R - 0-85^2/

If closer approximation is required, we must introduce a supple-

mentary hydromotive force at the ends of the friction device having

three times the frequency and of amplitude equal to 0-17/82/-.

If a different law of friction has. to be investigated the method

given can still be employed. For practical applications, however, it

is simpler and sufficiently accurate to write the relation between

h\'dromotive force and current in the form // = Ri and to take for

R a mean value over one period.

Generally R would be of the form

R = <i>{i)
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We shall assume for R a constant mean value, putting for i a mean
value such as the effective value of i

i == hti. = —7-
V2

but this method must be limited to cases in which resonance with the

higher harmonics of the hydromotive force cannot occur. If such

resonance effects are possible, the problem is a different one and the

influence of the high frequency harmonics may be considerable. To
illustrate this let us take the following problem

In Fig. 32 at G we have a generator producing a current

i = I sin at

B i-

L M^

'M

m-

^

Fig. 32.

At i? is a friction device following the square law, e.g., a short pipe

of small diameter compared with the feeding lines A, B. \\. D, E
are branches in parallel containing respectively an inertia L and a

capacity C ; the hydromotive force is h and the currents in the three

branches Zj, i^ i-i respectively.

We have
{/) = (/i) + (^2) + (^3)

and if we assume for R a mean value we have

Thus

[H) = RI, = jLal, = - /;y,
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Thus we have

H '"

^,+R^(Ca-l-^)

h
La^, + R^[Ca-lJ

These formulae are obtained on the assumption that we retain only

one term in the Fourier's series for h.

If we take into account the fact that h has a series of harmonics,

it is quite possible that for one of these, say the >nth harmonic, we

may have
CLm^a^ = I

For this frequency the inertia L and capacity C are m resonance

and a current of m times the frequency would be set up through the

inertia and condenser; and this current, if there is no dissipation of

energy in the circuits of the inertia and condenser, may become infinite.

Thus if
J-

is a very small fraction, nearly the whole current / will pass

through the friction R and a considerable wattless current of frequency

m times the original will flow in the resonator formed by the inertia

and capacity for this higher harmonic.

The formulae found above for /g and /g in this case would only

give the current of the fundamental frequency which may be

neghgible; the current for the higher harmonics in the condenser

would be considerably greater.

If, however, we have
LCa^ > I

it is impossible that resonance with the higher harmonics should

occur.

Problem.—Find the coefficient of leakage 5 through an apertuie

of section w in a partition in the path of the current.

If the hydromotive force is h and the current is i we have by

definition {see p. 24)
i =^Sh (i)

Let V be the velocity of the Uquid through the aperture and h the

difference of pressure on the two sides of the aperture ; we know from

hydrodynamics that

V = /.y 2g-
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where

y = the density of the flui'l

/n = a constant ; for an aperture in a thin wall equal to about 0-62.

Thus we have

I = u>V = H-wyj2g^ = H-^h^~l = Sh . . . . (2)

SO that

^=""7'^
(3)

We see that S is not constant but is dependent on h.

The mean energy lost per second by friction if we assume a mean
value for S would be

2 2S

where H is the amplitude of h.

We can also obtain the value of this energy by the formula

But we have found

'V^
from which

2^2„,2o

and we get

W = y / i^dt
2TgfJi^o)^^'

If i is a simple harmonic function

t = I sin al

we have

W = ^^.J^sm' atdt
zTgfji^o}^''

Substituting x for al, we get

W = — --» , / sin^ xiLx

But

y_{':

J sin'' xdx = / (cos^ X — i)rf(cos x)

= ^___cos.J^=o
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This result, taking the integral over the range o to 27r is incorrect,

for since the work is always positive, the sum of the work over one

period necessarily differs from zero. The error arises from the fact that

on reversal of the flow, the hydromotive force is also reversed, so that

tlie integral is of opposite sign for the two half-periods. It is, there-

T
fore, necessary to find the work during one half-period and double it

to get the work done during the complete period.

Thus we get

But

so that we get finally

W = —^ , „ / sin^ xdx

/ sin^ xdx = -

w- 'y''

Comparing this value of W with that obtained above, namely

P

we find

and putting

we get

For water we have

W - ^

4y/

I =SH

^-"Vi^
1

4yH

s = 15407^

where /a is the contraction coefficient which varies from 0-5 to i-i

according to the form of the nozzle or orifice through which the flow

takes place.

An average value for water would be
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Numerical Example.

Find the power lost in a cock which does not close perfectly, the size of the

aperture w left open being one-tenth of a square centimetre and the hydromotive
force H = 100 kg./cm-

The energy lost per second would be



CHAPTER VII

THEORY OF DISPLACEMENTS—MOTORS

Displacements

It will be convenient, before proceeding to the mathematical

discussion of the various types of rotary motors operated by alter-

nating fluid currents, to establish certain relations with regard to

the movements imparted to fluid by the relative movements of

pistons and cylinders.

We shall define by the term displacement of a piston or of a

current the quantity A = fidi, where i is the current.

Remembering that

vn = n

where v is the velocity of the current at the time / at a point at a

distance r from mean position of the piston, we have

A ^fndr = nr + C (i)

If r is a sinusoidal function, and if we take the

origin of time at the instant when the piston is at

the out-centre, we have

A = Hvq cos al {2)

From the ajjove definition we have

. _ dA
' ~lit

In the application of the theory to motors we

shall have to consider two cases

—

(i) Displacement in a fixed cylinder by a moving
piston attached to a rotating crank or eccentric

;

(2) Displacement due to the rotation of a cylinder round a fixed

crank or eccentric.

96
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The rotation of a crank connected to a piston by a long connecting rod
gives a sinusoidal reciprocation of the piston in the direction of its axis.

If fQ is the amplitude of the crank and a the angular velocity, we have

r = Tq cos at

The quantity r would be called the crauk or the eccentric of

the displacement. We shall have to deal later with rotating cranks
and alternating cranks. Thus the definition of crank or eccentric is

extended and includes a crank which is variable not only in position

but also in magnitude. The relation between the displacement and
the crank will, however, always be

A - fir

If the cylinder rotates instead of the crank, the

direction of rotation being the same, the current will

have the same value, but will be of opposite sign. We
can represent an alternating displacement by a vector

whose value is r^Q. rotating at the same angular velocity

as the crank.

We can then employ the symbolic notation. If the Fig. 34.

displacement is represented by a line, since we have

. rfA
' = -df

and the variation is sinusoidal, the current will be

represented by a line at right angles to it. Fig. 34
shows the displacement due to the rotation of a crank

actuating a piston in a fi.xed cylinder. The current

produced will be
. _d^
* ~ dt

If the cj^linder were rotated and the crank fixed we

should arrive at the condition shown in Fig. 35, and

should then have
^A

' = -'-dr

In the general case where the direction of the

reciprocating movement of the piston is different

from the direction of the displacement, as shown

in Fig. 36, we have for the current

di A cos fi)

' = —dT
„dA= cos^^

H

^ .co$/i

Fig. 36.
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The current produced in this manner by a reciprocating piston in

a fixed cyhnder will be termed static current, due to an alternating

displacement parallel to the current.

If the cylinder is rotating at uniform angular velocity a^, and the

piston is connected to a fixed crank, a current is also produced which

will be termed dynamic current. The velocity of this current depends

on the velocity a^, and is a maximum when the crank is at right

angles to the axis of the piston. At this moment its value will be

I'l
= v^Q = ra^U = a^A

This current has a negative value if the crank is on the right-hand

side (Fig. 37) and the cylinder is rotating in the direction shown by

the arrows. In a machine in which the cylinders move we can con-

sider the cylinders as turning about a fixed centre and the piston

as turning about another fixed centre 0'.

The instantaneous value of the static current will be

dA.
'^ =^

where Aj is the displacement in the direction of the axis of the

cylinder and the instantaneous value of the dynamic current will be

h = -«i A 2

The sign of this current is positive when the cylinder moves

towards the displacement, and negative

when the cylinder moves away from it.

A 2 is the displacement in the direction at

right angles to the axis of the cylinder.

These displacements are proportional to

the actual movement of the point 0',

which is the centre of rotation of the

piston relative to the point which is

the centre of rotation of the cjiinders.

So if the centre is given a displacement

A at an angle a with the axis of the

piston, the total current in the cylinder

supposed rotated with a uniform angular velocity a^ in the direction

of the arrow (Fig. 37) will be

Fig. 37.

so that if

dA
'St

A = rQ cos at

«i A sin a

i = ril[ — a cos a sin at — a^ sin a cos a{]
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and since

a = a^t

= rQ[ — a cos a^t sin lU — a^ sin a^t cos al]

This case is equivalent to a displacement A, whose direction is

unaltered while the c\ linder rotates with uniform angular velocity ff^.

But we know that

sin at cos a^^i = sin rt + ^i / — sin rtj— « n

and

cos at sin a^t = - sin a + a^^ t + sin a^ — a t\

(«i
— a) sin a^ — a i + {a + ai) sin a + aj^ i \ . . . (3)

so that

_ _rn
* ~ 2

We have seen above that the displacement due to the rotation of

a crank is of the form

Qr = Qxq cos at

and the corresponding static current is

i = — VqUu sin at

This shows that the current i given by formula (3) is equivalent to

two superposed currents produced by rotating cranks of length -

turning with angular velocities of a^ — a and a^ + a respectively.

Thus the displacement A can be considered as equivalent to two

displacements rotating in opposite directions at the same angular

velocity a.

Motors

General Considerations

In Chapter II we ha\e shown from elementary principles that if

alternating pressures are impressed on a liquid column, the train of

waves produced, travelling along the liquid column, can give up the

whole of its energy to a piston situated at any point in the liquid

column, provided this piston is moving at the same speed as and in

phase with the layer of liquid in immediate contact with it. This

condition is fulfilled by a receiver consisting of a piston, connecting-

rod and crank similar to the piston, connecting-rod and crank of

the generator, provided that the cranks of the generator and receiver

are rotating at the same angular velocity, and in a certain phase
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relationsliip depending on the relation between the distance from one

piston to the other and the wave length of the train of waves travel-

ling in the liquid column. It is, therefore, clear that a receiver or

motor of this type can take up energy from the wave train only if

it is running at the same speed as the generator. Such a motor

we shall term a synchronous motor.

It will be obvious that a motor with a single piston, connecting-rod

and crank, such as we have been considering, will exert a torque

which varies during a revolution, and if a continuous rotation against

a load is required it is necessary to use a flywheel. Unless, however,

such a motor has been started and has attained the same speed as

the generator it will not be able to overcome the inertia of the fly-

wheel or to develop torque. It is, therefore, necessary to give such

a motor an angular speed very near to that of the generator and to

clutch it at the proper phase in order to develop power.

Fig. 38.

If in a synchronous motor instead of a single piston we employ

three pistons acting on the same shaft and moving along axes inclined

at 120° actuated by three liquid columns in which wave trains differ-

ing in phase by 120° are travelling, it will be readily seen that at the

synchronous speed a uniform torque will be developed, so that a fly-

wheel or other inertia is unnecessary; the starting torque, however,

will be very small, and the motor will be unable to start against a load.

In order that the motor may start, the inertia must be such that

the acceleration is large enough for the rotor to reach sj'nchronous

speed in one revolution. Such a motor will be termed a synchronous

three-phase motor.

A simple example of such a motor is illustrated at Fig. 38. In

this motor the rotor consists of an inclined disc A fixed to a shaft B
which rotates in a bearing C ; the siator is formed by three cylinders

uniformly distributed around the disc, and three trains of waves

differing in phase by 120° act on pistons D in the three cylinders,
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pressing these pistons against the inchned plate. It will be evident

that such a motor will operate as described above ; that is, it would
run only at a speed synchronous with the generator, or otherwise

not rotate at all ; no variation of speed is therefore possible with such

a motor.

Suppose, now, that instead of the plate A, whose inclination to the

shaft B is fixed, we have a plate or segment T, as shown in Fig. 39,
resting on a bearing in a spherical cup 7v' fixed to the shaft B sym-
metrically. Assume that there is no friction either between the

pistons D and the plate T nor between the plate T and the cup ; and
let the pistons be acted on by three wave trains as above described

in the case of the synchronous motor illustrated in Fig. 38.

It will readilv be seen that in this case no rotation about the

^^^—

horizontal axis will take place either of the segment T, which we may
call the transmitter, or of the rotor R. All that will occur will be

that the transmitter T will rock in the cup in such a manner that the

line of greatest inclination of its plane face will generate a cone and

will move on the surface of this cone at the synchronous speed.

If there is friction between the transmitter T and the rotor R, and

no resistance to rotation, both transmitter and rotor will rotate at

the synchronous speed, and the combination will be equivalent to

the synchronous motor shown in Fig. 38, the transmitter maintaining

a constant inclination to the horizontal axis. If, now, resistance be

opposed to the rotation of the rotor by the application of a load, both

the rotor and transmitter will slow down by nearly the same amount.

The motor will, however, still develop torque. It will be seen that

the rocking movement of the transmitter relative to the rotor is pro-

portional to the difference between the angular speed of the rotor and
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tlie synchronous speed, while there is loss of energy due to the rocking

friction between the transmitter and the rotor. Since motors of this

class have a starting torque and are able to develop power at any

speed up to the s}-nchronous speed we shall term them asynchronous

polyphase motors.

Another form of motor of this type is shown at Fig. 40. The

motor comprises a circular ring D, which forms the transmitter, sup-

ported by pistons A, B, C, uniformly distributed around its circum-

ference ; a second ring E is provided within the ring D, and ball

Fig.

bearings are fitted between the two rings. The rotor consists of three

cylinders provided with pistons A', B' , C bearing against the ring E.

The cylinders of the rotor are in communication with each other

through small apertures. The pistons A, B, C of the stator work in

fixed cylinders in communication with three pipes containing liquid

subjected to alternating pressures differing in phase by 120°. That is

to say, the pulsations of liquid in the three feed-pipes are produced by
a generator formed by three pistons at 120° phase difference. The
concentric arrangement shown in the figure is merely diagrammatic,

and in i^ractice the stator and rotor may be side by sitle. The rings
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D and E are rigid as regards the movement of their common centre

0, but can rotate independently about this centre, the shp being

facihtated by a ball-bearing between them, or other well-lubricated

anti-friction device. This motor is exactly similar in principle to

that shown at Fig. 39, the frictional resistance between the transmitter

and the rotor being replaced by the resistance to the flow of liquid

between the different cylinders of the rotor.

Another type of motor is illustrated at Fig. 41. In this motor

we have two pistons A, B, producing an alternating pressure acting

X_^^

on the ring D in the direction A'A'. The ring D is concentric with the

ring E, wliich presses on and moves with the piston P of the rotor.

The cylinders in which the pistons P work are connected through

small apertures as shown.

We have seen that an alternating crank acting in a given direc-

tion such as we have assumed can be replaced by two alternating

cranks of half the amplitude whose vectors are assumed to be rotating

uniformly with the same angular velocity in opposite directions. If

we have a suitable rotor the resulting rotating displacements would

tend to produce rotation. We know that the effect of inertia is

greater the higher the frequency of the alternating currents in the
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circuit in which it is placed. If, therefore, we have a rotor connected

as shown in Fig. 41, and consider the effect on it of the two rotating

displacements due to the stator, we see that as by rotating the rotor

the angular velocities of the two rotating displacements relatively to the

rotor will be made to differ from one another, we can by rotating the

rotor cause a certain asymmetry in the internal forces acting on the rotor

owing to the greater effect of the inertia on the alternating currents

of higher relative frequency. Asymmetry can also be produced by

inserting leakage, or resistance. Motors giving torque at all speeds

can thus be constructed. Such motors will be termed asynchronous

monophase motors. It is characteristic of these motors that relative

motion of the rotor and stator is necessary before torque is produced,

and that the torque is not uniform during the revolution.

In this type of motor also it is obvious that the stator and rotor

may be arranged side by side instead of concentrically. In the

motors above described the maximum torque is that which is ob-

tained at nearly the synchronous speed, and it is not possible with

these constructions to obtain a higher torque on starting.

We can now proceed with the mathematical investigation of the

types of motors described above.

Synchronous Motors.—We may consider a polyphase syn-

chronous motor as formed by a number of monophase synchronous

motors coupled on the same shaft but at different angles of phase.

To find the torque of such a motor we will consider the case of a

simple motor consisting of a single piston with its crank and a long

connecting-rod.

Acting on the piston we have an alternating

pressure

h = H sin {at + </>)

This pressure produces an instantaneous torque

M = rhn sin [a^t + ijy)

fli being the angular velocity of the crank, then we
have

M = rHn sin {a^t + «/') sin {at + <^)

but

sin a sin /? = cos (a — /?) — cos (a + /3)

M = - cos («! — a I + ij/ —
<f>)
— cos {a\ + a t + ij/ + <f>)\
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We see that this torque is pulsating, and its mean vahie over a

complete period will be

M,„ - ^, fMdt

T being the time of one period of the pulsation, so that we have

- , _ rHnrsinia^ - a t +J/ -
<t>) _ sin {a^ + a t +J/^<f>Y

'" ~ 2T [_ (ii — a ^1 + (^ Jo

We see that if tf^ is not equal to a, this torque is zero, because

both terms are periodic functions of time.

When, however, a^ = a, we ha\'e

rHn\M =
2

>r 1

cos {ip - 4>) - cos [zal + xj, + ^)\

the mean value of which is not zero but is given by

,, rHn ,, ,,M,„ = cos (i// — <^)

If there are a number of c^'linders around the shaft the torque will

be proportional to this number. Moreover, if the cylinders are at

the angles of a regular polygon the torque will be constant, for the

sum
22W + xjl + <t>

,^^ COS {2ai + ^ + <f>)

becomes zero for values of 1/^ and <^ differing by the same angle, it being

assumed that each cylinder is supplied with pressure whose phase

differs from that of the next by the angle between the axes of the

cylinders.

The displacement A at each instant is

A = ril cos {a^i + \p)

The static current will be

i = ~rr = — fli^n sin [ad + i/')

at

> The work done at any instant = hidi
;

and this must be equal to the resisting couple ^ — Mu^di
;

so we ha\'e

M = rhil sin {a^t + <//)

The same formula we have found on p. 104.

We can thus simplify the proof for the case of j^xjlyphase currents.

To find the torque produced by a polyphase motor we need only
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calculate the work per second for each phase, take the sum and divide

by the speed of the rotor.

Suppose, then, we have a motor of m phases and we wish to cal-

culate the constant torque corresponding to the synchronous speed.

Let / be the maximum current in one phase and H the maximum
h\dromotive force. We have for the mechanical work of one phase

W, = ^HI cos <i
^ 2

^

4> being the phase angle between the current and the hydromotive

force. The torque of the motor will be

M = ^^HI cos <^
2a ^

the maximum value is

2a 2 2

where

r = the length of the crank,

a = the section of each piston,

m = the number of phases,

A = rCl, the amplitude of the displacement in

one cylinder.

If the energy absorbed by the motor is W and the angular velocity

is a, we have also

M = —
a

Similarly, if we consider a generator having m phases, the torque

which must be applied to the rotor to produce m currents differing in

phase by will be

M W
m-

where W^ is the energy spent in each phase.

If the phases are doing work in a circuit having resistance R,

inertia L, and capacity C, the energy dissipated will be

1 2

where I is the current in one phase.

The inertia L and capacity C have no effect on the value of the

torque, as they do not cause any loss of energy.
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Example

Find the length of crank required in a three-phase motor having cyUnders
of 25 cm. diameter required to develop 20 hp. at a speed of 600 revs, per

minute, the hydromotive force H being 100 kg./cm.*

The torque necessary to obtain 20 hp. at the frequency of 10 per second
will be

and we have

20 X 76 X 100M= ,, ^Vo =242okg.cm.

2420 = - A-f/ = ;- X 100 X A

so that A = i6-i cm.' for each phase. If, therefore, we use pistons of 2-5 cm.
diameter the length of the crank r will be

4A

^^'e have seen that synchronous motors can only develop torque if

their speed corresponds exactly with the sj-nchronous speed.

For small temporar}^ variations of speed they develop a positive

or negative supplementary torque which tends to correct the variation

of speed ; when the speed is increasing this torque tends to reduce

the speed ; similarly, a drop of speed introduces a torque which tends

to accelerate the motor.

From this it is evident that s3-nchronous motors can take con-

siderable variation of load without changing their speed. If, however,
the load increases beyond a certain limit the motor stops abruptly.

Synchronous motors should be started at no load, for their starting

torque is very small, particularly if the motor has much inertia.

Let A be the moment of inertia of the rotor; we shall have for

the equation of motion

A^^ = M ^ rHn sin {a^t + i/') sin {at + <^)

rHn\

2
cos (rtj — rt / -i- (/' — </))— cos (fl + rtj / + l/' -f <^)

This equation is of the form

^ = B cos {y + ai + b) + D cos {y - at + c)

It is difficult to integrate this equation, but an approximate

solution for polyphase motors can be found ; for such motors

M = m ^ cos [a^ - a t -r ^p - <t>)
= A ^/
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At the time / =- o Nve have a^ = o. After a time we shall have

we can tlien put fur the jxMiod of starting, if this period of time

is very short,

/

Then

The motor will start if

the time-period T.

Assume this condition fulfilled.

Then we have

rfrt, _ mrHii

dt "2.4
Tiie (juantity
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In order, therefore, that it may bo possible to start it is necessary

that .'1 should be less than or equal to

_ irmrHn

The less the value of q the more easy it is to start the motor,

- representing the fraction of the period of one revolution in wliich

the rotor attains the synchronous speed.

We see, therefore, that the moment of inertia of the moving parts

should be less than a definite limit.

Let W be the mechanical power of the motor.

We have

2

so that for starting A must be less than or equal to

. 2irW
A = —3-

If / is the volumetric moment of inertia of the rotor and its flywheel

about the axis expressed in centimetres^ we shall have

A=yj=^^-^

y being the specific gravity of the metal forming the rotor, so that it

is evident that the motor will not start if a has any considerable

value.

Example

Take a 20 hp. motor whose rotor weighs 20 kg. What will be the radius

of gyration of the rotor in order that the motor may start in a quarter of a

revolution {q — 4), the synchronous speed being a = 100?

Let X be the maximum radius of gyration.

Then
_ 20;t* _ 2 X 20 X 7600 X tr

"^ = 981 ~ .703

from which
X = 34 cm.

If a were 50 instead of 100 we should get

X = 97 cm.

We see, therefore, that synchronous motors are difficult to start

against inertia, and it would be impossible to start such a motor

against the inertia of a flywheel, even of small dimensions. Only at

very low frequencies is it possible to start without special devices.

In such motors it is advisable to use very light pulleys, which should

preferably be of small diameter.
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Asynchronous Polyphase Motors.—It is possible to obtain

a starting toiciuc with asynchronous pc:»lyphase motors. Suppose

that, instead of applying a sonic current to an ordinary crank or

eccentric, we construct a motor as illustrated in Fig. 40, described

above.

Let the currents at any moment in the three cylinders A, B, C oi

the stator be

I'l
= / sin til ; /j = / sin (at + ^^\ ; h ^ I sin (^at - ^T^

components of a displacement A

.

To these currents there will correspond displacements given by

A, =/t^dt = -- cos at

A2 = -
-^ CO-, [at +

^
and

A » = — cos [at )
^ a \ 3 /

We see. then, that A is a vector whose numerical value is turn-
a

ing with constant velocity about a fixed point.

Tiie movement of the point 0, therefore, takes place in a circle

with a constant angular velocity corresponding to the synchronous

sjx?ed.

Tiiis movement of the centre of the ring E will produce in the

cylinders of the rotor, currents /j, j^, /j, whose value we will determine.

Let fl, be tlie angular velocity of the rotor. The relative velocity

l)etween the disjilacement A and the pistons of the rotor will then

Ije a — a^. The phenomena will occur exactly as if we supposed the

rotor fixed and the displacement A rotating with a velocity a — aj.

Tiie actual movement or the crank of the point is ; n being

the section of a piston of the stator. The rotor, therefore, is under the

action of a crank of length

_ A ^ /

i->tating witli angular velocity a — a^. Under these conditions the

. urrcnt in eacli cvlinder of the rotor will be of the form

ix = -7 sin (a - a^ I)

it = -/ sin (a - <?! / + ^^^

;»
-- -y sin (^a-a^t- ^""^
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where

/ = 1^'(--;)

fi being the sectional area of a piston of the rotor.

Let M be the resisting torque and Hy^ the hydromotive force in the

rotor. The rotor is acted on by a virtual crank r = and we can

consider it as a generator having a crank r rotating with velocity

a-ai and developing a torque M between the crank and the

opposing resistance. In order to find the necessary torque to rotate

a generator it is sufficient to know the work done by the currents

produced.

Let S be the leakage of the current in one phase of the rotor. The
mean work done per second in the rotor will be given by

^ 2

and, on the other hand, the torque M multiplied by the angular

velocity a — a^ gives

Let us put
a — a^ = a

then

2{a-aj) 2a

If Ji is the current in the rotor and 5, C the leakage and capacity

in series in each phase we have in symbolic notation

(/,) =[S+ jCa]H,
and numerically

7 2
2 _ J^lH,^

S^ + .2

On the other hand, if H is the hydromotive force in the stator,

observing that as regards hydromotive force, action and reaction

are equal, the total force on the pistons of the stator must be equal to

the total force on the pistons of the rotor, so that we have

so that

The energy per second given to the motor will be

Ma^ + IF, = Ma^ + A/(a-rt,) = Ma.
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and

Also we have

^ ~ 2 (S2 + CV)a

Ai being the displacement in one phase of the motor. But A^ is a

periodic function having a pulsation a = a — a^; thus we have in

symbolic notation

(A) = /«^i
and for the amplitude

/i = «^i

The expression for M would then be

^^^
2 S2 + C2a2

The maximum value of M for a pulsation a is given by the relation

S = CuL, therefore

M.^,.
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and as soon as the motor runs up to speed the leakage S" should be

reduced to the value

S — {a — ai)C = saC

in order to obtain the maximum torque near the synchronous speed.

As3mclironous Monophase Motors.— In the motor illustrated

at Fig. 41, let a^ be the speed of rt)tation of the rotor and / the

maximum current in the stator.

The displacement A will be

/
A cos ai A cos at

the current in the stator being i ^ I sin al.

But the alternating displacement can be considered as the resultant

of two displacements of half the amplitude rotating in opposite

directions with angular velocity a [see p. 99).

The value of each component will be

cos at

while the amplitude of the relative displacements will be

j;
2a

and will correspond to virtual cranks of

length

2an
~

The current / produced in the rotor will

then be the sum of the two currents due to

the motion of the rotor relative to the two

rotating displacements considered.

The velocities of the rotor relative to

these two displacements will be

and
Fig. .}3.

We have found at p. 112 that the mean torque due to a displacement

rotating with angular velocity a in an asynchronous motor with three

pistons is

3 -SaAi^

2 52 + C^'a^

The motor we are now considering may be treated as the resultant

of two asynchronous motors, one having a relative slip a — «i with a

I

M
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current J^ and the other a relative slip a + a^ with a current /j, the

two motors driving in opposite directions.

The resultant torque would then be the difference

M - SA^r -^ —2 _

In this formula we have multiplied by the factor 2 instead of 3, as the

motor we are considering has two pistons instead of three.

At starting a^ = a = a, and we have Mq = 0. It follows that

the motor is not self-starting, and will require an impulse to set it

rotating.

Put
ttj = rt — rtj = sa

then
a^ = a{i — s) -}- a -^ 2a

and if s is small, we have

flA2i

The torque is practically a maximum when

S = Cas

and we see that for this value the second term in the bracket becomes

2 s-

1+4:^ 2

which is negligible.

The maximum torque is, therefore, about

^ _ asA^ _ A2
""• ~ 2S ~ 2C

which is similar to the value found for three-phase motors, having the

factor 2 instead of 3 as multiplier of the torque

due to a single phase in the rotor.

Collector Motors. — The motors described above develop a

comixiratively small starting torque, which can only be increased by
devices involving a loss of energy. Such motors are not adapted to
cases in which a variable speed is required without loss of power. In
order, therefore, to obtain high starting torques -it is necessary to
employ a different construction.
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The characteristic feature of this type of motor is that the currents

produced by tlic pistons of the rotor are collected and suitably

distributed by a fixed member, which we shall call a collector,

or distributer. To this type of motor we shall give the general

designation collector motors. The rotor is formed of a number of

cylinders, uniformly spaced, carrying pistons and capable of rotating

about the fixed collector, or distributer. A member which we have

above termed a transmitter is interposed between the pistons of the

stator and the rotor as in the various types of asynchronous motors

above described.

One form of collector motor is shown at Fig. 44. The essential

parts are shown in full lines. The rotor R is formed by a number of

cylinders carrying pistons P uniformly distributed around a circle

;

all the cj'linders communicate with a cj'lindrical space divided by a

partition T into two equal parts ab. The partition T is concentric

with the rotor and allows the rotor to rotate heeXy, so that the

cylinders of the rotor are brought successively into communication

with the two compartments a and b. The two compartments a, b are

extended outside the rotor by two fixed outlet pipes, which we shall

also designate by the letters a, b. The stator comprises two cylinders

on the axis XX having outlets A and B. Surrounding the rotor there

is a ring E in contact with the pistons P of the rotor through suitable

sliding connections. By means of the ring E we can impress on all the

pistons of the rotor a certain displacement through a second ring D
acted on by the pistons of the stator and actuating the ring E through

a ball-bearing, or other suitable anti-friction device. The cylinders

of the rotor are assumed to be filled with liquid.

If an alternating movement is given by the stator to the ring D,
this movement will result in the production of certain currents in the

cylinders of the rotor, and these currents can be collected in the outlets

a and b of the rotor.

Before proceeding with the theoretical investigation of this type
of motor we shall show that the rotor with a number of pistons, as

illustrated, is equivalent to a rotor with two pistons of a certain
section il whose a.xes are on the line WW at right angles to the line

Z/ in the plane of the partition T, the axis WW remaining fi.xed in

space during the displacement of the ring E, while the rotor R rotates
alx>ut the centre of the fi.xed partition T, this centre coinciding with
tlie centre of the stator which is the point of intersection of the lines

XX and YY.
Let us suppose that a certain displacement has taken place in any

direction tiirougii the ring E. This displacement A will be the
resultant of a number of elementary displacements in the direction
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of the different pistons of the rotor. Let the ring E, Fig. 45, move
through a distance r in the direction WW , and let p be the angle

between the axis of any one of the pistons and the line ZZ.

The component of the movement of the piston considered in the

direction (i will be r sin (5. Let w be the section of the piston.

The displacement of liquid by this piston will bo

5 = wr sin P
The total displacement of liquid in the space a will, therefore, be

A = :^\>r sin (i

rsin/3

w
Fig. 45.

Representing by n the section of an equivalent piston which by

a movement through a distance r in the direction WW would produce

the same displacement of liquid, we should have

A = fir = s'J^wr sin /3

or

n = 2^"w sin ft

If p is the total number of pistons in the rotor we shall have for

the different angles ft which enter into this sum

/^2

27r
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Taking the sum, we get

n cot -

If the arc \ is \crv small we can take simply

P

With this value of n, if we replace all the pistons on one side of

the axis ZZ by a single piston of section O having its axis on the

line WW, the displacement in the direction WW will be the same.

1m G. 46.

It is now necessary to show that for an instantaneous rotation of

tlie rotor, with the ring E displaced through any distance r^ in the

direction ZZ, the displacement of the liquid is still the same in the

two systems.

Referring to Fig. 46 for the piston whose axis is inclined at an

angle /3 with the axis ZZ, the variation of displacement due to rotation

of the rotor will be

Sj = 0)^1 [cos p — COS {(i + ()] = cw^j sin )3

< Ix'iiig till- instantaneous angle of rotation.
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We see, then, that the total displacement of liquid in this case

will be

Aj = eS^w^i sin /?

If the equivalent piston has sectional area Q

Aj = (Qfi

so that

cfirj = €2^(0^1 sin /?

and

n ^ 5; sin /?

the same relation as obtained above.

We can now investigate certain cases of collector motors, utilising

the relations established to simplify the analysis by replacing any
system of pistons, such as that illustrated in Fig. 44, by a single

equivalent piston.

Collector Motor with Connections in Parallel.—A collector

motor of the type shown in Fig. 44 may be connected to a generator,

as illustrated as Fig. 47. For simplicity the rotor is represented by
its equivalent piston ; a, b are the fixed outlets from the collector

which communicates with the rotor, and A, B the stator connections.

The two pipes leading from the stator and collector at A and h are in

communication through a common pipe with one of the poles of a

two-phase generator G, while the other outlets B and a are connected

to the other pole of the generator. The generator may consist of a

single double-acting piston, one side of which is in communication
with A and h, while the other side is in communication with B and a.

Assume that the rings of the transmitter are restrained by parallel

guides G, as shown in dotted lines in Fig. 44, so that no displacement

can take place in the direction a — b ov b — a.

Suppose that the sectional area of the piston of the stator is equal

to the sectional area fi of the equivalent piston of the rotor. If

the current produced by the generator is i, this will divide into two
currents i-^, ?2, one flowing to the stator and the other flowing to the

rotor ; and we shall have at any instant

i = i\ -f /2

The only displacement wliich can be communicated to the trans-

mitter is a displacement in the direction AB; let this displacement

be A . Let a and a^ be the angular velocities of the generator and
rotor respectively. By reason of this rotation there will be produced
in the rotor a dynamic current

U = «i A

,
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If we neglect leakage and frictional losses, the current i^ v\ill be in

quadrature with the h>dromotive force H ; and since the current i^

is also in quadrature with the displacement Aj, it follows that Aj

and H are in phase. Since Aj is a periodic function of a and we

know that

'^= dr

we niii\- write in symbolic notation

where A is the amplitude of the displacement Aj.

V//////^A//^////// A
^— a7~^ \

Fig. 47.

\N'e then have, in symlx)lic notation

(/) - ih) + ih)

(/) = yaAi + ^lAj

and wc have for the amplitude / of the current at the generator

n = A2(ai2 + fl2)

so that
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The work done by the rotor is

Ma^ = /n'j = rti A Ji

The instantaneous torque, therefore, is

We have found above that Aj and h are in phase, so that if we denote

by A and H the ampHtudes of these two quantities, we can put

h = H sin al

Aj = A sin rt^

and we shall have
M = i/A sin2 al

The torque, therefore, is pulsating, and its mean \-alue will be

.1/ = "^-

Let C be the capacity in the circuit in wliich the current ]\ flows;

we have arithmetically

/i = aCH = rtA

so that

and
^ = CH

2C

Substituting for A its value found above, we get

P

Let Aq be the displacement in the generator; we have arithmetically

/ = aAo
so that

A2M =
2C[-(:/]

We see that the torque is a maximum when a^ = o, that is, at

starting. If we choose for the normal speed a^ = 2a, i.e., the rotor

running at double the synchronous speed, the starting torque will be

five times the normal torque.

We see, therefore, that this type of motor is very suitable for

purposes of traction and cases in which self-regulation of power is

required. We can find the hydromotive force as follows

—
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It has Ijeen found tliat

^' = «2 + fli^

Since / = flA^ we have

A = ^°

and further

/f

' '^V-©'
We see, then, tliat H is also a maximum at starting and decreases as

the speed increases. The mechanical power will be

W - Ma - ^-^^°^

wliich is a maximum for the value of a^ "^^ Nvliich the expression

is a minimum. This occurs when a-y = a, i.e., at the synchronous

speed.

If cos <^ represents the power factor, we have

HI
cos <h = W

2
^

and

cos <^

V^i'+^'
The value of this is zero at starting and approaches unity as a^

ajiproaclies infinity. It is, therefore, advantageous to run the motor
at the highest possible speed.

At the synchronous speed

cos «^ = - r^ = 071
V2

at twice the synciironous sjieed

cos = - ^ = o-8q
V5

In the above investigation we have neglected losses; there is

little difficulty in the more complete analysis taking account of
losses; it is only necessary to follow a procedure analogous to that
given above for the case of asynchronous motors without collectors.



CHAPTER VIII

THEORY OF RESONATORS

If we have a weight supported between two springs and under

the influence of a periodic force, acting along the axis of the springs,

the weight will commence to oscillate according to a certain law.

If, however, the relative dimensions of the springs and weight are

so chosen that the natural -period of vibration of the weight (left free

to oscillate after the periodic force has ceased to act) coincides with

the period of the impressed force, the system formed by the weight

and springs is called a resonator.

Theoretically such a resonator is capable of increasing the ampU-
tude of its oscillations to infinity if there is no friction. If there is

friction, however, this hmits the amplitude at a certain point. Sup-

pose now that, instead of dissipating the energy in friction, the energy

is dissipated in a number of blows, as, for instance, if the weight is

arrested in its course by an obstacle on each stroke, so that the ampli-

tude of the motion of the weight is limited. In this case a discharge

of energy will take place abruptly at each shock. It is readily seen

that the energy of the shock depends on the velocity of the weight at

the moment the blow is struck and is proportional to the mass and

the square of this velocity. It is obvious, further, that the most

powerful blow will be obtained when the resonator is so built that

the velocity of striking is a maximum.
It can be shown by mathematical analysis that if the periodic

force acting on the weight is due to a series of longitudinal waves
travelling in the pipe and acting on a piston attached to the weight,

the condition which gives the maximum blow will be that in which

the weight is in equilibrium in contact with the obstacle to be hit,

under the pressure exerted by 'the springs and the mean pressure in

the pipe hne.

Another necessary condition for the maximum blow is that the

supporting springs should be designed so that the system is a resonator

for the particular periodicity of the line. From these two conditions

the relative size of the springs of the resonator can be readily cal-

culated. If, instead of arranging the resonator for the maximum
123
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blow, we increase the amplitude of the mo\'ement of the resonator by

moving the obstacle, the energy of the blow diminishes continuously

until it vanishes completely when the amplitude is reached, at which

further increase is prevented by the internal friction of the resonator.

We shall define the amplitude of maximum blow as the amplitude

optima. If we diminish the amplitude below this value the energy

of the blow again diminishes until it obviously vanishes when the

amplitude becomes zero, as the weight is then at rest.

In industrial applications of resonators, where a tool is required

to give the maximum shock or hitting power with a minimum weight,

the above condition of amplitude optima fulfils the requirement.

There are, however, in practice, cases in which it is required to

build, say, a heavy hammer of very high lift or amplitude, but required

to deliver light blows. In this case the desired result may be obtained

by arresting the mass of the resonator nearer to the amplitude maxima
and not at the amphtude optima.

It should be observed that if a resonator discharges its energy by
successive blows, as above described, the curve representing the.velocity

or the current at the piston of the resonator is not a continuous curve,

but is discontinuous, because at the moment of shock the velocity

passes abruptly from a definite value to zero. This discontinuity of

the current may be termed the deformation of the current supplied to

the resonator.

It will be seen that the deformation is more pronounced fcr the

conditions of amplitude optima and vanishes when the amplitude
maxima is reached. In the latter case the curve of velocity of the

current is a true harmonic curve. Thus the term deformation indicates

the variation in shape of the current curve from the true harmonic
curve. We see that in order to obtain negligible deformation of the
current an amplitude in the resonator near the amplitude maxima must
be adopted.

The effect of the deformation of current by a resonator is to

introduce higher harmonics in the transmission hne. In the case in

which we ha\-e several small tools worked from a main transmission line

these deformations do not give rise to difficulty, but in the case of
heavy resonators, such as forging hammers, the deformation of the
current may give rise to trouble in the working of other tools operated
Mmultancf)usly from the same transmission line. Generally, small
tools of a iKjrtable character should be designed to give maximum
work utth a minimum of ucight, and thus work with the amplitude
"ptima. Forging hammers or like heavy instruments should be
U'signcd to give a small deformation of the current. The calculations

a:, to discharge of energy in the form of blows is applicable also to the
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cases in which the energy is discharged in any other unsynnnetrical

way; for example, in the case of a single-acting water pump. In such

cases other conditions than amplitude optima are required.

We will first investigate the case in which the energy is discharged

in blows, as a limiting case. Other cases are intermediate between this

and the other Umiting case, in which the energy is delivered uniformly,

as in an ordinary friction device.

We shall see that even in the limiting case of a hammer giving

powerful blows, we can simplify considerably the calculation of the

energ}- delivered in the case of amplitude optima by assuming that

no deformation takes place and that the current is truly harmonic,

with the hjdromotive force and current in phase. In the case of

hammers of the second type—that is, with small deformation of the

current—we can apply the symbolic analysis, and the case again

corresponds with that of the hydromotive force and current in phase.

We have seen that if a body whose coefficient of inertia is L and

capacity C be placed in a liquid column which is pulsating under a

hydromotive force h given by h^H sin {rt/+<^). and if we have

LCa"^ ^ I, the body is in resonance. If in such a case the resistance

is negligible, we have

"-4+iA'-4+cy ••••()
where CI is the section of the piston of the resonator and y is the

distance which the piston has travelled.

Put
ai = X

then we have

h = H sin {x + <^)

Differentiating (i) with regard to x we get

(2)
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Taking as the origin of time the instant at which / = o and y — o

the equation (i) gives

*«=<'Dr^4:dxJ
Differentiating (3) and substituting we get

and finally

A = Ca sin <ji

i = ^aCH( sin x sin
(f> + x sin x + <f>) . . . . (4)

and since

we get

y =
21)

(s^" a; cos <^ - ;t cos x + <^\ .... (5)

The energy stored at any instant will be

2. ^ C
mi = ^'' + ^Ifyidt

but since

fidl = ny
we get

K being a constant.

Assume that E is zero when

i = o
and

y = 0,
tlien

substituting for i and y we get

E = ^CHMx^ + sin X - 2x sin x cos x^+2<l>) ... (6)

the value of which is independent of ^ at any instant given by

X = Jirr

It follows that the energy absorbed by a resonator is proportional
to the square of the time.
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The mean energy at a given instant will be

127

E = lCamH^ = ''^-
(7) .

We see, therefore, that a resonator is a very effective accumulator of

energy.

The mechanical power at any instant is given by

dE _ HH
dt- 4L (^^

If the instant considered is at a sufficiently long period of time

from the commencement of the oscillations of the resonator the

formulae (4) and (5) may be simplified by neglecting the first terms in

the brackets; and we have approximately

i = aCHx sin {x + 4>)

CH
y = -

212
^ c°s (^ + *^)

and the energy stored is given by

^=T^^ (9)

If we write the expression for i in the form

I = / sin {x + <^)

in which / is the amplitude of i at a given instant, we have

, aCH
I = X

2

and, substituting in the expression for E, we get

PE =

Remembering that

LCa^ = I

we get finally

7/2^=2 (10)

This formula shows that the energy stored in a resonator is equal

to the maximum kinetic energy of the mass forming the resonator.

In the above analysis we have neglected the friction in the circuit.

If the resonator is employed in conjunction with a machine performing

mechanical work, or if there is friction in the circuit, the conditions

are somewhat different.
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If the coefficient of friction is R, the hydromotive force is given

by the equation

'•=" + 4 + c/"" *"'

If h is a liarmonic function of the form

h = H sin at

the equation j^ives on differentiation

jdH
,

j^di
,

i Tj .

^dt^ -^^dt^C="'' '°' ^^

Putting
X = al

and muhi plying by C, we get

LCa^fl + RCaj^ + i = CHa cos x
dx^ dx

If we have the condition of resonance

ICrt2 = I

the equation becomes

, „ + RCa . + i = CHa cos x
dx^ dx

The solution of this equation is

TJ

i = Ae-^' cos (a; + i/') + jp
sin x

subject to the condition that the quantity

R _ ^<^« _^
^ ~

2 ~2aL

is very small in comparison with unity, as is generally the case in

practical problems.

Free oscillations.—Suppose that the hvdromotive force is zero, and
we have the resonator to oscillate freely, then if / is the amplitude of

the current at time / and /„ the amplitude of the current when / = o,

we have

/, =V ="•'

(12)

We see that the amphtude decreases gradually with the time;
and the formula also shows that an infinite time elapses before the
oscillations cease, i.e., before /, = o. In actual practice this is not
the case

;
a resonator put in oscillation comes to rest after a finite

tjme, owing to the fact that the true law of friction is somewhat
.hffii.iit from that assumed in the analj'sis given above.
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Decrement.—The variation A/ of the amphtude /, during a time
period A^ = T is given by

R *

-Yd
Remembering that if n is the number of periods per second we

ha\'e

nT = I

we get

A/ ^ _ i?

/ 2nL

This quantity we shall term the decrement of the resonator. It will

be denoted by 8, so that we have

8= '\
2nL

Thus, if we measure time by the number of periods, putting

™ m
t = mT =

n

we can find the number of periods m at which a given amphtude is

reached.

If we consider that the amplitude is negligible when / falls to one

hundredth of its initial value /„, the relation
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Case of continuous oscillations with amplitude maxima.—The

mathematical investigation of resonators when friction or leakage

is taken into account may be simplified by making use of the

symbolic notation.

The symbolic form of the general equation (ii) is

H^RI+ i{La - ^Jl
If, therefore,

J
I

La — r^ =^
La

we have simply
H^RI (13)

The energy supplied to the resonator is employed, first, in starting

and gradually increasing the motion until the amplitude of the current

reaches the maximum value given by equation (13). The hydromotive

force H and current / are then in phase and the mechanical povi^er

supplied is

2 2

If tlie resonator is attached to a tool performing work at a certain

average rate, we must add to the friction R a virtual friction given by

tlie relation

R' = ^^^

P
The equation (13) will then become

H - {R + R')I = RI + ""'j-

and we get

AV2 - HI + 2W = o (14)

from which

J
_^H ± V//- - SRW

2R

From this it is evident that the limiting value obtainable for

work done is

IF =
8R

In the formula for /, of the positive and negative signs we must
take only the positive, since for IF = o we must have

H = RI

as sliown by relation (14), so that we get definitely
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We see that for the limiting value of work done the amphtude
IS reduced to half the amphtude obtained when no work is being

done.

In the case in which R is neghgible we have from (14)

^--H (16)

We have found that the energy stored in a resonator at a given

time is expressed by the relation

,, LP

Suppose that the work done takes the form of a shock at the end
of the stroke of the resonator. It is clear that at the instant of the

shock a sudden change takes place in the energy stored and the

diminution of the kinetic energy would be approximately

Aii = L/A7 (17)

Supposing this variation of energy to be small in comparison with

E, the mechanical energy to be supplied to the resonator during one

period T before the next shock must be

W^E=WT = —
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If we replace R by the equivalent friction R' due to the work done

by the resonator

^ = ji

we get
W

'^=„LP ('«'

which is identical with that found above. We shall use the word

decrement to denote the number 8 due to internal friction in the

resonator and the word deformation to denote the number \ due to

the work done by the resonator.

The deformation h^ indicates the changes produced in the current

by percussive tools, or tools acting by impulses at each period such as

forging hammers or pumps.

Application of the Theory to Hammers
Suppose we have a hammer consisting of a heavy body carried by

a piston which is supported in a mean position by springs and sub-

jected on one side to the action of a single alternating liquid column

whose period of pulsation is equal to the natural time period of

vibration of the hammer, i.e., LCa^ = i.

The springs of the condenser should be such that the mean pressure

in the liquid column is balanced. Let Hq be the mean pressure ; this

will produce a travel of the piston y^ and the equation of motion

will be

but if the mean pressure is statically balanced

so that we get

which is identical with the equation we have considered above, and
is applicable to the case we are considering, provided we take as
origin of y the position which the piston of the hammer takes up
under the action of the mean pressure.

To obtain the greatest effect from the blow of the hammer it is

necessary that at the instant the hammer starts upwards from its

{josition of rest the hxdromotive force h shall be negative in order
that the hammer may be raised by the fall of pressure below the mean.

This is the case referred to above of a hammer working with
amplitude (»ptima.
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In the general equations found above, make

= — IT

Then we get

HCax sin x = — a; sin a;

2 2

U3

Fig. 48.

y = f -^{— sin « -|- « cos x)

h = — H sin a;
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The values of y and i are plotted in the curves (Fig. 48). From

these curves it is evident that y is a maximum when x = tz and vanishes

after a time given by
tan X = X

i.e., when
^ = ,r + 77° 25' = 4-49

The value of / at this instant, which is the instant of striking the

blow, is 2-2 HCa.
The maximum \'alue of y will be

/
kHC
2il

The energy of the hammer at the

moment of striking is got by putting

and

T + 77 25

cl>^

in the expression for E, and we get

E = 2-^Cm

If the two springs of the resonator

have capacities Q, Cj, and are arranged

as in Fig. 49, we have

C ^ C

On the other hand, the spring Q
should be compressed by a distance /
under a pressure Hq. In practice Hq is

very close to H and we may write

7/12

from which

IlG. .J9-

Hill we iiave found above

I _ H
C\ ~ fn

so that wj- ^i-\

nf •hc

2 . I^

TT (T
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If Bi, B2, are the volumes of metal in the springs

fijCi = B^Co = BC
so that
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We have given the quantities

E = energy of each blow in kilogram-centimetres.

H = h\ dromotive force in the wave transmission line in

kg./cm.2

a = the pulsation of the wave in radians per sec.

P = the weight of the hammer in kilograms.

D,, Di = the diameters of the front and back springs respective!}'.

Fr<jm the relation

we calculate the capacity

^ 24//2

Then from the resonance condition

LCa^ = I

we get

fi = — JPC

The stroke is then obtained from the relation '

tt/ZC

^ 20

The maximum force on the springs will be

Fi = fin

F^ = o-S7Hn

and the volumes of the springs will be

B, = aFJ
B^ = aFa/

The diameters of the wire of the two springs are readily calculated

from the formulae in Chapter III.

d, = li-^F.J).,

Thus all the elements of the hammer are found.

Note.—Consider the hammer as a receiver whose power factor is

unity (i.e.. the pressure and current in phase) and that the current

taken is of sinusoidal form having a maximum value / = rail. The
HI

iwwer taken in this case will be ^ and the work done during a single

oscillation will Ik.'

;. ///. HI
2n a
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Hut we have found above

so that we have

or approximately

4-8,

.= /

We may, therefore, draw the foUowing conchision : The maximum
useful effect of a hammer having a given stroke may be calculated

H T
simply by the formula W ^

; H and / being the maximum hydro-

motive force and the maximum current given by the equation / = raQ
as though the current were of simple sine form and in phase with H.
This maximum effect is only obtainable if the hammer is constructed

so that with its condenser it is in resonance with the impressed h\-dro-

motive force, and is in equihbrium at the point of its stroke at which
the blow is struck, under the action of the springs of the condenser and
the mean pressure in the line supposed to act statically.

On the other hand, these conditions of a hammer working with

amplitude optima at the same time produce the greatest deformation

in the current, and such hammers should be of comparativeh- small

dimensions so that they absorb a relativeh- small current from the

main transmission line.

In cases in which a small deformation is required the formulae

given for the case of ampUtude maxima can be applied. For
example, to calculate a forging hammer, which generally requires a

fairly high lift of a weight and a relatively small quantity of energy

per second, we proceed as follows : In order to get considerable

movement it is advisable to make use of a resonator consisting of

the mass of the hammer of considerable inertia and two supporting

springs or capacities. Instead of attempting to get the greatest effect

from the blow, we impose the condition that the deformation of the

current feeding the hammer is to have a given small value. Assume
that the deformation 81 and the mechanical power W to be absorbed

are given ; and the hxdromotive force H, frequency n and stroke /
are known ; we can determine the dimensions of the hammer.

We have the formulae

r _2W
^ ~ H

8 - ^
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Thus we get

But

and

L = -^—
4nS,W

2 IF
*" ~ nHnf

Tlius the weight of the hammer and the section of the piston are

determined.



CHAPTER IX

HIGH-FREQUENXY CURRENTS

Consideration of transmission lines of variable section.—
Taking the equations established m Chapter \' relating to pipes of

variable section

d{H)

in which

and

T = /''(C)(H)|

(i) = i-;f

(C) = c-,|

We have found {see p. 15) for R when / = i cm.

R = ky-

We have also

SO that when
/ = I

we have

^ '' gwL 'n

Similarly we can write

S = k^C
with

C - -
^ - E

and

<^) = i['-4-]

(I)

k and ^, are constants whose values depend, the lormer on the vis

cosily and the latter on the hysteresis or plasticity of the fluid.

139
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We may define the viscosity of any particular form of matter by

the coefiftcient R or k, so that the energy lost owing to internal forces

is of the form

2 2

that is, a loss of kinetic energy.

H\steresis may be defined by the coefficient S or k^, so that the

resulting loss of energy is

that is, a loss of potential energy.

It is to be noticed that k and ki are simple numerical coefficients

representing the proportion of energy, kinetic or potential, which is

transformed into heat or other form of energy and so disappears from

the wa\-e considered. These are two constants which, with the mass

and the coefficient of elasticity, completely define any type of matter.

A species of matter is perfectly elastic when S or ki are zero and

perfectly fluid if R and k are zero.

For ordinary materials none of the constants L, C, R, S are of zero

value ; and the great variety of different materials found in nature is

due to the differing values of these quantities in different materials.

It should be observed that the constants are not absolutely inde-

pendent of the values of H and /. For example, in the case of a gas

the capacity C diminishes with the pressure, while the coefficient of

inertia increases. In liquids also variations occur; viscosity varies

with temperature as well as with the current. The plasticity or

hysteresis should also vary with these conditions.

The property which is of great importance is, however, that these

values may be considered as functions of the mean values of H and /, or

of the temj^erature, and that we can treat them as constants over the

cycle of \-ibratory movement provided the frequency is sufficiently

high and the amplitude of the variations of H and / and the tempera-
ture very small in comparison with their absolute values.

We may, therefore, include soUds among the different kinds of

matter which we are studying, and the same equations are applicable.

Thus, a metallic rod or a wire under high tension and subjected to

longitudinal vibrations may be compared with a liquid column in

longitudinal vibration, the same equations being applicable to the
two cases. We shall thus have to consider the variation of tension or
compression per unit of surface in the rod supposed uniform over the
transverse section

; it corresponds to H and is measured in kg./cm.^
We have also to consider the current in the rod—that is to say, the
speed of any particle multiplied by the transverse sectional area.
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From experiments we know that no metal is perfectl}' elastic, and
if we submit a rod of metal to tension, and then relie\e the tension,

the rod does not return to exactly the same length as before. This

property corresponds with the phenomenon of leakage, plasticity or

hysteresis, and the loss of current due to it is represented by SH as in

a column of liquid.

We shall, therefore, give a more general meaning to the definitions

;

friction, represented by the constant R, will include any retarding force

in phase with the current due to movements in the body ; and hysteresis,

represented by the constant S, will include all loss of movement in

phase with the pressure and due to the pressure.

The most general case of practical transmission of energy by
longitudinal waves will be that in which the energy has to travel along

a column of variable section. Let us study this case more closely.

We ha\'e found above

(c) - 1^ - /*;)

from which we get

" gEV ^ a^ ' a )

We see, then, that the product {C){L) is independent of the sectional

area of the transmission line.

We have found {see p. 73) the general equation

and an analogous equation for (/)

^^2 ^ « [^)['')[n (q ^^ ^^

Taking into account the values of (L) and (C), we get



142 WAVE TRANSMISSION OF PO\^'ER

These equations are general and are identical with the equation^

(23) and (24) {see p. 73), with the difference only that the value

(/x,) = aV(Cm
is symV)()lir and is equal to

aVCLyJ
kL .k + k.

I + 2 —
1

a} 'a
Since

we have then

(/^i) == /^y

= aVCL

kki .k + k.

a^ 'a
kk

For high frequency the term 2^ becomes very small and we can

take simply

This expression can be further simplified still, on the hypothesis that

the frecjuency is high, by taking

(-'*-^*)

Let us now consider a pipe of conical form ; in this case the section

ui can be expressed by the relation

(D = qx^

where x is llit- ilistance of the section from the vertex of the cone, b

being a numerical constant. This relation gives

\ dui _ 2

0} dx ~ X

and the general c( [nations become

It should be noted that in these equations the constant q does

not apiKjar. It follows from this that if a number of conical pipes

are supplied from the same source, they can be superposed and their

walls suppressed; the results will be the same. We can then con-

sider a vibratory " ray " formed by any virtual conical pipe having
the angle of the cone as small as desired, and to investigate the
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phenomena in any conical pipe we liave only to ackl the results obtained
from the consideration of all the rays making uj) the cone.

Let us consider, then, what takes place in such a ray, and put

a = ,XiX

Substituting in the equations (i), we get

da^ a da ^

d%I) 2 d{I) ,-.

da- a da ' ^ '

(2)

(3)

The general solution of these equations is

{H) = ^^{A cos a +Bsino)]

(/) = -li Cora + Bj^ Sir a J

in which
Cor a = cos a + a sin a

and
Sir a = sin a — a cos a

The functions Cor a and Sir a have interesting properties, some of

which are

Sir- a + Cor^ a = i + a-

sin a Cor a — cos a Sir a = a

cos a Cor a -f sin a Sir a = I

Also between two variables a and /?

sin a Cor /3 + cos a Sir /? = sin (a + /8) — /8 cos (a + p)

cos o Cor /? — sin a Sir ;8 = cos (a -f /8) + /8 sin (a + ^8)

Cor a Cor /3 - Sir a Sir ^ = Cor (a + /?) - a/3 cos (a + /3)

Sir a Cor ^ + Cor a Sir y8 = Sir (a + /3) - o/3 sin (a + (3)

Another series of properties of these functions is

Sir (— a) = — Sir a

Cor (
— a) = + Cor a

. (Sir a) = a sin a
da

J
(Cor a) == a cos a

da

2
(^'r ") = Sir a -f 2a cos a

„ (Cor tt) = Cor a -f 2a sin a
da^
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The quantities a or /3 may be real numerical values or complex

quantities.

Substituting <i -= /^j.r m the equations (i), we get

We thus have to consider the complex quantity JU-l which we will

write {*}/) ; we shall then have, replaciaig (C) and (L) by their values

found above,

But we have found {see p. 49) that

so that

k k
Expanding the radical in powers of ^ and - we get in the case of high

frequency in which these fractions are very small

Tlie value

will U' t,'i\('n by
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Considering these equations with the equations (4), we have

\{A Cora +5 Sir a) ^ - i}^}]

«(.-li cos a + Bi sin a) --= /(</')(//))

Let us represent by/3 the value of the angle a at the point at which

the receiver is situated, the source or generator being at a point

defined by the quantity a ; we shall have for the point /3

..lCor/3+BSn-/3=.-/^3W^\ .... (6)

A cos /8 f B sin p = /3{H) I

The first of these equations is deduced from the equations (5) and the

second from the equations (3).

From equations (6) we get directly

A =
(^)'^^^+^'^(S)""^]]

{I)B = {H) Cor /3 + jft^>^ cos /3

(7)

(i/z/a) represents the value of (i/') at the point (3, {if/) being a quantity

variable with x and also variable with ^.

For the point /? we may also write the equations

.-li cos /? + jBi sin (3 = j

Ai Cor (3 + BiSir 13 = (/)

From these equations we get

,(<A^)(^)

A. ^
^^J

sn. Sir

B^ (^)cos/3+/^^f)o>r/3

(8)

(9)

Substituting in the equations (3) the values of .1, B, A^, Bi given by

the equations (7) and (9), we have, finally

(H.)

(/a)

(a) I

(sin («) - {(3) + {/3) cos (a)-(^)J

+^lfi:l-(")-(/^)

11}^
COS(a) - ()8) _ sin {a[ - {/3)

. . (10)

+ ;

Mp){H,)

{^)

h)\.S\V {a) - 03) + {a){(3) sin {a) - {/3)
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The indices a and /3 applied to the different values of {I){H) and (i/^)

indicate the values of these quantities at the points defined by the

angles a and ft respectively. The formula (10) give the complete

solution of the problem.

If we take friction and hysteresis to be zero, we can replace {H),

(/) and (ip) in these formulae by H, I and i/^ respectively. If this is

not the case all the quantities a, (3 and ip are complex and it is necessary

to separate the terms containing / to arrive at explicit formulae.

We have found above that a is of the form

/ .k + k^\
(a) = ^^x ^ixxi^l - 1-~~^)

Let us represent by a and ft without brackets the numerical values of

these quantities (their moduli neglecting the square of the quantity

k + k
^ compared with unity). To simplify the proof let us study the

particular case in which the receiver and generator are at a consider-

able distance from the vertex of the cone, so that we can retain only

terms containing a and ft multiplying the circular functions.

The formulae (lo) are simplified and become

H. =
f
[(if,) cos (a) - {ft) +

/{;^;^^
sin {a)^{ft)]

^

\\{I,) cos (a) - {ft) + m^)M Sin (a) - (i8)]

But we know that if we have the complex angle

(a) = ai + /a2

we liave the relations

sin (a) = sin aj cosh oj — / cos a^ sinh a^

cos (a) = cos tti cosh ttj + / sin a^ sinh a^

the sinh and cosh being the well-known hyperbolic functions. If the

points a, ft are such that the distance between them is an integral

number of wave lengths, and if we put

.k + k^^

2a
and if we iiave also

a — ft
= 2niTr

we get

sin (a) -{ft) = - j sinh (a - ft)^-±^'

[II)

^--^1

(a) - {/3) -= {^^ -ft){l- r

2a

cos (a) - {ft)
= cosh (a - ft)^~^'
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Using these relations, the formulae (11) become

(12)

(//„) =
f f

(//,) cosh (. - ^)'
i;^^

+ 1^;) s.nh (., - ,)'- +/.
I

{Q = "^[ih) cosh (a - /3)^' + ^^ + (//,)(^,) sinh (u - /3)^' + ^'^

It is to be noticed that we can replace (ij/p) by i//, the term
containing 7 in the expression for (t//^) being negligible.

Representing the number of wave lengths between the receiver

and the generator by m and the frequency by ;/, we have in the case

in which Hp and I^ are in phase

H. = f[H, cosh, +^^^ sinh
yjj

la = q\Ip cosh y + ij/pHp sin y J

(13)

in which

Noticing that wX = I = the distance between the receiver and the

generator, and, moreover, that

nX = V ^ the \-elocity of sound
we ha\e

y = |(^ + ^i)

Comparing the formulae (13) with the formulae (7, 8) (p. 79) for

cylindrical pipes, we see that they only differ by the factors '^ and "

.

a fi

Infinitely long pipes.—If, in the preceding formulae, we put Hp =
and / = 8, the equations become indeterminate. We will treat this

case in a different manner.

Let us suppose that the distance / between the generator and the

receiver is so great that we can put

cosh y = sinh y = —^

we have

fa = ^^ey[lp + 4^pHp
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From these two equation>^ we get

*.f-(f; '^'

Let us represent by F„ the amphtude of the velocity at the point a,

and by oi„ and tu^ the sectional areas of the pipe at the same two points.

We shall have

ij/p - o,p^^

and

Substituting in (14), we get

/fa _-„ ((dy lyl

(lip

But, on the other hand, we have

(i)a _ a-

\Ve get then the important relation

V.= lyE (15)

V'

This relation shows that the amplitude of the velocity is simply

proportional to the h\dromotive force when the alternating wave

travels to infinity without interference of reflection towards the source.

This equation also allows us to calculate the maximum energy wliich

can be emitted by a vibrating surface. Leaving on one side the

indices a, let H, I be the h>dromotive force and current at a point

in the path of a conical vibratory ray. Let w be the area of the

vibrating surface supposed placed at a considerable distance from

the vertex of the cone.

The energy per second emitted by this surface towards infinity

will \)e

HI HV

Hut we have found that

We therefore get

which is a finite quantity.

W
2 2

H_

^.

.-V'
W = ^H\lyE
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Example I

It is required to find the maximum vibratory energy which can be emitted

by a vibrating surface of one i sq. cm. area immersed in water, the mean
pressure of the water being i kg. per square centimetre.

We have for water

g 7

.\s the pressure in the water must not become negative, we have for the ma.ximuni

value of // which is possible

H = I kg./cm.2

so that

IF = 3-5 kg./cm.

It follows that a vibrating surface of i sq. metre area cannot transmit in

water more energy than is given by

\V = 3-5 X lo-" kg./cm. = 4-6 hp.

This result is independent of the frequency if this is sufficiently high.

Example II

In the preceding e.xample find the amplitude r of the displacement of the

vibrating surface when transmitting the maximum possible vibratory energy,

the frequency being n = 100 per second.

We have
I' = ra — 2-tTrn

But

H
fyE

x/?

Hi 7
r = —7^=^ = ' = o-oii cm.

2irM /yE 2ir X lOO

^ g-

With a frequency of 1000 per second the amplitude will be about one hundredth

of a millimetre. We see, therefore, that it is useless to produce large displace-

ments of surfaces vibrating under water to obtain strong radiation of energy.

To produce under water sound waves of great energy, a large radiating surface

and not a large amplitude is required. In air the phenomenon is analogous with

the difference that the amplitude admissible to obtain the maximum radiated

energy from a given vibrating surface in air is much greater than in water.

\i we consider the motion quite close to the source of a conical

ray, we see from the formulae established above that certain peculiarities

appear. We have discussed above the case of infinite pipes where /3

becomes infinite ; the complete discussion of the equation (10) would

show what takes place if the point /3 is quite close to the source, but

this discussion would occupy too much space and is beyond the ambit

of this work.
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Conical pipes of infinite length zvith the generator near the apex.—Going

back to the equations {3)

(H) - ^(.4 cos a + B sin a)]
(16)

{/) = Ai Cora + B^ Sir a j

In tlie case of an infinitely long pipe we can determine the constants

A, B. A^, B^ from the consideration that, when

a = oc

{H)=o

.r I

we have

and the velocity

which is equivalent to the relation

(17)

We are justified in assuming these conditions because, owing to the

dissipation of energy- along the length of the pipe, there will be no

variation of pressure and no mo\ement of liquid at the point a == oc.

Substituting in (i) the exponential values for cos a and sin a, i. e.

e''^ -j- e~'°

and

sin a —

the equations become

(//) = ^(Oei- + Ee-i

— el"

2/
-1

ei"

- -M ul^" + ei") f j{e'"- — ei")

(18)

whcTe 1) anil E are arbitrary constants.

In the equations (iH), putting a - ex and remembering the relation

(17). we get

/; ^ o

The expression for (/), when a i^ infinite, becomes
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In order that the concUtion (17) may be satisfied when a = oo we
must have

[12L.=a4«-')-«.(-:)]=o

or, since — becomes infinite when a is infinite, we must have
a

- jAi - fij - o
or

A, = jB,

We see, then, that in the case of an infinite conical pipe the

expressions for {H) and (/) become

{H) = -Ee-!"^ = ~E (cos a — / sin a)|

[
. • • (19)

(/) = Bi (Sir a + / Cor a) -'

The constants E, B^, will be determined by the values of (//) and

(/) at the generator; denoting by {Hq), [Iq), a^ the values of the

corresponding quantities at the generator we have for a point defined

by the quantity u

£ = (^1" ^ . (^o)«0 \

cos a — 7 sin a cos a„ — / sin a^ ... (20

B ^ (^) ^ (^0)

^ Sir a + / Cor a Sir a^ + / Cor aj

An interesting relation may be obtained by differentiating the

equations (19), namely

^^ - - U.^or a - / Sir a) = /f/sir a + i Cor a) =
;^, ^^j

But we have found at p. 144 the formula

da ^^^'\I{C)

so that we get

F,^" Vro

so that from the equations (20) we get

{H) _ /(L) cos g — / sin u

(jy
~ ''V(Q Sir a + /Cor a
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For high frequencies we can replace (Z.) and (C) by L and C, and

we get simply

[H) _ /I cos a -/shVa .

(7)
~ "Vc-Sira + /Cora • • • •

^^i;

and for arithmetical values

//^[(Sir a)2 + (Cor «)2] ^Ia^^= HV{i + a^)

It should be noticed that the product "A/p^ is independent of the

position of the point a along the length of the pipe, and we can then

write

/ = ^H^"^ (22)

We see, therefore, that a very simple relation connects I and H.

This relation is important and allows us to calculate the maximum
energy wliich can be radiated from a source in a conical pipe.

The relation between the vectors {H) and (/) found above at (21)

may be written

(7) — 77(Sir a + / Cor a) (cos a + / sin a)

= 77 Sir a cos a — Cor a sin a + /(Cor a cos a + Sir a sin a)

If
<t)

IS the phase angle between !„ and 77^, we see that

tan = -

I hf mechanical p)wer developed at the source will then be

W = ^^
cos

<f>
= "^77-''

2 ^2
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The following table shows the power factors for different values of u.



CHAPTER X

CHARGED LINES

In the previous chapters we have dealt with alternating fluid

currents in pij^tes of constant or variable section without interrup-

tions or discontinuities. In the present chapter we shall consider

special types of transmission line which are not continuous but are

made up of a series of lines interrupted at intervals by condensers,

inertias, or leakage devices inserted at intervals. These condensers,

inertias, and leakages will be regarded not, as heretofore, as single

pieces of apparatus, but as forming part of a single system which

consists of a pipe line with these devices inserted at regular intervals

according to a definite law.

Before jiroceeding with the mathematical analysis we may state

that by certain distribution of these pieces of apparatus along a trans-

mission line, we can obtain a composite transmission line along which

waves of a certain frequency will travel without interruption in a

similar manner to that in which waves travel along a continuous

line in which the capacity, inertia, friction and leakage are uniformly

distributed, despite the fact that the line is built up of discontinuous

collected capacities, inertias, friction and leakage devices.

It is not self-evident that such will be the case, and at first sight

this may seem improbable ; the object of the following analysis is

to show that if such apparatus, which may be referred to generally

as " discontinuities," be inserted in a line, there is a certain arrange-

ment or distribution of these discontinuities for which their intro-

duction in the line produces the same effect as capacity, inertia, friction

and leakage uniformly distributed. In other words, a transmission

line having a certain distribution of discontinuities is equivalent to a

continuous line having a certain capacity, inertia, friction and leakage

per unit length uniformly distributed.

This is a fact of importance and leads to very important practical

consequences. It provides a method of building up transmission

lines in which the coefficients C, L, A' and .S" per unit length may have

any value ivhich we desire to give them.

154
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Far-reaching consequences of this are that we can increase or

decrease the velocity of the waves, vary the power lost in friction,

obtain any desired wavfe length for a given frequency and fluid used,

and generally vary the constants of a transmission line.

It has hitherto been assumed that the velocity of the waves travel-

ling along the liquid in a pipe cannot exceed the velocity of sound in

the liquid; we can, however, cause waves of a given frequency to

travel at any velocity by a suitable distribution of discontinuities in

the line.

To demonstrate this we shall consider a discontinuity inserted

1)1 series in the pipe as an inertia and represent it by (Lj). Thus, if

we have an inertia L^, a condenser of capacity C\, a friction R^, and

a leakage 5^ in series, the drop of hvdromotive force through the

discontinuity would be {see p. 31)

—

putting

we get, simply

{H)=!{L,)aI (I)

In the same way, if at the discontinuitx- we lia\e capacity, inertia,

friction and leakage /// parallel tlie drop of current will W

{I)=i{C,)aH (2)

denoting by (Cg) a symbolic capacity embodying all the discontinuities

present at the point considered. The statements made at p. 33
relative to the interpretation of the symbolic forms of inertia are

analogous to the above.

If we adopt the convention that the letters H , /.,, /, i\, in the

formulae (i) and (2) all represent symbolic values, bearing in mind

what has been said above, we may dispense with the brackets and

write simplv
H = jL^al

and thus come to the conclusion that if we prove our proposition to

he tnie for ordinary inertias in series or capacities in parallel, we may
take it to be true for another form of discontinuity.

Suppose we have a line built up as shown in Fig. 50, having inertias

Lj in series and capacities C^ in parallel.
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We can write the following equations connecting three consecutive

elements

—

H,.. - 1 - H,„ = jL,aI,„ \

Subtracting, we get

//„,„, -2//,,, + H,„ + i
= 7Xia(/,„-/„, + i) ... (4)

But we have also

/,«-/„,+ !
= Afl//„,

Substituting in {4), we get

H,„ _ 1
- 2H,„ + H,„ + 1 = - L^C^am,,,

Putting

ay/L^C^ = 2 sin
^

we get sinipl}'

H.,. _ I
- 2H„, cos e + //,„ + 1 = (5)

u '• u '• < (
'^' H

'*'

'. I ^-^-^—\ I—f—3r^^— H,

C C C

Fig. 50.

The e{|uati()n (5) is satisfied it we put

//„, = A cos p — mO -\- B sin p -^~m 6 ... {6)

A and B being two arbitrary constants which can be determined as

follows

—

If we put m = and m — p successively in equation (6) we get

H, = .1 cos pe -^ B sin pB]
and ...... (7)

H, =-. A
I

On ihe other hand, we can write successively

H„. _ 1 = A cosp — m + I 6 -'r B sin p — m -\- i6\

H„ = A cos p — m e -\- B sin p — m '

Fn»Mi wiiich we get

//,, , //„, -- .-1 [cos p ~ m + 1$ — cos p — me] +
B [sin p — m -\- 1 6 — sin f— m 6]

In this ecpiation, if we put m = ^ we get

H, ^~ H, = A (cos 6 - 1) -{- Bsine . . . (8)
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But from the equations (3), jnitting ;n — p, we get

Substituting in (8), we get

.l(cos 6 — 1) -\- B sin 6 == jL^al^

from which

Introducing these values of .-1 and B in equations (7), we get

H^ = H,(cos pe t sin pe tan
^) + //, ^^^'^ sin /.f?

Remembering that

2 sin = n's/L^C^,

this equation becomes

„ „ cos p—\6 . .J
jL^sinpe ,.

cos - "^ cos
2 2

This equation gives us the relations which connect H„, H^, If. ; that is,

the hydromotive force at the ends of the line and the current at one

end, name!}', the receiver end.

A similar equation can be obtained giving the relations between

/„, If., and Hf by a similar analysis starting from the equivalent

equations

/,„ - /„, ^ J
= jC^aH„.

from wliicli we get

/,„ _ , - 2l,„ + I„. ^ 1 = jC^a{H.,. ^ ,
- H„.)

but

//.„_x- H„. = jLaI„.

and we get

/„, 1
— 2/„, cos 6 + /,„ + 1=0

which is analogous to equation (5), the only difference being that / is

substituted for H, so that we get

/. = //-^-iV,7/,Vir^*
cos

2

Suppose now we consider an imaginary line which we shall call

the equivalent uniform line having a length / and uniformly distributed
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inertia U per unit length and also uniformly distributed capacity,

friction and leakage C" , R' and S" respectively per unit length. If

we assume this line to have the same length as the discontinuous line

above considered, and if we assume the discontinuities in the dis-

continuous line to be uniformly distributed, the equivalent line would

have as inertia and capacity, friction and leakage per unit length

«-^'
pc,

I

ps,

I

(10)

C" = "^ A S'

But we have found {see p. 47) that in a uniform line we have

H^ = Hf cos fxl + jl^J^„ sin fil

and
/Lt = ay/L'C"

Substituting for L' , C" from (10), we get

//„ = H, cos
i.1 + //,^^i sin (II)

and

'
yj Lj_C.2 = 2S sm -P

'X sn
/ 2

In order that the equations (9), (10) and (11) may express the

same relations we must have

cos fxl =_cos p — \6

cos
e

)s (2/) sin
^)

fxl = -^^^ =sm (2psm-J

which may be written

cos 2P
-

sin p6
6

cos

= COS {2p sm -j

,(2/>sin|)

(12)

being an angle less than 27r, the relation (12) cannot be rigorously
satisfied unless
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But it should be noted that if 6 is so small that we can put

and

the conditions (12) reduce to

. e 6
sin - = -

COS =1
2

cos 2/> = cos pO

sin p$ = sin pO

The second of these equations is an identity ; the first reduces to

COS pd cos - + sin p6 sin - = cos pd

which, if ^ is a very small angle, reduces to

Bsmpe^o (13)

or simply to

sin pO =

If the friction and leakage in the discontinuities are negligible, this

reduces to

p
We ha\e found above

W = 2/> sm
^

If ^ is a very small angle this reduces to

lj.l = pe (14)

At p. 47 we have found
2ir

^= \

\ being the wave length of the equivalent uniform line; substituting

in (13), we get

2J =pe= ±kir
A

or

t = ±*
and

i" pk
and finally

—
2̂
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It follows, therefore, that the condition necessary in order that

a discontinuous line in which friction and leakage are negligible may

be equivalent to a uniform line in which inertia and capacity are

uniformly distributed is that the angle . should be so small that we

may take for the value of its sine the angle itself, and that the

length of the line shall be an exact multiple of half wave lengths of the

equivalent uniform line.

If s 1)0 tlie number of discontinuities in one wave length, we have

ks = 2p

s

6= ^^"^

2 S

The conditions for equivalence, therefore, reduce to the following

practical rule :

—

If we imagine a circle divided into a number of parts equal to the

number of discontinuities in one wave length of the equivalent line

obtained, then for equivalence the ratio of the arc to the chord of a sub-

division must be approximately equal to unity, and the length of the

line must l)e an exact number of half wave lengths of the equivalent

uniform line.

As an example, suppose we have to calculate a charged line in

which inertias in parallel and condensers in series are introduced as

discontinuities in such a way that in the charged line C = o and L = o.

Referring to the formulae (3), {4), p. 46, we get

H^ = H cos fxl + ;//J
^^

sin /x/

/„ = I cos /x/ + JHJj-, sin /xl

(15)

md we have for this case

Thus we get

and finally

a = o

/? = Vrs

cos fd = COS {— jp) = cosh yS

sin III = sin (— //3) = — / sinh /8

//„ = // cosh ^/ -f /^l sinh iS/j

/ =/cosh^/ + //^^^sinh/3/|

(16)
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The mechanical power supplied to the generator would be

The efficiency of the transmission would be

_ HI ^ I

The maximum efficiency is obtained when

":'-'-^ us,

i.e., when the power losses are equally divided between friction and
leakage.

In this case the maximum efficiency would be

the value of /3 being equal to

iS = Vrs
We see from this that if we can keep the leakage and friction small

the efficiency can be kept as high as we like.

In order to calculate a charged line made up of an ordinary uniform

line in which suitable discontinuities have been inserted

—

Let L, C, R, and 5 represent the resultant uniform characteristics

of the charged line
;

Li, Cj, Ri, and Sj the concentrated discontinuities in series in

the line

;

Lj, Cj, i?2> ^"<^ -^2 the concentrated discontinuities in parallel on

the line

;

and U , C , R' , and S' the uniform characteristics of the original

continuous line not charged with discontinuities;

we have from the above the following relations

—

s = s' + f{s, + l^
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We can calculate the charged line exactly as if it were a simple

uniform hne having characteristics L, R, C, S, provided the law of

distribution given above at p. i6o is followed.

It follows that if it is desired to obtain a charged line in which

the wave velocity is infinite we must have either L or C zero. In the

example given above we have taken a case in which

L = o and C = o

this would be obtained if

and

C
iilla--^')2

that is, we must introduce as discontinuities condensers in series

having capacity C^ and inertia L^; and inertias in parallel having

inertia L^ and capacity Cj.

We can take Cg = o and allow for L^ only the unavoidable inertia

of the oscillating parts of the condensers.

If we neglect L^ by building the condensers in series with very

light oscillating parts we have simply

These equations determine the value of the capacity and inertias

required for the discontinuities.

Examples

Problem I.—It is proposed to transmit 2000 hp. through a two-phase

water wave transmission line to a distance of 10 kilometres with an efficiency

of 90 per cent. Find the hydromotive force to be employed and the section

of the pipes required with ordinary non-charged lines.

The line is made up of two parallel pipes each transmitting 1000 hp.

At p. 80 we have found that the maximum efficiency in a transmission line

is given by the relation

r,-e-^^' (I)

In the case we are considering

/ — loooooo cm. and tj = 0-9

We get from (i)

23/ = log i-ii = 0-104

We have found at p. 79 for water

287000
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so that \vc have

k = 0-015

Let o) be the section of one of the pipes transmitting looo hp. ; the work
at the generator end \vould be

W ^ ^'
2

and since for maximum efficiency

/ = H sj'l - ^H

we get

IF = ^^ =
;f
__ = 3-50,//*

If d, is the internal diameter of the pipe we have further

^y = yb"{iidY- (2)
4

Let v^ be the effective velocity in the pipe, and I' the amplitude of the velocity,

we have

7 = wF = .;/// = 70.//

from which
F = 7//

V, = -/- = 4-95H
V2

Substituting in equation (2), we get

IF = 1000 X 76 X 100 = oii2(r^rf)*

and
vd - 8250 (3)

We have previously found at p. 15

-o/. = H^ + -
9 N

d^ Vv^dl

giving h and vd their values found above, we get

!l=i-36 (4)

d

From (3) and (4) we get
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Problem II. —The same power is to be transmitted over the same distance

as in Problem I with the same efficiency; but instead of an ordinary line, a

charged line having inertias in parallel distributed at adequate intervals is to

be employed.

This problem can be solved by successive trials as follows

—

We have for the work in one pipe

W = "
- = 0/"^ = looo X 76 X 100 kg./cm.

2 2

Taking an arbitrary value for H say,

H = 500 kg./cm.*

we get

Then we have
/ = (|,H = 61 X 500 = 3050 cm.*/sec.

Suppose we select a pipe having an internal diameter d = 10 cm., then

a, = '"(^2 = 785 cm.«
4

The amplitude of the current would be

V = ~ = 390 cm./sec.
w

and the effective velocity

V = -^ =276 cm. /sec.
' \'2

The coefficient of friction R would be [see p. 15)

and [see pp. 77 and 80)
2)8/ = lil^ = 0-256

The efficiency in this case would be

— 0-256
0775

We see that the efficiency is too low; we must therefore use a larger size of

pipe or choose a higher hydromotive force.

Suppose we take a pipe having an internal diameter of 12 cm.
We get

w —- ''iz^ — 113 cm.*
4

V -= ~ — 270 cm./sec.
(Ml

V ^ -7_ = 191 cm./sec.
V2.

2/3/ = i?/i|* = 0-104

and the efficiency would be

r,=e- o'<M = 0-9

We see, therefore, that the diameter of 12 cm. is correct. Knowing the dia-
meter of the pipe and the value of

\f«,
we can calculate the capacity necessary in

the pipe to get the required efficiency.
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This gives

but (from p. 23)
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C = 6i»L = 3721L

so that
gu 981 X 113 i-i X 10*

c = 3721 ^ ^i
981 X 113 30000

The uniform capacity of unit length of the Hne is

Q' ^ J^_ "3 i_
E 20000 ~

177

E being the coefficient of elasticity of water.

The inertias L, required to be inserted in parallel (sec p. 162) would be given
by the relation

^=<^--»4 •''

In order to determine p wc must find the wave length of the charged line.

The velocity of the waves would be

V = --r==^ — 1820000 cm. /sec.

Suppose we choose a frequency of n = 10 cycles per second;
the wave length would be

1820000 o\ = — 182000 cm.
10

and the number of wave lengths in the total length of the charged line would be

182000

The current across the inertia would be

and we have numerically (see formula (5) above)

I, = H{C' - C)^

Suppose wc put in the whole 10 kilometres of line 200 inertias distributed at

intervals of 50 metres; then we have p = 200 and putting the numerical values

in the formula (6) we get

/„ = 50o( -^ ^ V° = 14000 cm.»/scc.
\I77 30000/200

In order to find the weight and displacement An of the inertia, wc liavc

Jo = flAa

where
a = 2-itn = 628

Thus we get
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Suppose we choose for the stroke zy of the inertia piston

2r =^ lo cm.

we get for the section of this piston

n

A piston of 7*5 cm. diameter would be about right.

The weight P of the inertia would be given by the known relation

and from formula (6) we know that

I ^JL= 500 ^ P^_
* a^/o 62-8* X 14000 981 X 44-6*

so that
P = 17-7 kg.

As we have two lines differing in phase by 180° and the inertia is across

the two lines, the weight of the piston necessary to charge both lines would be

2 X 17-7 = 35'4kg.

We have thus determined all the elements necessary for the con-

struction of the charged line. The above calculation is a simple

case given merely as an example of the general method of determining

long-distance high-pressure lines. For practical cases the analysis

should be more complete, taking into account the losses in the inertias.

These can be ascertained by considering the charging inertia across

the two lines in series with a friction, including in this friction the

losses due to friction of the piston and the drop of kinetic energy due

to the sudden change of section of the branches to the main lines,

which would necessarily be at right angles. The loss due to leakage

past the pistons should also be taken into consideration. The com-

plete analysis is somewhat longer, but presents no special difficulty.

It follows from the examples given above that in long lines we

must employ high h\dromotive forces in order to be able to use reason-

able sizes of pipes. On the other hand, difficulties arise in the direct

employment of these high hydromotive forces in the distribution of

energy for practical purposes ; and we are therefore compelled to use

special apparatus designed to reduce the hydromotive force to practi-

cable values in order to avoid excessive pressures in the distribution

of power at the points at which it is to be utilised. Such instruments

we shall call transformers ; they consist broadly of differential pistons

;

the high pressure main transmission line is connected to a cylinder in

which the liquid acts on a small piston which in turn actuates a larger

piston working in a low-pressure cylinder. In this arrangement we

get at the same time a transformation of the pressure and of the current.

In the following chapter the theory of these instruments is discussed.



CHAPTER XI

TRANSFORMERS

In previous chapters we have discussed condensers and inertias

subjected to the action of the same hNdromotive force on both sides.

We will now deal with apparatus designed to directly transform the

magnitude of the h\dromotive force. Such an apparatus we term

generally a transformer. The simplest form of transformer consists

of a differential piston in contact with the liquid in the transmission

line on its two sides and free to oscillate about a mean position. The
piston may, however, be acted on by springs, as illustrated at Fig. 51.

Fig. 51.

In this type of transformer the hquid in the transmission hne B
acts on a piston of section U^ rigidly connected to a piston of section

122 acting on the liquid in the pipe hne D. The body of the piston is

assumed to have a weight P and as illustrated is supported by a spring

device or condenser having a characteristic A (see p. 18).

If we take an instrument exactly similar to that shown with the

exception that the diameters of the cylinders B and D are equal, we
can write (see p. 31)

where
^^^^""-C^af^

(I)

167
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and //a' is an equivalent hydromotive force so chosen that at any

instant we have

That is, the force exerted by the Uquid in the cyhnder D on the piston

P is equal in both instruments.

Under these conditions the movements of the pistons in both in-

struments are identical, and it follows that if we substitute for i/g'

in the equation (i) we get the equation of movement of the transformer

illustrated.

We therefore have

This may be written

H,n, - HA =
,(^-g,-^

-
53^0j"./.

and, finally, putting

c = AnjQz

Since fii and Q.^ are proportional to the currents IJ2 in the two

cylinders B and D, we have

HJ,-HJ, = j(^La-^yj, (2)

This equation is general if the friction and leakage in the trans-

former are neglected. L and C are respectively the mutual coefficient

of inertia and capacity of the transformer.

It should be noted that if L^,C^, and L2,C2, represent the inertia of

the piston and capacity of the springs in relation to the respective

cylinders B and D, we have for the mutual coefficient of inertia and
mutual capacity of the transformer

C = Vc~c~

This may be easily verified, since by definition

r - P

/ - P

and wo get
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and further

Cj = AQj^

VQOz = AUjU^ = C

The currents I^, /j are alwaj's in the same phase as the trans-

former piston moves in one piece from one side to the other, so that

the velocities must be the same at both ends.

The equation (2) can be written

{H,)I,^H,I,-Vj(La-^^\lJ, (3)

and numerically

l-l ~ -U I / /J

Ca
HJ, = I,y^H,^+{La- ^]I,^

Exatufyles

Problem I.—A transformer with a piston of weight P and sections Cl^ and

flj is placed on a branch of a primary transmission Une in which the hydro-

motive force is Hj. No springs arc used in the transformer. The secondary

line is connected to an infinitely long transmission line of section w. Find the

primary and secondary currents /j, /j and the secondary hydromotive force f/, -

In an infinitely long pipe we have (see p. 80)
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If L is very small, as will be the case if a very light piston is used or if the

sections n^ and n, are large, these formulae reduce to

Hi ~ m//i[i - U^maL)^]

and for a first approximation
7, ~ m-^Hi

//j - «j77i

Problem II.—The transformer of the previous example is connected to a

resonator which absorbs no work or to an infinite capacity. Find the primary

current.

In this case we have 77, = o and the equation (4) of the previous example

gives

(H,) = jLah = ;^^
And we have numerically

^'- La

It is readily seen from this that if the piston of the transformer

is very hght or L is very small, the current I^ absorbed may become

very great. From this it follows that it is advisable to provide

sufficient inertia in the transformer in order to keep down the current

absorbed when, for instance, the load is removed suddenly from the

secondary line supposed connected to a free circuit without reactance

or friction.

If we design a transformer with sufficient inertia L, we can use

transformers in installations for the distribution of power to limit the

current supplied to a given macliine to any desired value.

Note.—A transformer with the ratio - = i reduces to an ordinary
il

inertia or capacity according as inertia or elasticity predominates in

the value of the total reactance.
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TABLE I

WAVE CONSTANTS FOR WATER AT DIFFERENT TEMPERATURES

/ = temperature in degrees Centigrade.

E = coefficient of elasticity in kg./cm.^

V = J^ = velocity of sound in cm. /sec.

q =-y'- = a/ °, == the proportional factor per unit section.

p = pressure in kg./cm.^
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100 150
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150-200
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200-250
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250-300
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300 350

n
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350 400
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400-450
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500 550
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600 650

n
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700-750

:
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800 850

"
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900 950

"
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950-1000

1
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1000-1050

"
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1050-1100

n-'
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TABLE III

CIRCULAR (trigonometric) FUNCTIONS
(Taken from B. O. Peirce's "Short Table of Integrals," Ginn & Co.

195

Radians.
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CIRCULAR (TRIGONOMETRIC) FUNCTIONS

Radians.
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CIRCULAR (TRIGONOIMKTRIC) FUNCTIONS

Radians.
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CIRCULAR (TRIGONOMETRIC) FUNCTIONS

Radians.
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CIRCULAR (TRIGONOMETRIC) FUNCTIONS

Radians.
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TABLE IV

HYPERBOLIC FUNCTIONS
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HYPERBOLIC FUNCTIONS

1
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a.
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HYPERBOLIC FUNCTIONS

«•
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HYPERBOLIC FUNCTIONS

a.
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TABLE V

EXPONENTIAL FUNCTION
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EXPONENTIAL FUNCTION
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EXPONENTIAL FUNCTION

X
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EXPONENTIAL FUNCTION

X
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EXPONENTIAL FUNCTION
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EXPONENTIAL FUNCTION
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