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Simplified unsteady aerodynamic and inertial force models were developed for a

cycloidal propeller system operating at small forward speeds.  These models were used to

support the development of a VTOL concept demonstrator vehicle.  The nature of the

blade motion showed that interactions between the blades could be neglected to first

order.  The downwash through the rotor could not be neglected because of the induced

angle of attack caused by the downwash.

The total force produced by the propeller was compared with wind tunnel data

produced by Wheatley in the 30's and a ground test system developed for this project.  It

was found that the estimates produced by the model agreed with the total force and power

to within 10% for the Wheatley data.  Agreement between the model and the current tests

was within 5% for the total force and power.
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The calculated inertial loads were used to design the blade structure, the support

structure, and the blade motion control system.  It was found that the inertial loads were

much larger than the aerodynamic loads.

The aerodynamic effect of forward motion or wind moving toward the propeller

was defined.  It was modeled as a constant velocity induced flow through the propeller

that induced an angle of attack of the blades.  It was found that the cycloidal propeller

was very susceptible to wind gusts, but that the resultant force from the wind gust could

be easily damped out.

The same forward motion model was used to simulate downwash.  By modeling

the downwash as a constant velocity flow through the propeller, the lift and thrust of the

propeller was linked to the induced flow velocity.  The effect of the induced flow velocity

was then linked back to its effect on the lift and thrust produced by the propeller.
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Fx Force produced by the propeller in the positive X direction

Fy Force produced by the propeller in the positive Z direction

Vx The velocity of the forward motion of the propeller in the positive X

direction, or the velocity of the wind gust in negative X direction.

Vz The velocity of the forward motion of the propeller in the positive Z

direction, or the velocity of the wind gust in negative Z direction.

Vtangent The tangential velocity of the wind at the blades due to the rotation and the
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a Pivot point measured from the semi chord point aft, used in the I.E. Garick

unsteady lift and pitching moment equations

F&G Attenuation factors used in the I.E. Garick unsteady lift and pitching

moment equations

κ Reduced frequency of blade oscillation

an Normal acceleration on the blades at operating RPM

k Advance ratio of the cycloidal propeller = Vtip/Vforward
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CHAPTER I

INTRODUCTION

Cycloidal Propeller History

In the 1920’s, a gentleman named Frederick Kurt Kirsten first seriously

investigated cycloidal propulsion (1).  While working at the University of Washington,

Kirsten developed a Pi pitch cycloidal blade motion cycloidal propeller and investigated

the possibilities of putting the device on several different air vehicles.  In the 1930’s

Kirsten proposed modifying the U.S. Navy’s Shenandoah lighter than airship to use

cycloidal propellers, but the Shenandoah crashed before the modification could be made.

Also in the 1930’s, John B. Wheatley began work on cycloidal propulsion (2).  He

developed a curate blade motion and developed a supporting modeling theory.  Wind

tunnel tests at the Langley 20-foot wind tunnel were completed using an 8-foot diameter

model.  This is the blade motion that will be used for the cycloidal propeller discussed in

this thesis.

Background

A cycloidal propeller is a propeller with the blades parallel to the axis of rotation

and perpendicular to the plane of rotation.  Figure 1 shows an isometric view of a

cycloidal propeller.  As the propeller rotates, the blades of the propeller pivot to give an
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angle of attack (AoA or α), and this is called the commanded blade angle (β).  The

commanded blade angle is shown in figure 2.  In a hover with no wind gusts, the

commanded blade angle is equal to the AoA of the blades.  By timing when and where

the blades have their maximum and minimum AoA, a force can be produced in any

direction in the plane of rotation.  This allows a cycloidal propeller to produce lift and

thrust at the same time.

The control mechanism developed for the cycloidal propeller is based on a four-

bar linkage system controlling the individual blades AoA.  This system has the advantage

of rugged simplicity while still closely matching the assumed ideal blade AoA profile.

By moving a single point common to each of the blades four-bar linkages, the magnitude

and direction of the blades AoA profile can be controlled.

The uses of a cycloidal propeller vary widely.  The company for which this work was

performed, Bosch Aerospace of Huntsville, Al, is using it to develop a Vertical Take Off

and Landing Unmanned Aerial Vehicle, (VTOL UAV), with at least two main cycloidal

propellers for lift and thrust.  This vehicle will weigh 600 lbs.  For a factor of safety and

to have some maneuvering power, each propeller is designed to produce 350 lbs of lift.

Bosch also wants to use cycloidal propulsion on airships, which are difficult to land

partly because of the slow response of the rotating ducted fans.  This system would make

ground control of airships easier.  This system is also used on tugboats, for the same

reason; a tugboat, like and airship, needs fast response times, and cycloidal propulsion

has been shown to be one solution.

In this thesis, the cycloidal propeller computer modeling will be discussed,

starting with the coordinate system used, the variables used in the modeling, and
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methodology of the calculations.  Three of the simplified models developed will also be

discussed starting with the simplest, the Ideal motion with Steady Aerodynamics, and

ending with the most advanced, the Real Motion with Unsteady Aerodynamics.  There is

also a discussion of the aerodynamics of the propeller in forward motion.  Using the

forward motion model, a uniform velocity downwash model was developed.  Finally,

there is a comparison between the computer model and Wheatly’s wind tunnel data, and

data taken from the cycloidal propeller built by Bosch Aerospace.

The coordinate system

The coordinate system that will be used can be seen below as figure 3.  The X-

axis to the left, the Y-axis is coming out of the picture, and the Z-axis is going up.  This

coordinate system is different from the coordinate system seen in many aerospace texts.

The textbooks typically put the Y-axis on the right wing, making the Z-axis point down.

By rotating the coordinate system until the Y-axis points out the left wing, the Z-axis

points up.  The angle theta (θ) is the position of the blade measured from the X-axis

counterclockwise.  The angle phi (φ) is the angle from the X-axis to the theta where the

AoA is zero, measured counterclockwise.  This essentially rotates the lift vector and

gives a force in the X and Z directions, or lift and thrust.
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Variables for the Cycloidal Propeller

A cycloidal propeller can be broken down into six variables.

1. The airfoil section
2. The diameter of the propeller
3. The span of the blades
4. The chord of the blades
5. The number of blades
6. Ω - The speed of rotation of the propeller

Each of these are described as follows:

Airfoil

The blades have to perform equally well at positive and negative AoA’s.

This requires the use of a symmetric airfoil, which should have a robust lift curve

slope, since this will determine the effectiveness of the propeller.  It would be also

be beneficial to have an airfoil that has good unsteady aerodynamics

characteristics.

Diameter

In general, the larger the diameter of the cycloidal propeller, the better.  If

tip speed is held constant, larger diameters mean lower rotational speeds, hence

lower centrifugal force on the blades.

Span

A paper by Fredric Kurt Kirsten (1), asserts that “The best proportions

would be a blade length equal to the orbit diameter, thus providing for maximum

slipstream area with minimum dead air envelope.”  Simplified, he is suggesting

that the span be equal to the diameter.
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Number of Blades

It was also mentioned by Kirsten (1) and later shown by computer

modeling that a cycloidal propeller with less than four blades is noticeably

bumpy.  This occurs because only one or two blades are producing lift at any one

time.  A cycloidal propeller with two blades can produce lift only when the blades

are in the theta equals 90° or 270° position.  At all other thetas, the blades are

producing only limited force.  This results in a very bumpy ride with the

frequency of the “bumps” equal to twice the rotational speed.

With three blades, the ride is improved, because there is not a big impulse

at theta equals 90°/270°, and the vibration frequency is three times the rotational

speed.  However, there is still only one blade producing force at any one point.

This means that the entire required lift must be generated by only one blade.  This

in turn requires a heavier blade.

With four or more blades, there is always more than one blade producing

lift.  The vibration frequency is increased to four times the rotational speed, with

the lift peaks occurring at 0°/180° and 90°/270°.

A six-bladed propeller gives the advantage of a vibration frequency of six

times the rotational speed, and allows more than one blade to produce the required

instantaneous lift, which smoothes out the system considerably. The comparison

between a four-bladed helicopter and a two-bladed helicopter illustrates this point.

A four or six-bladed helicopter is often much smoother than the two bladed Huey.

A plot of the lift force produced by a two, three, four, and six bladed

cycloidal propeller can be seen in figure 4 in the appendix.
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Chord

The further apart the blades, the cleaner the air encountered by the blade.

The chord needs to be as large as possible to produce as much force as possible.

This is difficult within a small diameter propeller.

Speed of Rotation

In general, the slower the propeller turns, the better.  This is due to the

centrifugal load on the blades.  Since the diameter is set, the required “q”, or

dynamic pressure over the blades must still be generated.  Given logical choices

for all the previous variables, the rotational speed of the propeller can be adjusted

to give the required lift and thrust force from the propeller.

Method of Calculation

To calculate the total lift and drag of the propeller, first determine the individual

blade position.  Given the position of the blade, the AoA of the blade can be calculated.

With the blades position and AoA known the lift, drag, and pitching moment of the

blades can be found.  The resultant forces from each blade in the X and Z directions can

then be summed.  After calculating the resultant forces, the entire propeller can be rotated

to give a new blade position, AoA, lift, drag, and pitching moment.
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CHAPTER II

METHODS OF MODELING

Ideal Motion with Steady Aerodynamics

From early inspection of the nature of a cycloidal propeller, it is apparent that the

ideal blade motion for a hovering cycloidal propeller is a sinusoidal motion, where the

blade “takes a bite” at the top and at the bottom.  In a hover, the propeller is required to

produce lift in the positive Z direction.  To do this, the blades should have a negative

AoA at the bottom, theta equals 90°, and a positive AoA at the top, theta equals 270°.

The motion of the blades can be described as a negative sine motion.  In a hover, the

commanded blade angle β is equal to the AoA of the blades, which also makes β a

negative sine motion.  The angle φ rotates the place where the zero AoA is located.

When theta equals phi, the AoA should be zero.  The equation for the commanded blade

angle can be seen below.

Equation 1

where βMax is the amplitude of the sine motion.  Given that the AoA of the blade is

defined, the next step is to calculate the lift curve slope of the NACA 0012.  To calculate

the 3-D lift curve slope, CLα, the 2-D lift curve slope, Clα must be known.  Clα is found

experimentally using wind tunnels, and is based on an infinite wing where the airfoil does

not see any effects from the tip of the airfoil.  Given the Clα for a NACA 0012 is 6.0161(3)

( )φθββ −−= sin*Max
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the next step is to determine the 3-D lift curve slope of the blade, CLα.  The equation for

CLα given by Etkin(4) is listed below.

Equation 2

where AR is the aspect ratio of the blades.  Equation 2 can be simplified for the propeller

being discussed in this thesis.  The tip speed of the propeller is 136 ft/s, which is much

less than the speed of sound.  This means that the variable β is approximately equal to 1.

The blades do not have any sweep, so Λ = 0.  This simplifies equation 2 to the following

equation.

Equation 3

Since the AoA of the blade and the lift curve slope of the blade are both known, the lift

coefficient for the blade at that theta can be found using the following equation.

Equation 4

Once the lift coefficient is known, the lift can be found using the standard lift equation

seen below.

Equation 5

where Vt is the tip speed of the propeller in ft/second and is equal to Ω*R.  In this

section, it is assumed that the only drag associated with the blade is the induced drag,

because at the time of the analysis the cycloidal propeller was a ‘paper model’ used as a

( ) Mach
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sizing routine.  To calculate the induced drag of the blade, the drag coefficient must be

found using the drag polar.  The equation for the drag polar can be seen below.

Equation 6

where Eff is the Oswald span efficiency factor.  This is a “fudge factor” and will be used

to match the computed data to experimental data.  Once the drag coefficient is known, the

drag can be computed using the following equation.

Equation 7

The next step is to resolve the lift and drag forces into forces into the X and Z

coordinate system. Figure 5 shows the blades lift and drag vector at four different thetas.

To transform the lift and drag produced by the blades into forces in the X and Z

directions a coordinate transformation, which transforms from a rotating coordinate

system, rotating about the Y-axis, to the stationary coordinate system.  The coordinate

transformation can be seen below as equation 8.

Equation 8

where ϕ is the angle between the two coordinate systems  The angle ϕ is equivalent to

theta, the total propeller’s thrust, Fx, is in the ‘iFixed’ direction, the total propeller’s lift, Fz,

is in the ‘kFixed’ direction, the blade’s lift is in the ‘iRotating’ direction, and the blade’s drag

is in the ‘kRotating’ direction.  Substituting into equation 8 for the force in the X direction,

the equation for the force in the X direction becomes the following:

EffAR

C
CC L

DD **

2

0 π
+=

DtD CChordSpanVCSVDrag *)*(***2
1****2

1 22 ρρ ==

( ) ( )

( ) ( )ϕϕ

ϕϕ

cos*sin*

sincos*

RotatingRotatingFixed

RotatingFixed

RotatingRotatingFixed
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jj
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=
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Equation 9

Substituting into equation 8 for the force in the Z direction, the equation for the force in

the Z direction becomes the following:

Equation 10

Since the force in the X and Z directions are known for a blade at a theta, the total

force can be determined.  To determine the average force produced by the cycloidal

propeller, all the FX, and FZ produced by all the blades over all thetas are summed.  The

torque and power required to turn the propeller can be approximated by the following

equations.

Equation 11

Appendix 1 contains a MathCad sheet that illustrates the above steps.  Appendix 1 is

included to show that the FORTRAN program operates correctly and that the steps are

laid out in logical order.  The MathCad sheet starts with the geometric properties of the

cycloidal propeller, calculates the velocity the blades, the lift and drag of the blades, and

the forces in the X and the Z direction.  Then it averages them over one full rotation.

Ideal Motion with Unsteady Aerodynamics

Steady aerodynamics require the motion of the airfoil up, down or rotation, to be

much slower than the time it takes for the air to travel from the leading edge to the

trailing edge.  Unsteady aerodynamics accounts for this up and down motion or rotation.

Because the motion of the blades are still considered to be the ideal inverse sine curve,

( ) ( )θθ sin*cos* DragLiftFX +=

( ) ( )θθ cos*sin* DragLiftFZ +−=

∑ ∑

∑ ∑

=

=

=

=

360

0
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0
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t
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the angular rotation, and angular acceleration of the blades can be determined by

differentiating the equation for the angular position.  This is done as follows:

Equation 12

where Ω is the rotational speed of the propeller.  The 2-D unsteady lift and moment

equations were taken from I. E. Garrick(5) for an airfoil with a flap or aileron, with the

airfoil moving in a sinusoidal motion both vertically and rotationally.  After the terms for

the flap or aileron are removed, the equation becomes the following:

Equation 13

where b is the semi chord (chord/2), ‘a’ is the pivot point for the blade (in this case it was

set as the quarter chord) measured from the mid chord aft positive, p is the rotational

speed of the propeller defined before as Ω, and F and G are functions to reduce and phase

shift the lift and moments.  α0, and h0 are the magnitude of the assumed sinusoidal

rotation motion and up and down motion, and φ0 and φ2 are the phase shifts of the

corresponding sinusoidal motions of α and h.  Figure 6 shows these variables and there

definitions.  The variables F and G in equation 13 are the lift and moment attention and

( )
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phase shifts.  To determine F and G, it is necessary to determine ‘k’, the reduced

frequency of the oscillation.  The following is the equation for k.

Equation 14

using the graph in figure 7, F was determined to be 0.7, and G was –0.19.  Equation 13

was derived for a 2-D airfoil. Assuming that the only 3-D affect is in the lift curve slope,

‘2* π’ can be replaced with the 3-D lift curve slope determined in equation 3.  Since p is

the rotational speed of the propeller, Ω, and ‘t’ is time, ‘p*t’ can be replaced with θ, the

position of the blade. φ0 and φ2 are both equal to the negative of the φ defined in equation

1 and equation 12. Thus the equation reduce to the following:

Equation 15

Once the lift is known, an educated guess on the drag of the blade can be made, if the lift

coefficient is known.  The lift coefficient is determined from the following equation.

Equation 16

The induced drag coefficient can be determined using the standard equation for the drag

polar, previously given as equation 6.  Since equation 6 was also a ‘paper model’ of the

cycloidal propeller, only the induced drag was used to model the blade drag.  The drag is
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determined using the definition of the drag previously given equation 7.  The equation for

the pitching moment required to rotate the blade due to the aerodynamic forces at a

constant Ω, is seen below:

Equation 17

Again, the assumption that the only 3-D affect is in the lift curve slope will be used.  The

term ‘p*t’ can be replaced with θ, and ‘p’ can be replaced with Ω.

Equation 18

The pitching moment, along with moment due to inertia, can be used to compute the

push-pull rod force.  First, the normal acceleration of the blades due to centrifugal force

most be known.  The normal acceleration on the blades can then be found from the

following kinematics equation.

Equation 19
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Using Newton’s second law, the resultant force can be found.  Knowing the

distance from the pivot point to the CG of the blade gives the resultant pitching moment

due only to the normal acceleration.  The rod force can then be determined using the

following equation.

Equation 20

where Pd is the distance from the pivot point to the push-pull rod.

Since the lift, drag and pitching moment of each blade are known each blade’s

contribution to the propellers total lift and thrust can be calculated from equations 9 and

10.  These can be summed for all blades at each theta using equation 11 to obtain the total

lift and drag of the propeller.

There is an addition drag loss associated with the cycloidal propeller, associated

with the blades producing an unsteady wake. An equation derived by I. E. Garrick(5)

gives the power used in producing the wake and in maintaining the oscillation, and is

given below as equation 21.

Equation 21

After equation 21 is added to equation 11, the torque and power become the following:

Equation 22
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Real Motion with Unsteady Aerodynamics

The real motion of the blades is based on a collection of four bar linkages

controlling the individual blades commanded blade angle.  By offsetting one point

common to all of the blades, the maximum AoA as well as the direction of Lift/Thrust

can be determined.  Figure 8 shows the four bar linkage system.  This linkage system was

chosen because it is a good match for the ideal sine motion, however, is does diverge

from the ideal motion at large AoA.

Figure 9 shows the AoA for both the ideal motion and the four bar linkage

motion.  If the AoA’s for the real motion and the ideal motion are matched at theta equals

270°, the angle at theta equals 90° is greater for the real motion than it is for the ideal

motion.  There is also a phase lag in the curve of about 8°.  There is one advantage to the

four bar linkage producing a larger AoA at 90°.  When the cycloidal propeller is

producing lift, the blade at 90° needs to be at a larger AoA because of down wash.  The

phase shift will be discussed later in the next section.

The next step is to observe the mechanics of the four bar linkage system.  For

simplicity, only one four bar linkage will be examined.  Figure 10 shows a four bar

linkage with the lengths, and angles that will be discussed later.  Using the following

equations from the text book “Design of Machinery”(6), the angles, angular velocities, and

angular accelerations can be determined for each of the links of the four bar linkage:
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Equation 23

These equations are found in most mechanism books and are considered standard

equations for an open four-bar linkage.  For this problem, there are several changes;  θ2 is

the driving angle and is measured from the vertical, counter clockwise to link 2, the θ

defined before is measured from the X-axis, counter clockwise, and the difference

between θ and θ2 is 90°.  From figure 8, the offset is a negative number.  All of the
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aerodynamics assumes the oscillation is quasi-steady and neither speeding up nor slowing

down, which means that α2 must equal zero.

The angle needed from this calculation is the commanded blade angle, β.  θ3 is the

angle measured from the vertical to the link 3.  β can then be defined as the angle from

link 2 to link 3 minus 90°, and β was determined to be equal to θ-θ3.  For the same

reason, the angular velocity as measured relative to link 2 is Ω-ω3.

Since the AoA, angular velocity, and angular accelerations are known, the

aerodynamic forces can be found.  The only major difference resides in the unsteady lift

and moment equations.  If this computer modeling was to be done strictly ‘by the book’ a

Fourier fit would be done using the real motion, and the motion would be modeled as a

series of sinusoids.  As a first order approximation, the calculated AoA, angular velocity,

and angular acceleration were placed into equations 15 and 18.  Equation 15 then reduced

to the following equation:

Equation 24

Accordingly, equation 18 reduced to the following equation:
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Equation 25

With these lift and moment equations, the calculation of the propellers total lift

and thrust remain the same.  Using equations 9 and 10, each blade’s contribution to the

propellers lift and thrust can be found.  Using equation 22, the torque and power required

by the propeller can be found.

The phase shift in the commanded blade is inherent in a four bar linkage system.

The length of the push rods, L4 in figure 10, was set such that when the offset is zero, the

commanded blade angle β is zero for all thetas.  When the offset is moved up or down, β

is no longer zero at theta equal to 0° or at 180° as seen in figure 9.  The magnitude of this

error was sufficiently small to continue using the four bar linkage system.  There is an

easy fix; φ rotates the lift vector by rotating the point at where the β is zero.  To remove

the phase shift, simply rotate φ slightly and the commanded blade angle can be reset to

zero at theta equals zero.
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CHAPTER III

DYNAMIC EFFECTS

Forward Motion

Forward speed on the propeller has only one effect; to change the individual

blades AoA.  To model this effect an equation was developed to calculate the induced

angle of attack, AoAW.  This equation is derived in this section, but first, in true

helicopter fashion, the advance ratio is defined using the following equation.

Equation 26

Figure 11 shows the blade at several different points, with vectors denoting the tip

velocity, the cycloidal propeller’s velocity in the X direction, and the velocity in the Z

direction.  Vr is the resultant velocity on the blades, with AoA being the angle of attack

induced by the forward motion.  The following table was made from examining the

tangential and normal velocity induced on the blades at different thetas.  From the

resultant velocity, Vr, and the AoA induced by the wind can be found.  The derivation of

the appropriate equation can be seen in table 1.
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Vt

VzVx
k

22 +=



20

20

 Table 1.  Derivation of Induced AoA Equation

Theta Vtangent Vnormal Vr AoA of wind
0° Vtip-Vz Vx Sqrt(Vtangent

2+Vnormal
2) atan(Vnormal/Vtangent)

90° Vtip-Vx -Vz Sqrt(Vtangent
2+Vnormal

2) atan(Vnormal/Vtangent)
180° Vtip+Vz -Vx Sqrt(Vtangent

2+Vnormal
2) atan(Vnormal/Vtangent)

270° Vtip+Vx Vz Sqrt(Vtangent
2+Vnormal

2) atan(Vnormal/Vtangent)

Given that the motion is based on a sinusoidal variation from theta to theta an equation

for Vtangent and Vnormal is derived as follows:

Equation 27

Equation 27 can also be derived using the coordinate transformation from a

rotating to a stationary coordinate system, previously listed as equation 8.  After equation

8 is rearranged to transform a stationary to a rotating coordinate system, rotating about

the Y-axis, following set of equations are appropriate:

Equation 28

When the rotating velocity Vtip, the negative of the forward motion velocity, Vx

and Vz, are put into equation 28 equation 27 emerges.  The resultant velocity can be

calculated using the Pythagorean Theorem seen below as equation 29.

Equation 29

The induced AoA caused by forward speed is given as equation 30.

Equation 30
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For advance ratios greater than 1, care must be taken to insure that the AoA is

placed in the correct quadrant.  The total angle of attack that the blades are experiencing

is the sum of the commanded blade angle and the induced angle.

Equation 31

Once the total AoA of the blade is known, the lift, drag, pitching moment, resultant force

in the X and Z directions can be determined.

Downwash

Since there is now an equation that allows for air flowing towards the propeller,

the uniform downwash velocity can now be computed.  Because the induced wind

velocity is directly related to the amount of lift that the propeller is generating, and the lift

is directly related to the induced velocity of the air around the propeller, an iterative

scheme must be employed to solve for the lift or thrust generated.  Using helicopter

momentum theory (actuator disk theory), the induced velocity of the air through the

propeller is given by the following equation (7).

Equation 32

where A is the projected area of the cycloidal propeller.  The constant multiplier of the

area occurs because the cycloidal propeller has blades at the top and bottom and acts like

a uniaxial counter rotating tandem rotor helicopter.  However, the blades are not

producing the same amount of lift at the edges of the projected area, so the constant
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should be between 1.0 and 2.0. This constant will be adjusted to fit the test data.  After

matching the program output to the experimental data, the constant was found to equal

1.7.

Wind Gusts

It was determined that when the cycloidal propeller is trimmed for hover, the

propeller is very susceptible to gusts.  This is shown in figure 11; if Vz is zero and Vx is

any positive number, then there is an induced AoA on the blades at theta equal to 0° and

180°.  This induced AoA produces a force in the same direction as a wing gust.  This

retarding force which is drag, is plotted as a function of the velocity of the wind gust in

figure 12.

This wind gust also decreases the lift of the propeller.  This is because of the

induced AoA at theta equals to 0° and 180° at the same time that there is an induced AoA

at theta equals to 90° and 270° because of the downwash. The decrease in lift is plotted in

figure 13.

Because the propeller is producing less lift, it should require less power than it did

in the trim position.  Figure 14 shows that decrease in power.

Forward Motion by Rotating Phi

An effort was made to determine the amount of φ and increase or decrease in the

offset required to trim the propeller for a given forward flight speed, assuming the only
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source of drag is the propeller.  Figure 15 shows the commanded φ required to null the

drag produced by the gust.

With the total lift force produced by the propeller rotated into the wind, the offset

must also be increased to make enough lift to keep the propeller in the air.  The figure 16

shows the offset needed as a function of the forward speed.  For hovering, the maximum

commanded blade angle is 45.1° and the maximum AoA of the blades is 25.5°.  For a

forward velocity of 50 MPH, the maximum commanded blade angle is 47.3°, and the

maximum AoA of the blade is 24.5°.  The offset has to be increased to this degree

because the propeller has to take bigger and bigger bites to keep the same total AoA

profile.  Figure 17 shows the HP required to hold the propeller stationary against the

wind.

Cam Shapes Required for Forward Motion

As an “exercise for the student,” the writer was asked to determine the cam shape

needed to neutralize the induced AoA caused by different velocities in the X direction.

Figure 18 shows the different cam shapes needed for an advance ratio of 0.5 and 1.5.

For advance ratios less than 0.5, the cam shape is reasonable and easy for a cam

follower to follow.  For advance ratios, greater than 1.5, the cam shape is also reasonable,

but requires some help in the form of a clicker or stop to make the blade swap from a cam

follower to a cam leader and back to a cam follower.  The problem comes at advance

ratios between 0.5 and 1.5.  Figure 19 shows the cam shape for several advance ratios

from zero to two.
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There is a ‘no-mans-land’ at theta equal to 90°, due to retreating blade stall.  As k,

the advance ratio, approaches 1, the airspeed over the blade is approaching zero, and the

blade does not know which direction to point.  At k equals 1, the AoA induced by the

wind is undefined.  It still may be possible to have two cams, one to roughly neutralize

the induced AoA at k’s less than 0.5, and another cam that roughly neutralizes the

induced AoA at k’s greater than 1.5.  In this case the propeller may simply power through

the retreating blade stall, switch gears, and proceed to higher advance ratios.  This may be

investigated further at a later date, but currently, more concerns exist with hover and slow

speed flight.  The system that has been developed can easily go to advance ratios

approaching 0.5, which appears to be sufficient given the scope of this work.
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CHAPTER IV

COMPARISON OF COMPUTER MODEL WITH WHEATLEY

WIND TUNNEL DATA

In the 1930’s a leader in the field of cycloidal propulsion was John B. Wheatley.

In one of his papers(2) he performed extensive wind tunnel tests of a propeller he

developed.  This cycloidal propeller was placed in the 20-foot wind tunnel at the now

NASA Langley.  In this paper(2) Wheatley does extensive static wind tunnel testing of the

cycloidal propeller for the forces in the Z and X direction as well as the power required

by the propeller, as a function of the maximum AoA, and the propellers rotation speed.

In this thesis, Wheatley’s cycloidal propeller was modeled using the “Real Motion

Unsteady Aerodynamics” computer program.  The results are compared to Wheatley’s

data in figures 20-22.

Figures 20 and 21 show the force in the Z and X direction produced by the

propeller as a function of the maximum AoA for three different rotational speeds.  The

lines with circles show the Wheatley’s experimental data, and the lines with no circles are

the calculated results from the cycloidal propeller program.   Since the lift of a blade is

directly proportional to the AoA of the blade as shown by equations 4 and 5, it follows

that the forces in the Z and X direction are linear with the maximum AoA.  The lift is

proportional to the square of the local velocity, and the velocity is directly proportional to
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the rotational speed, so forces in the X and Z direction are proportional to the square of

the rotational speed.  The influence of both the AoA and rotation speed can been seen in

the figure 20 and 21.

Figure 22 shows the power required by the propeller as a function of the

maximum AoA, for three different rotational speeds. The lines with circles show the

Wheatley’s experimental data, and the lines with no circles are the calculated results from

the cycloidal propeller program.  The drag of the blade is related to the square of the

AoA, and since the drag of the blades is the dominant factor in the power required by the

propeller, it follows that the power should be proportional to the square of the maximum

AoA.  The drag of the blade is proportional to the square of the local velocity, and the

velocity is directly proportional to the rotational speed.  The power required by the

propeller is proportional to the local velocity and the drag of the blade; thus the power

required by the propeller is proportional to the cube of the rotational speed.  The

influence of both the AoA and the rotational speed can be seen in figure 22.

Wheatley also tested the cycloidal propeller at different forward speeds and

developed a curve for the horsepower to lift ratio as a function of the forward speed.  To

verify the computer model that was developed Wheatly’s wind tunnel data was

reproduced.  Figure 23 shows the experimental data from Wheatley’s cycloidal propeller

and Wheatley’s calculated results as well as the results from the cycloidal propeller

program.  The data matches reasonably well; the computed HP/Lift ratio is slightly high

at about 50 mph of forward speeds, compared to Wheatley’s data, indicating the

computer program is either over estimating the power required, or under estimating the

lift.
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CHAPTER V

COMPARISON OF MODEL WITH EXPERIMENT

Cycloidal Propeller designed for Bosch Aerospace

The cycloidal propeller designed by Bosch Aerospace and Raspet Flight Research

Laboratory had the following design variables,

Airfoil section – NACA 0012
Diameter – 4 ft
Span of the blades – 4 ft
Number of Blades – 6
Chord of the blades – 1 ft
Rotational Speed – 650 RPM

Airfoil

The NACA 0012 appears to be a very good airfoil for this application.  It

has a good lift curve slope and good stall characteristics.  The airfoil may be

changed at a later date to the NACA 0015, to allow a larger spar to be placed in

the blade.

Diameter

Since larger is better, a diameter of four feet was chosen since this was the

maximum diameter that could fit on the proposed VTOL UAV.
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Span

Kerstin’s (1) suggestion of making the span equal to the diameter was taken

and the span was set as four feet.

Number of Blades

A six-bladed propeller was chosen because it gave the vibration frequency

of six times the rotational speed, and it allows more than one blade to produce the

required instantaneous lift.  This smoothed out the cycloidal propeller

considerably.

Chord

Choosing a chord of one foot gave roughly one chord length between each

blade.  This made the circumference half blade, and half free air.

Speed of Rotation

Given that all of the previous variables were set by other constraints or by

logical choices, Ω was the only variable left to choose.  For this case, it was

determined that the required lift of 350 lb required the propeller to turn at 650

RPM, with a tip speed at about 140 ft/s.

Comparison of Different Computer Models

For comparison, the variables listed above were used and the maximum

commanded blade angle at 270° were set at 25° for all three cases.  This means the angle

of attack is roughly the same for both cases.  The mechanical phase shift associated with

the four bar linkage system was not taken out by rotating φ.
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Figure 9 shows the angle of attack of the ideal motion and the real motion.  The

AoA of both the ideal motion and the four bar linkage motion match reasonably well.  If

the AoA’s at theta equal to 270° are matched for all three cases, then the four bar linkage

system produces a larger AoA at 90°.  This is actually a good thing because it will help

with down wash.  There is also a phase lag of about 8°, inherent in the four bar linkage

system.

Figure 24 shows the angular velocities for both the ideal motion and the real

motion.  The angular velocities were calculated using equation 12 for the ideal motion

and equation 23 for the four-bar linkage motion.  The velocities are quite large.

Figure 25 shows the angular acceleration of the blade.  The angular velocities

were calculated using equation 12 for the ideal motion and equation 23 for the four-bar

linkage motion.  The acceleration of the blade is quite high.  Not only does the blade have

to resist a 300g bending moment, but it also has to resist a 25g torsional moment.  These

blades will have to be very stiff and strong, and there may also be some

aerodynamic/inertial elastic effects that require attention.

Figure 26 shows the induced AoA caused by the downwash.  There is no

downwash in the Ideal Motion Steady Aerodynamics, and in the Real Motion with no

downwash cases.  This induced AoA tends to washout the commanded blade angle.  This

can be seen in figure 27.

Figure 27, shows the total AoA of the blade.  The total AoA is the commanded

blade angle plus the induced AoA.  The downwash reduced the AoA from ±25° to

approximately ±10°.



30

30

Figure 28 shows the lift of a blade modeled with steady and unsteady

aerodynamics.  If approached correctly, unsteady aerodynamics can produce a substantial

increase in performance.  If the conditions are not optimum, unsteady aerodynamics can

also hurt the performance.  There is approximately a 100% gain in lift due to unsteady

aerodynamics with no downwash.  When the downwash is included the lift drops back

down to approximately the same as the Ideal Motion Steady Aerodynamics case.  There

is also a substantial phase shift associated with the real motion with no downwash.  The

AoA has a lagging phase shift of about 8°, and the lift has a leading phase shift of 1°.

This means unsteady aerodynamics alone has a phase shift of 9°.  In this plot, the

influence of the larger AoA at 90° is apparent.  The real motion with down wash has

another phase shift.  At 90° there is a phase lag of 28° and at 270° there is a phase lead of

28°.  This is caused by the induced AoA and can be seen in figure 26.

Figure 29 shows the drag of the blade modeled with Ideal Motion Steady

Aerodynamics and Real Motion Unsteady Aerodynamics with and without downwash.

This drag is only the induced drag produced by the blade; thus it should have the same

characteristics as the lift curve.  In this plot, the phase shift and the influence of the larger

bite at 90° is apparent.

Figure 30 shows the force in the Z direction produced by the blade, modeled by

both steady and unsteady aerodynamics, both with and without downwash.  The force in

the Z direction is the propellers lift.  It is roughly the absolute value of the lift of the

blade.  As such, the same characteristics in this plot are observed in the rest of the plots.

There is a phase shift caused by unsteady aerodynamics, and a larger peak at 90° than at



31

31

270°.  It is noted that the force in the Z direction is not zero at theta equal to 0°, or 180°.

This result is because the equation for the force in the Z direction, equation 10, takes into

account the drag as well as the lift.  At theta equals 0°, the drag is producing a force in the

positive Z direction, at 180°, and the drag is producing a force in the negative Z direction.

This can be seen in figure 30.

Figure 31 shows the force in the X direction for both the steady and unsteady

aerodynamic models with and without downwash.  This plot requires more explanation;

the reason the peaks of the curve occur at or around intervals of 45° is because the

equation for the force in the X direction, equation 9, takes into account the lift and the

drag.  At intervals of 45°, the lift and drag either add together or take away from each

other.  Figure 5 shows the blades at intervals of 45°, the following table was made from

that drawing:

 Table 2.  Magnitude of Blade force in X Direction

Theta Fx Fx with lift larger than drag
45° Drag-Lift Small (-)
135° Lift+Drag Large (+)
225° -Lift-Drag Large (-)
315° Lift-Drag Small (+)

This corresponds with figure 31.  The peaks and valleys do not occur exactly at

intervals of 45° because the interaction of the lift and the drag are both changing as a
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function of theta.  The following table shows the other variables calculated by the

computer model:

Table 3.  Program output that is not a Function of Theta

Variable Ideal Motion
Steady
Aerodynamics

Real Motion
Unsteady Aerodynamics
With No Downwash

Real Motion
Unsteady Aerodynamics
With Downwash

Average Lift
(in Z direction)

296.25 lbs 554.7 lbs 170.53 lbs

Average Thrust
(in X direction)

0 lbs 50.99 lbs 0.22lbs

Average
Torque

370 ft-lbs 711.8 ft-lbs 317.57 ft-lbs

Average Power 45.78 HP 90.47 HP 41.9
Total Force 296.25 lbs 557.04 lbs 170.53 lbs

The computer model with ideal motion produces a symmetric curve for the force

in the X direction.  This explains why when the forces in the X direction are summed, the

average is zero.  The computer model does not produce a symmetric curve for the force

in the X direction, partly because of the mechanical motion and partly because of

unsteady aerodynamic effects.  The result is a net force in the X direction.  This force can

easily be controlled by adjusting φ, until the force is zero.

Testing History

Test Rig

To validate the computer model made at Raspet Flight Research Laboratory,

Bosch Aerospace constructed a cycloidal propeller test rig.  This test rig is capable of
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measuring the lift, RPM, and torque needed by a cycloidal propeller.  A sketch of the rig

is given in figure 32.  The relevant data at this time is the torque and power required to

generate lift.  To collect the data, there were three load cells mounted on the test rig.

Two on the end of the outriggers and one mounted on the engine cradle.  By summing the

two load cells mounted at the end of the outrigger, the lift can be measured.  The test rig

was designed so that the engine was slung under the propeller.  Figure 33 shows a sketch

of the rig and the under slung engine.

With the engine able to swing, the torque required to turn the propeller also

rotates the engine swing.  With a load cell mounted a known distance below the propeller

drive shaft, the torque absorbed by the propeller and drive train can be measured.  As a

check of the torque measured using the under-slung engine and its load cell, the torque

was also measured by looking at the difference in the loads measured by load cells

mounted at the end of the outrigger.  With the exception of a few anomalous points, the

data between the two match very well.

Blades

The first-generation blades for the cycloidal propeller were made of aluminum,

and were rib and skin construction.  The skin was tack welded onto the ribs, and there

was a half-span spar made of 4130 stainless steel.  This spar ran from the half span mark

on one side to the half span mark on the other side to carry the bending moment of the

blades.  There was a problem associated with this system; because the blades had a gap

between the two sides, the blades essentially have an aspect ratio of only a half span.  The

blades weighted approximately three lbs each, or six lbs per pair.  This set of blades

proved to be inadequate for the g loading environment to which they were exposed.
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When running the propeller, the blades would bow and produce several degrees of

dihedral.  Tack welding the skins to the ribs also proved to be inadequate; during one test

the top skin of one blade actually pealed off the ribbed substructure.  There were also

several weld breaks on other blades.

Because of these problems, it was decided that a second-generation blade set was

needed.  These blades were constructed of foam core, carbon woven skins, and were one

piece (full span).  It was thought that this would alleviate the bending problem and give a

full span aspect ratio, but it introduced several other problems.  In order to connect the

blade to the existing propeller, two large holes had to be cut in the blade, one for

mounting at the ¼ chord for a pivot point, and one to mount the push-pull rod.  A 4130

stainless steel tube was used to carry the shear from the blade to the propeller arm.  This

carry through member slid inside the blade, through the propeller arm, and into the other

side of the blade.

Because of the two holes cut in the blade for mounting, the blade was also

structurally weaker.  Two failures were associated with this.  One was a catastrophic

failure in which the blade broke into two pieces at the shear web where the mounting hole

was cut. Each side of the blade then slid off the carry through member.  The other failure

involved the bottom skin of the blade breaking in tension at high RPM.

Because of this, it was decided to make a third-generation blade set.  These will

be full length blades, but the pivot point will be moved from the ¼ chord, to the CG of

the airfoil, and the pivot point will be moved down, and out of the blades, so that the

blade can have a full length carbon spar.  These blades will be constructed in the future.
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Push-Pull Rods

The pitching moment, along with moment due to inertia, can be used to compute

the push-pull rod force.  Figure 34 shows the pivot point, the airfoils CG, and the location

of the push-pull rod for the blades.  These blades are turning at 650 RPM, which is equal

to 68 r/s.  The radius of the propeller is two feet; therefore the tip speed is 136ft/s.  The

normal acceleration on the blades can then be found from the kinematics equation listed

as equation 19.

It was found that the normal acceleration on the blades when the propeller is

spinning at 650 RPM is 9,266 ft/s^2.  This is equal to 288 g’s!  The second-generation

blades that were constructed weighed eight lbs.  This means that at operating RPM the

blades must support 2,300lbs.  With the pivot point not at the CG of the blade, the push-

pull rod has to support roughly half of the 2,300 lbs.  Taking the sum the moments about

the pivot point, the push-pull rods have to support 900 lbs, in addition to the aerodynamic

pitching moments produced by the blade.  At operating RPM and AoA, the pitching

moments produce about ±100 lbs in the push-pull rods.  The rods are now exposed to a

cyclic load of 800 lbs to 1000 lbs.  The frequency of the loading is one per rev, and it

does not take long for fatigue to appear.  A simple solution to the problem involves

making the third-generation blades with the pivot point at the CG of the airfoil.  This will

remove the inertia loads from the push-pull rods.

Comparison of the Computer Model and Test Data

Data was collected with the cycloidal propellers second-generation blades.  Figure

35 shows the lift generated as a function of RPM for the computer predictions and the
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measured lift from the propeller.  The curve with the circles is the test data, and the

circles are actual data points.  The dashed line is the computer predictions using the Real

Motion Unsteady Aerodynamics with Downwash.  As seen in the figure, this data fits the

measured data very well.

Figure 36 shows the power required by the propeller, as well as the computer

predictions.  There are two test data curves.  The solid curve with the circles, shows the

horsepower (HP), measured with the load cell on the swinging engine cradle, and the

solid curve with the diamonds is the HP measured with the differential lift method.  There

is good agreement between the two measurements of power, with the exception of a few

stray points.  The dashed curve in figure 36 is the computer prediction.  After comparing

the Wheatley data to the computer program and examining the Bosch cycloidal propeller,

it was found that the CD0 of the propeller was much higher than originally assumed.  To

match the power data shown in figure 36, the CD0 of the blades was adjusted, to 0.07.

This is not unreasonable, the arms of the propeller are essentially flat plates that are 2”

wide and extend from a radius of 0.5 foot to 2 feet.  When this drag alone is summed and

lumped to the blades, the CD0 is equal to 0.042.  When the interference drag, and the

natural CD0 of the blade is added, the total CD0 would approach the value of 0.07.
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CHAPTER VI

CONCLUSIONS

The purpose of his project was to create a computer model of a cycloidal

propeller, and then compare the predictions with the actual performance of a cycloidal

propeller.  To do this, three computer programs were created.  One used an ideal sine

motion of the blades, with steady aerodynamics.  The next program kept the ideal motion

and used unsteady aerodynamics developed by I. E. Garrick.  The final program used the

real motion of the cycloidal propeller combined with unsteady aerodynamics both with

and without downwash.

The real motion with unsteady aerodynamics with downwash was then compared

to test data taken from a cycloidal propeller constructed by Bosch Aerospace.  The

computer predictions agree well with measured lift and HP.

In the process of testing the first and second-generation blades on the cycloidal

propeller, much was learned about the fatigue nature of the cycloidal propeller.  Testing

of the first-generation blades on the cycloidal propeller showed that stiff blades were

needed to avoid excessive dihedral produced by centrifugal loads.  It was also learned

that tack welded aluminum does not have the fatigue resistance needed to survive in this

loading environment.

The second-generation blades were made of carbon fiber and were quite a bit

stiffer than the first-generation blades.  However, to mount the blades to the existing
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cycloidal propeller, two large holes had to be cut in the center of the blade.  This proved

to fatally weaken at least one blade and caused the failure of another in different test runs.

A third-generation blade is in the design phase and will incorporate all the lessons

learned in the previous blade sets.  The biggest change will be to move the pivot point

closer to the CG of the airfoil in order to unload the push-pull rods.  The other major

design change will be to move the pivot point outside of the blade to allow the blade to

have a full-length spar.  Other small changes are also being considered.

It may have noticed that the commanded blade angles are quite large for a

cycloidal propeller; this is because the downwash through the propeller tends to washout

the AoA of the blade.  During tuft testing of the cycloidal propeller, the stall commanded

blade angle was determined to be approximately 32° at 500 RPM.  Further work on stall

commanded blade angle as a function of RPM is planned.

The comparison of the computer model to the Wheatley data showed the forces to

be with 10% and the power to be with 15%.  Comparison with the Bosch Aerospace test

data showed the forces to be within 5% for the lift and power.
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APPENDIX A

FIGURES
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Figure 1.  Cantilevered Cycloidal Propeller

Figure 2.  Commanded Blade Angle
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Figure 3.  Coordinate System
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Figure 4.  Effect of the number of blades.
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Figure 5.  Lift and Drag

Figure 6.  Definition of variables in Unsteady Aerodynamics Equations

Figure 7.  Plot of F and G



44

44

4.9°

3.1°

26.7°

24.8°
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Figure 9.  Comparison of Ideal Motion and Real Motion
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Figure 10.  Typical Four-Bar System

Figure 11.  Definition of Propeller Motion
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Figure 15.  Commanded Phi needed for Forward Flight
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Figure 18.  Cam Shape Needed for Advance Ratios Equal to 0.5 and 1.5

Figure 19.  Cam Shape Needed for All Advance Ratios Between 0.0 and 2.0
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Figure 25.  Angular Acceleration of the Blade
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Figure 26.  Induced AoA caused by downwash
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Figure 27.  Total AoA of the blade
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Figure 28.  Lift of the Blade
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Figure 32.  Sketch of Test Rig

Figure 33.  3D View of Test Rig

Figure 34. Blade Measurements Used in Bosch Cycloidal Propeller
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APPENDIX B

MATHCAD PREGRAM
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ρ 0.0023769
lbf sec2⋅

ft4
⋅:= Density of air at sea level

φ 0.0 deg⋅:= Rotation of the lift vector

Start with some different theta's between 0 and 360 degrrees

θ 0 deg⋅ 1 deg⋅, 360 deg⋅..:=

Begain calculations

S Span C⋅:= S 4ft2= Area of one blade

AR
Span2

S
:= AR 4= Aspect ratio of the blade

CLa3D
2 π⋅ AR⋅

2
AR 2⋅ π⋅
CLa2D









2

4++

:= CLa3D 3.79= 3 D lift curve slope of the blade

β θ( ) βMax− sin θ φ−( )⋅:= Commanded blade angle

CL θ( ) CLa3D β θ( )⋅:= Lift coefficent

Lift θ( ) 1

2
ρ⋅ Vr2⋅ S⋅ CL θ( )⋅:= Lift for that blade

CD θ( ) CD0

CL θ( )2

π AR⋅ e⋅
+:= Drag coefficient

Drag θ( ) 1

2
ρ⋅ Vr2⋅ S⋅ CD θ( )⋅:= Drag for that blade

Cycloidal propeller program by integration for ideal motion with steady aerodynamics

RPM
π
30

rad

sec
⋅:=

Enter all of the blade data

Radius of the propeller Full span of the blades Chord of the blades Number of blades

R 2 ft⋅:= Span 4 ft⋅:= C 1 ft⋅:= numbld 6:=

Oswald effeciency of the blades 2-D lift curve slope of NACA 0012 Parisite drag coefficient of NACA 0012

e 0.4:= CLa2D 6.0161:= CD0 0.05:=

Enter other data about the cycloidal propeller

Ω 650 RPM⋅:= Ω 68.068
rad

sec
= Speed of the propeller

Vr R Ω⋅:= Vr 136.136
ft

sec
= Speed of the air at the blades

βMax 20 deg⋅:= Maximum commanded angle of attack
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Calculate the average lift for one blade,
Calculate the total lift generated by a propeller with X blades

Ave
θ

FZ θ( )∑
360

:= Ave 58.287lbf= Total_Lift Ave numbld⋅:= Total_Lift 349.722lbf=
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APPENDIX C

REAL MOTION UNSTEADY AERODYNAMICS PROGRAM
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C Real Motion with Unsteady Aerodynamics
      Implicit Real (A-Z)
      Dimension Theta(361,6),Theta2(361,6),Theta3(361,6),Theta4(361,6),
     +          Omaga3(361,6),Omaga4(361,6),Alpha(361,6),Acc3(361,6),
     +          Acc4(361,6),Vr(361,6),CL(361,6),CD(361,6),LftCrR(361,6),
     +          LftCrI(361,6),LiftAm(361,6),Lift(361,6),Drag(361,6),
     +          MontAm(361,6),MntCrR(361,6),MntCrI(361,6),Moment(361,6),
     +          Fz(361,6),Fx(361,6),TotalZ(361),TotalX(361),Torque(361),
     +          Power(361),RodF(361,6),BldAng(361,6),AoAWnd(361,6)
      Integer I, J, K, L
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCC Constants CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C Weight-The weight of a blade in lbs
C Numbld-The number of blades the system has
C RPM-The speed that the system rotates in rotations/min
C Radius-The radius of the system in ft
C Pd-Pivot distance-the distance from the pivot point to the push rod
C    in ft
C PivotP-Distance from LE to the pivot point in ft
C Cent-Distance from LE to centroid
C Span-The span of the blades in ft
C Chord-The chord of the blades in ft
C b-simi chord
C CD0-The paricite drag of the blades
C CLa2D-The 2D section lift coefficient
C Eff-The oswald efficiency factor
C Ck-The reduction factor for the unsteady lift equation
C Targ-The target for the iteration on TotalY done in the program
C Tol-Tollerance for the mentioned iteration
C Omaga-The angular speed of the system in r/s RPM-->r/s
C S-Blade area
C AR-Aspect ration for a blade
C CLA3d-The 3D lift curve slope for a blade
C Vwfz-Vwy(MPH)-->ft/s
C VwfX-Vwx(MPH)-->ft/s
C Mass1-Mass of the blade in front of the pivot point in slugs
C Mass2-Mass of the blade in behind of the pivot point in slugs
C Int-Mass moment of inertia for a blade based on slender rod
C     assumption in lb-ft-s^2
C Vz-The speed of the system from in Z direction in MPH
C Vx-The speed of the system from in X direction in MPH
C Vfz-The speed of the system from in Z direction in ft/s
C Vfx-The speed of the system from in X direction in ft/s
C F-Real part of the Lift/Moment-Lift/Moment reduction
C G-Imaginary part of the Lift/Moment-Lift/Moment Phase Shift
C
CCCCCCCCCCCCCCCCCCCCCCCCC Variables in the Program CCCCCCCCCCCCCCCCCCCCC
C
C Theta-Position Angle around the orbit measured from the X axis CCW
C BldAng-Commanded blade AoA
C Alpha-Angle of attack for the blades
C Omaga3-Angular velocity of the blades about its pivot point in rad/s
C Acc3-Angular acceleration of the blades about its pivot point in
C      rad/s^2
C Vtang-Local wind Tangent to blade in ft/s
C Vnorm-Local wind Normal to blade in ft/s
C Vr-Local wind velocity in ft/s
C CL-Coefficient of lift for a blade at an angle of attack
C CD-Coefficient of drag for a blade at an angle of attack
C LiftCr-Lift due to the circulatory term of the unsteady lift equation
C LiftAm-Lift due to the apparent mass term of the unsteady lift
C        equation
C Lift-The total lift of a blade-sum of the preceding two lift terms
C      in lbs
C Drag-The drag of a blade in lbs
C MontAm-The moment produced by apparent mass in ft-lbs
C MontCr-The moment produced by circulatory lift in ft-lbs
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C Moment-The total moment-sum of the preceding two moment terms in
C        ft-lbs
C Fz-The force in the Y direction produced by one blade in lbs
C Fx-The force in the X direction produced by one blade in lbs
C TotalY-The total forced produced by the system in the Y direction-the
C        sum of all the Fz's in lbs
C TotalX-The total forced produced by the system in the X direction-the
C        sum of all the Fx's in lbs
C Torque-The torque required to spin the system/overcome drag in ft-lbs
C Power-The power required to spin the system/overcome drag in HP
C RodFm-The push rod force needed to turn the blade due to the inertia
C       of the blade
C RodFam-The push rod force needed to turn the blade due to the apparent
C        inertia of the blade
C RodFcr-The push rod force needed to turn the blade due to the
C       aerodynamic moment created in ft-lbs
C RodF-The total push rod force needed to turn the blade-the sum of the
C      three preceding forces
C AveY-The average of all the total Y in lbs
C Roe-The density of air at sea level
C dtheta-The angle between the blades-sets the placement of the blades
C Phi-Rotation angle for the offset
C H-Vertical displacement in ft (+ downward)
C Hdot-Vertical velocity in ft/s (+ downward)
C Hddot-Vertical Acceleration in ft/s^2 (+ downward)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCC Input Data CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C Speed of System
      Vx=0.0
      Vz=0.0
C Number of Blades
      Numbld=6.0
C Rotations Per Minuet
      RPM=650.0
      Radius=2.0
      Span=4.25
      Chord=1.0
      Offset=-0.14
C Inertia Data
      Pd=0.323
      PivotP=0.292
      Weight=8.0
      Cent1=0.420025
      Area1=0.0818683505
      I1=0.00456508561
C Misc
      Phi=-3.63
      CD0=0.07
      Cla2D=6.0161
      Eff=0.26
      F=0.7
      G=-0.19
      H=0.0
      Hdot=0.0
      Hddot=0.0
C Iteration data
      TargZ=350.0
      Tol=0.125
      Numstp=360.0
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCC Constants CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
      Roe=0.0023769
      Pi=acos(-1.0)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCC Other Data to Calculate CCCCCCCCCCCCCCCCCCC
C
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      dtheta=2.0*Pi/Numbld
      Omaga=(2.0*Pi*RPM)/60.0
      Phi=-Phi*Pi/180.0
      S=Span*Chord
      AR=Span/Chord
      Print*, 'AR = ', AR
C      CLa3D=2.0*Pi*AR/(2.0+sqrt(((2.0*Pi*AR/CLa2D)**2)+4.0))
      CLa3D=CLa2D
      Print*, 'CLa3D =', CLa3D
      PP=sqrt((Radius**2)+(Pd**2))
      Vfz=(22.0/15.0)*Vz
      Vfx=(22.0/15.0)*Vx
      Vt=Radius*Omaga
      b=Chord/2.0
      a=PivotP-b
      Vi=0.0
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCC Open the data file CCCCCCCCCCCCCCCCCCCCCCCC
C
      Open(Unit=10,File='RawRU.txt',Status='unknown')
      Open(Unit=15,File='Raw2RU.txt',Status='unknown')
      Open(Unit=20,File='anglesRU.txt',Status='unknown')
      Write(10,5)
5     Format ('Theta',3x,'BldAng',3x,'AlphaW',4x,'Alpha',4x,'Omaga',7x,
     +        'Acc',7x,'CL',7x,'CD',2x,'LiftCrR',2x,'LiftCrI',3x,
     +        'LiftAm',5x,'Lift',4x,'Drag',2x,'MntCrR',2x,'MntCrI',3x,
     +        'MontAm',3x,'Moment',7x,'Fz',7x,'Fx')
      Write(15,10)
10    Format ('Theta',3x,'TotalZ',3x,'TotalX',5x,'RodF',2x,'Torque',3x,
     +        'Power',5x,'AveF')
      Write(20,15)
15    Format ('Theta',2x,'Theta2',3x,'Theta3',3x,'Theta4',3x,'Alpha',3x,
     +        'Omaga3',2x,'Omaga4',6x,'Acc3',6x,'Acc4')
C
CCCCCCCCCCCC Calculate the moment of inertia for the blade CCCCCCCCCCCCC
C
      Cent=Cent1*Chord
      Print*, ' '
      Print*, 'Cent =', Cent
      Area=Area1*(Chord**2)
      Print*, 'Area =', Area
      Int=I1*(Chord**4)
      Int=Int+Area*((Cent-PivotP)**2)
      Print*, 'Int =', Int
      Print*, ' '
C
CCCCCCCCC Calculate the blades moment due to centrifugal force CCCCCCCCC
C
      acc=(Vt**2)/(Radius)
      MomMas=((Weight/32.174)*acc)*(Cent-PivotP)
      RodFm=MomMas/Pd
C
CCCCCCCCCCCCCCCCCCCCCCCCCC Setting up the matrices CCCCCCCCCCCCCCCCCCCCC
C
20    Do 25 L=1,Numstp+1
        TotalZ(L)=0.0
        TotalX(L)=0.0
        Torque(L)=0.0
        Power(L)=0.0
25    Continue
      AveZ=0.0
      AveX=0.0
      AveTrq=0.0
      AvePow=0.0
C
CCCCCCCCCCCCCCCCCCCCCCCCC Final Constants Calculation CCCCCCCCCCCCCCCCCC
      Const1=Offset/Radius
      Const2=Offset/PP
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      Const3=((Radius**2)-(Pd**2)+(PP**2)+(Offset**2))/(2.0*Radius*PP)
      Const4=Offset/Pd
      Const5=((PP**2)-(Offset**2)-(Radius**2)-(Pd**2))/(2.0*Radius*Pd)
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC Begin the looping CCCCCCCCCCCCCCCCCCCCCCCC
C
C Begin theta loop
C
      Do 35 I=1,Numstp+1
C
C Begin Blade loop
C
        Do 30 J=1,Numbld
          Theta(I,J)=(I-1)*(2.0*Pi/Numstp)+(J-1.0)*dtheta
          If (Theta(I,J).gt.2.0*Pi) Then
            Theta(I,J)=Theta(I,J)-2.0*Pi
          End If
          Theta2(I,J)=Theta(I,J)+(Pi/2.0)+Phi
          If (Theta2(I,J).gt.2.0*Pi) Then
            Theta2(I,J)=Theta2(I,J)-2.0*Pi
          End If

  If (Theta2(I,J).lt.0.0) Then
            Theta2(I,J)=Theta2(I,J)+2.0*Pi
          End If
C Real Motion (Single pivot point)

  Const6=cos(Theta2(I,J))-Const1-Const2*cos(Theta2(I,J))+Const3
  Const7=-2.0*sin(Theta2(I,J))
  Const8=Const1-(Const2+1.0)*cos(Theta2(I,J))+Const3
  Const9=cos(Theta2(I,J))-Const1+Const4*cos(Theta2(I,J))+Const5
  Cont10=Const1+(Const4-1.0)*cos(Theta2(I,J))+Const5

          Theta3(I,J)=2.0*atan((-Const7-sqrt((Const7**2)-4.0*Const9*
     +                Cont10))/(2.0*Const9))

  BldAng(I,J)=Theta(I,J)-Theta3(I,J)+Phi
  If (BldAng(I,J).ge.Pi) Then
    BldAng(I,J)=BldAng(I,J)-2.0*Pi
  End If
  Theta4(I,J)=2.0*atan((-Const7-sqrt((Const7**2)-4.0*Const6*

     +                Const8))/(2.0*Const6))
  Omaga3(I,J)=(Vt*sin(Theta4(I,J)-Theta2(I,J)))/

     +                (Pd*sin(Theta3(I,J)-Theta4(I,J)))
  Omaga4(I,J)=(Vt*sin(Theta2(I,J)-Theta3(I,J)))/

     +                (PP*sin(Theta4(I,J)-Theta3(I,J)))
  Cont11=PP*sin(Theta4(I,J))
  Cont12=Pd*sin(Theta3(I,J))
  Cont13=Radius*(Omaga**2)*cos(Theta2(I,J))+Pd*(Omaga3(I,J)**2)*

     +       cos(Theta3(I,J))-PP*(Omaga4(I,J)**2)*cos(Theta4(I,J))
  Cont14=PP*cos(Theta4(I,J))
  Cont15=Pd*cos(Theta3(I,J))
  Cont16=-Radius*(Omaga**2)*sin(Theta2(I,J))-Pd*(Omaga3(I,J)**2)

     +           *sin(Theta3(I,J))+PP*(Omaga4(I,J)**2)*sin(Theta4(I,J))
  Acc3(I,J)=(Cont13*Cont14-Cont11*Cont16)/(Cont11*Cont15-

     +              Cont12*Cont14)
  Acc4(I,J)=(Cont13*Cont15-Cont12*Cont16)/(Cont11*Cont15-

     +              Cont12*Cont14)
  Omaga3(I,J)=Omaga-Omaga3(I,J)
  Acc3(I,J)=-Acc3(I,J)

C
C End Acceleration calculations, begin aerodynamic calculations
C

  Vnorm=-(Vfx+Vi*sin(Phi))*cos(Theta(I,J))+
     +          (Vfz+Vi*cos(Phi))*sin(Theta(I,J))

  Vtang=Vt-(Vfz+Vi*cos(Phi))*cos(Theta(I,J))-
     +          (Vfx+Vi*sin(Phi))*sin(Theta(I,J))

  Vr(I,J)=Sqrt((Vtang**2)+(Vnorm**2))
  AoAWnd(I,J)=atan(Vnorm/Vtang)

C
C Take into account advance ratio's greater than 1
C

  If (Vtang.lt.0.0) Then
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    AoAWnd(I,J)=AoAWnd(I,J)-Pi
  End If
  If (Vnorm.gt.0.0.and.Vtang.lt.0.0) Then
    AoAWnd(I,J)=2*Pi+AoAWnd(I,J)
  End If
  Alpha(I,J)=BldAng(I,J)+AoAWnd(I,J)

C
  LiftAm(I,J)=Roe*(b**2)*(Vr(I,J)*Pi*Omaga3(I,J)+Pi*Hddot-

     +                Pi*b*a*Acc3(I,J))*Span
  LftCrR(I,J)=CLa3D*Roe*Vr(I,J)*b*F*(Vr(I,J)*Alpha(I,J)+Hdot+

     +                b*(0.5-a)*Omaga3(I,J))*Span
  LftCrI(I,J)=((CLa3D*Roe*Vr(I,J)*b*G)/Omaga)*(Vr(I,J)*

     +                Omaga3(I,J)+Hddot+b*(0.5-a)*Acc3(I,J))*Span
          Lift(I,J)=LiftAm(I,J)+LftCrR(I,J)+LftCrI(I,J)
C
          CL(I,J)=Lift(I,J)/(0.5*Roe*(Vr(I,J)**2)*S)
          CD(I,J)=CD0+((CL(I,J)**2)/(Pi*AR*Eff))
          Drag(I,J)=0.5*Roe*(Vr(I,J)**2)*S*CD(I,J)
C

  MontAM(I,J)=-Roe*(b**2)*(Pi*(0.5-a)*Vr(I,J)*b*Omaga3(I,J)-
     +                Pi*(b**2)*(0.125-a**2)*Acc3(I,J))*Span

  MntCrR(I,J)=CLa3D*Roe*Vr(I,J)*(b**2)*(0.5+a)*F*(Vr(I,J)*
     +                Alpha(I,J)+Hdot+b*(0.5-a)*Omaga3(I,J))*Span

  MntCrI(I,J)=((CLa3D*Roe*Vr(I,J)*(b**2)*(0.5+a)*G)/Omaga)*
     +                (Vr(I,J)*Omaga3(I,J)+Hddot+b*(0.5-a)*Acc3(I,J))*
     +                Span
          Moment(I,J)=MontAm(I,J)+MntCrR(I,J)+MntCrI(I,J)+MomMas
C
          Fz(I,J)=-(Lift(I,J)*sin(Theta(I,J)+AoAWnd(I,J)))+
     +   (Drag(I,J)*cos(Theta(I,J)+AoAWnd(I,J)))
          Fx(I,J)=(Lift(I,J)*cos(Theta(I,J)+AoAWnd(I,J)))+
     +   (Drag(I,J)*sin(Theta(I,J)+AoAWnd(I,J)))
C
          TotalZ(I)=TotalZ(I)+Fz(I,J)
          TotalX(I)=TotalX(I)+Fx(I,J)

  Force=-Lift(I,J)*sin(AoAWnd(I,J))+Drag(I,J)*cos(AoAWnd(I,J))
          Torque(I)=Torque(I)+((-Lift(I,J)*sin(AoAWnd(I,J))+
     +              Drag(I,J)*cos(AoAWnd(I,J)))*Radius)
          Power(I)=Power(I)+(((-Lift(I,J)*sin(AoAWnd(I,J))+
     +             Drag(I,J)*cos(AoAWnd(I,J)))*Vt)/550.0)+
     +             (Lift(I,J)*Hdot-Moment(I,J)*Omaga3(I,J))/550
          RodF(I,J)=(MontAm(I,J)/Pd)+(MntCrR(I,J)/Pd)+(MntCrI(I,J)/Pd)+
     +              RodFm
30      Continue
        AveZ=AveZ+(TotalZ(I)/(Numstp+1))
        AveX=AveX+(TotalX(I)/(Numstp+1))

AvePow=AvePow+(Power(I)/(Numstp+1))
AveTrq=AveTrq+(Torque(I)/(Numstp+1))

35    Continue
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCC End the looping CCCCCCCCCCCCCCCCCCCCCCCCCCC
C
      Ave=Sqrt((AveZ**2)+(AveX**2))
      Phi2=atan(AveX/AveZ)
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC Down Wash Loop CCCCCCCCCCCCCCCCCCCCCCCC
C
      Vi2=sqrt(Ave/(2.0*Roe*2.5*Radius*Span))
      If (Vi2.gt.Vi+Tol.or.Vi2.lt.Vi-Tol) Then

Print*, AveZ, AveX, Ave
Print*, Vi, Vi2
Print*, ' '
Vi=(Vi+Vi2)/2.0

      Else
Print*, 'Down Wash Agreement'
Print*, 'Vi =', Vi
Print*, 'Vi2 =', Vi2
Go to 40
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      End If

      If (AveX.gt.Tol.or.AveX.lt.-Tol) Then
        Phi=Phi+0.0005*AveX
      End If
      Go to 20
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC Phi Iteration CCCCCCCCCCCCCCCCCCCCCCCCCC
C
40    If (AveX.gt.Tol.or.AveX.lt.-Tol) Then

Print*, ' '
Print*, 'Phi Iteration'
Print*, AveZ, AveX, Ave
Print*, Phi*180.0/Pi, Phi2*180/Pi
Print*, 'Phi Iteration'
Print*, ' '
Phi=Phi+0.0005*AveX
Go to 20

      End If
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCC Offset Iteration CCCCCCCCCCCCCCCCCCCCCCCC
C
      If (AveZ.gt.TargZ+Tol.or.AveZ.lt.TargZ-Tol) Then

Print*, ' '
Print*, 'Offset Iteration'

        Print*, 'Offset = ', Offset
Print*, 'AveZ = ', AveZ
Print*, 'Phi2 = ', Phi2*180.0/Pi
Print*, ' '
Print*, ' '

        Offset=Offset+(0.0002)*(AveZ-TargZ)
        Go to 20
      End If
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCC Screen out all the data CCCCCCCCCCCCCCCCCCC
C
      Print*, ' '
      Print*, 'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC'
      Print*, 'RPM=', RPM
      Print*, 'Offset=', Offset
      Print*, 'Beta Max =', BldAng(270,1)*180.0/Pi
      Print*, 'Beta Min =', BldAng(90,1)*180.0/Pi
      Print*, 'Average Z =', AveZ
      Print*, 'Average X =', AveX
      Print*, 'Ave=', Ave
      Print*, 'Commanded Phi=', Phi*180.0/Pi
      Print*, 'Actual Phi=', Phi2*180.0/Pi
      Print*, 'HP=', AvePow
      Print*, 'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC'
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCC Print out all the data CCCCCCCCCCCCCCCCCCCC
C
      Do 60 K=1,Numstp+1
        Write(10,45) Theta(K,1)*180.0/Pi,BldAng(K,1)*180.0/Pi,
     +               AoAWnd(K,1)*180.0/Pi,Alpha(K,1)*180.0/Pi,
     +      Omaga3(K,1),Acc3(K,1),CL(K,1),CD(K,1),LftCrR(K,1),
     +      LftCrI(K,1),LiftAm(K,1),Lift(K,1),Drag(K,1),
     +      MntCrR(K,1),MntCrI(K,1),MontAm(K,1),Moment(K,1),
     +      Fz(K,1),Fx(K,1)
45      Format (f5.1,2x,f7.2,2x,f7.2,2x,f7.2,2x,f7.2,2x,f8.2,2x,f7.4,2x,
     +          f7.4,2x,f7.2,2x,f7.2,2x,f7.2,2x,f7.2,2x,f6.2,2x,f6.2,2x,
     +          f6.2,2x,f7.2,2x,f7.2,2x,f7.2,2x,f7.2)
        Write(15,50) Theta(K,1)*180.0/Pi,TotalZ(K),TotalX(K),RodF(K,1),
     +               Torque(K),Power(K),
     +               sqrt((TotalZ(K)**2)+(TotalX(K)**2))
50      Format (f5.1,2x,f7.2,2x,f7.2,2x,f7.2,2x,f6.2,2x,f6.2,2x,f7.2)
        Write(20,55) Theta(K,1)*180.0/Pi, Theta2(K,1)*180.0/Pi,
     +               Theta3(K,1)*180.0/Pi, Theta4(K,1)*180.0/Pi,
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     +               Alpha(K,1)*180.0/Pi, (Omaga3(K,1)-Omaga),
     +               Omaga4(K,1), Acc3(K,1), Acc4(K,1)
55      Format (f5.1,2x,f6.2,2x,f7.2,2x,f7.2,2x,f6.2,2x,f7.2,2x,f6.2,2x,
     +          f8.2,2x,f8.2)
60    Continue
      End


