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FOREWORD 

Literature in the field of nomography is nowadays so extensive 
tha t in many languages textbooks of nomography and collections 
of nomograms for various branches of technology are published 
separately. 

This book is not a collection of nomograms but a manual 
to teach nomography. The examples contained in it are not 
meant to give ready-made solutions for the use of engineers but 
serve as illustrations of the methods of constructing nomograms ; 
tha t is why most of them are given without any comment regarding 
the technical problems from which they have arisen. 

The importance of geometrical transformations, and partic-
ularly projective transformations of a plane, has been specially 
stressed. The traditional method of providing the best form 
of a nomographic drawing within the given variability limits 
of the parameters occurring in the equation, a method consisting 
in a suitable choice of units for various functional scales, has 
been replaced in this manual by a method of transforming an 
arbitrary nomogram satisfying the given equation. Thus the 
finding of the so called modules, which is different for every 
type of equations dealt with in nomography, has been replaced 
by one method: a projective transformation of an arbitrary 
quadrilateral into a rectangle. 

Accordingly, Chapter I begins with the necessary informa-
tion on the projective plane and collineation transformations. 
They have been approached both from the geometrical and the 
algebraical point of view: the geometrical approach aims a t 
permitting the use of elementary geometrical methods in drawing 
collineation nomograms consisting of three rectilinear scales 
(§§ 10-13) while the algebraical t reatment concerns nomograms 
containing curvilinear scales. The necessary algebraic calculation 
has been developed as a uniform procedure involving the use 
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8 FOREWORD 

of the matrix calculus. The chapter ends with information on 
duality in the plane. 

Chapter I I contains the fundamental data concerning functio-
nal scales. 

In the first par t of Chapter I I I those equations are singled 
out which can be represented by elementary methods without 
the use of a system of coordinates. Those equations are most 
frequent in practice and it has seemed advisable to give the 
simplest methods for them. The remaining cases (§§ 15-19) 
require the use of algebraic calculation. The second par t of Chapter 
I I I deals with nomograms with a binary field (lattice nomo-
grams) : it has been stressed t ha t from the algebraical point of 
view it is only necessary to pass from the coordinates of a point 
to the coordinates of a straight line. 

In Chapter IV the methods discussed in the preceding chapters 
are used for constructing combined nomograms. 

Chapter V is an introduction to mathematical problems which 
have arisen in the analysis of the methods of constructing nomo-
grams. Besides solutions known in literature, such as the so 
called Massau method and the criterion of Saint Robert, § 31 
contains an algebraic criterion of nomogrammability of functions, 
which is a realisation of an idea of Duporq (Comptes Rendus 1898). 
I t finally solves a problem which has only partially been solved 
by other authors, who have been using complicated, practically 
inapplicable methods. 

My manuscript has been revised and corrected in various 
places by Dr. K. Kominek from Prague, for which I owe him 
sincere thanks. 

T H E AUTHOR 



C H A P T E R I 

INTRODUCTION 

§ 1. Nomograms 

Nomograms are drawings made on a plane in order to replace 
cumbersome numerical calculations occurring in technology by 
simple geometrical constructions. Figure 1 is an example of 
a nomogram of this kind. I t is closely connected with the formula 

The numerical values of the variable G are represented in 
the figure by points of the segment marked with the letter G\ 

each number contained between 1000 and 10000 has a point 
of this segment corresponding to it, and vice versa ; in Fig. 1 only 
the points corresponding to numbers 1000, 2000, . . . , 10000 are 
marked, but it should be understood of course tha t intermediate 
points correspond to intermediate values. The same can be said 
of the numerical values of the variable d contained between the 
numbers 40 and 350 and the segment marked by the letter d in 
the figure, as well as of the numerical values of the variable 
Δ and the segment Δ in the nomogram. Now the close relation 
between Fig. 1 and formula (1.1) consists in the fact tha t the 
three numbers G0, d0 and Δ0 satisfy equation (1.1) if and only 
if the three points of the nomogram corresponding to those points 
lie on the same straight line. By way of example, points G0 = 2238, 
d0 = 82 and Δ0 = 1*52 have been marked on the nomogram. 
We thus see tha t the calculation necessary to findzl0 with given 
G0 and d0 is equivalent to the determination of a straight line 
joining points G0 and d0 in the nomogram, fixing the point of 
intersection of tha t line with segment Δ and reading the corres-
ponding number Δ0. 

Let us disregard for the present the method of executing Fig. 1 

9 
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10 NOMOGRAPHY 

(which will be dealt with in Chapter III) and consider the advis-
ability of constructing geometrical figures like the nomogram 
in Fig. 1. To begin with, it should be observed that the nomogram 
in question permits us to read number Δ0 only with a limited 
accuracy, depending of course on the magnitude of the segment 
corresponding to the given interval on Δ ; if that segment were 

d 
350-2 

? 
300-2 

2502. 

2001 

— 
150-

-
100-

: 
~ 

80 -_ 
: 

70-_ 

-
60 z 

: 

50 : 

-
40-

Δ 

-0002 
z0003 

10005 

^0-01 

'-0O2 
-003 

\θ05 

L 0 4 

-02 / ^ 
-03

\ 0-5

~ l · ^^ 
'-2 
73 

[5 
Li° 
: 
-20 
730 

150 

^100 

'- 180 

G 

riooo 

71500 

-2000 

-2500 

~r3000 

: 
-4000 
~z 

\5000 

zr6000 

r7000 

~T8000 

\9000 
-10000 

F I G . 1 

longer, the accuracy would be greater. The same applies to 
the remaining two segments, marked in Fig. 1 with letters G and d. 
In order to increase the reading accuracy we could thus enlarge 
the drawing (just as we use logarithmic tables with a larger 
number of digits in order to increase the accuracy of numerical 
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INTRODUCTION 11 

calculations). Obviously, we can restrict ourselves to enlarging 
only the lengths of the lines for instance, leaving their distance 
from one another unchanged, i.e. we can make a transformation 
of the plane of the drawing according to the formulas 

ξ = x, η = ky, where k > 1 (1.2) 

(it is assumed here tha t the segments G, d and A are parallel 
to the axis y); as we know, three points of a plane tha t lie on 
a straight line will be changed by this transformation into three 
new points also lying on a (new) straight line. (The transforma-
tion defined by formulas (1.2) produces an elongation of the 
plane in the direction of the axis y.) Therefore, if three numbers 
6r0, A0 and d0 satisfy equation (1.1), then the points corresponding 
to those numbers after a transformation according to formulas 
(1.2) will, in the new drawing, also lie on a straight line. The new 
drawing will also be a nomogram for the given equation. I t can 
thus be seen t ha t a nomogram corresponding to formula (1.1) 
may yield a new nomogram by being subjected to a suitable 
transformation. We are of course interested only in those transfor-
mations which to each three points tha t are collinear, i.e. lie 
on a straight line, assign three new points also lying on a (different) 
straight line. I t can be seen tha t the transformations defined 
by formulas (1.2) are not the only transformations of this kind; 
there are a great many such transformations. The choice of a suit-
able transformation to obtain the best form of the nomogram 
is of essential importance in nomography. 

Mappings of a plane which transform every triple of collinear 
points into another triple of collinear points constitute one of 
the branches of projective geometry. Our exposition of nomo-
graphy will be preceded by a discussion of the basic notions 
and theorems of tha t branch of geometry. 

§ 2. Projective plane 

2.1. Consider two planes αλ and a2 and a point S not lying 
on either of them (Fig. 2). To a point P1 of the plane ax let 
us assign such a point P2 of the plane a2 as to make the three 
points Pl9 P 2 , and S collinear. We can immediately observe 
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tha t this agreement assigns to every point of the plane a± a certain 
point of the plane a2 if and only if the plane a2 is parallel to the 
plane av If the plane a2 were not parallel to the plane al9 the 
points of the straight line nlt along which the plane ax intersects 
the plane a2 parallel to a2 and passing through the point S, 

F I G . 2 

would have no counterparts on the plane a2. Indeed, joining 
the point Νλ lying on the straight line nx to the point S in order 
to find the corresponding point N2, we should see tha t the 
straight line obtained would be parallel to the plane a2 (as one 
lying in the plane a2). Conversely, points corresponding to the 
points of the plane ax do not fill the whole plane a2, for we 
see tha t no point of the straight line z2 (the intersection edge 
of the plane a2 and the plane a[ parallel to ax and passing through 
the point S) would correspond to any point of the plane av 

Observe tha t if the points Pl9 Ql9 and Rt lying on the plane 
ατ have corresponding points P2 , Q2, and R2 lying on the plane 
a2 and one of these triples of points is collinear, then the other 
three points are also collinear (the points S, Pv P2, Rv R2, Ql9 

and Q2 are then lying on the same plane). We thus have here 
a transformation of the kind discussed in the preceding section. 

We find, however, tha t the use of this kind of transformations 
involves considerable difficulties, due to the fact tha t there 
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exist exceptional points and exceptional straight lines (the straight 
line nx on the plane a± and the straight line z2 on the plane a2), 

which have no counterparts on the other plane. Thus, for instance, 
to the straight lines of the plane a2 which pass through the point 
Z2 lying on the straight line z2 (Fig. 3) there would correspond 
lines which are parallel on the plane alt i.e. such as have no 
point in common. However, in the set of all straight lines passing 
through the point Z2 (and forming a so called pencil of lines) 

there is a straight line z2 which has no counterpart on the plane a2 ; 
consequently, the parallel lines form a set containing one element 
less than the set of the straight lines passing through the point Z2. 

FIG. 3 

In order to remove the inconvenience caused by the absence 
of points which would correspond to the exceptional points (on 
z2 or on nx) of the other plane, we extend the concept of 
plane in the following manner: 

We are accustomed to the use of the notion of direction in 
geometry. Let us include in the set of all points of a plane the 
set of all directions. In order to signify tha t directions will 
be regarded as elements of the same kind as points, let us call 
them points at infinity. We shall denote them, just as ordinary 
points (called ordinary points), by the letters A, B, ...,P adding 
the index oc: thus A™,B"°,..., P°°. Let us make one more agree-
ment : instead of saying tha t "the straight line p has the di-
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rection ^4°°" we shall say tha t "the straight line p passes through 
the point ^4°°" or tha t "the point A™ lies on the straight 
line p", and instead of saying tha t "two straight lines have 
a common direction I?00" we shall say tha t "two straight lines 
intersect a t the point i?00". I t will be observed tha t on a plane 
extended in this manner every two straight lines have a point 
in common (i.e. intersect); tha t point is an ordinary point or 
a point a t infinity. The set of all points at infinity on a plane 
will be called the straight line at infinity. The straight line 
a t infinity has one point in common with every ordinary straight 
line — it is the point at infinity of tha t line. A plane extended 
by points at infinity is called a projective plane. An ordinary 
plane, without points at infinity, is called a Euclidean plane. 

Now if ax and a2 are projective planes, it can easily be seen 
tha t there is a correspondence between the points of the plane 
a2 which lie on the straight line z2 and the points at infinity of 
the plane αλ and between the straight line z2 and the straight 
line at infinity z™ of the plane a2. Thus the correspondence 
defined at the beginning of this section and applied to the 
projective planes αλ and a2 is a transformation which changes 
the whole projective plane ax into the whole projective plane 
a2; it is termed a projective transformation of the planes ax and 
a2. Henceforth, by a plane we shall mean a projective plane. 

2.2. As we know, a Euclidean plane can be represented analy-
tically as a set of ordered pairs of numbers x and y (the so-
called coordinates) : points lie on a straight line if and only if 
their coordinates satisfy an equation of the first degree, i.e. an 
equation of the type ax+by-\-c = 0 in which a 2 + 6 2 > 0. 

The question arises how to represent analytically a projective 
plane. If we retain numbers x and y as the coordinates of an 
ordinary point, what should we assume as the coordinates of a 
point a t infinity? In order to answer this question let us take 
two straight lines intersecting at a point a t infinity: 

ax+by+c = 0 and ax+by+c' = 0 where c φ c'. (2.1) 

There are of course no numbers x and y tha t would satisfy 
both equations. However, write the ratio x1jx3 instead of x and 
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the ratio x2jxz instead of y. We obtain the equations 

a^+b^l+c = 0 and a-^+6 —+c' = 0 

or 

ax1+bx2-\-cxz = 0 and ax1-\-bx2
J
rc'x3 = 0. 

I t will be observed tha t the last two equations are satisfied 
if and only if we take 0 as x3. As xx and x2 we can take for instance 
the numbers b and —a. This suggests the idea of regarding the 
numbers xx = b, x2 =—a and x3 = 0 as the coordinates of 
the point a t infnity of the straight lines (2.1) on the projective 
plane. If x3 = 0, then every three numbers χλ, χ2 and x3 will be 
regarded as three coordinates of the new kind of the point 
(x1/x3, #2/^3)· Such three numbers xr, x2, x3 will be called homo-

geneous coordinates on the projective plane. 
The equation of the straight line will then be changed into 

the homogeneous equation ax1
J
rbx2

J
rcx3 = 0. Therefore, if a 

certain triple xl9 x2, x3 satisfies this equation, every proportion-
al triple kxl9 kx2, kx3 will also satisfy it. I t will be observed tha t 
every triple of numbers with the third number equal to 0, which 
is inadmissible in the substitution x = xx/x3 and y = x2'l^

 c a n 

be regarded, as we have just seen, as three coordinates of a 
point a t infinity, since, if it satisfies the equation of a certain 
straight line ax1-\-bx2-{-cx3 = 0, then it satisfies also the equation 
of every parallel line ax1

J
rbx2-\-c

,x3 = 0 for an arbitrary c'. 

Thus every triple of numbers xl9 x2, x3 with the excep-
tion of the triple 0, 0, 0 has a corresponding point on the pro-
jective plane, the same point corresponding to proportional 
threes. Thus the equation of the straight line on a projective 
plane is the homogeneous equation u1x1-\-u2x2-\-

/u3x3 = 0 in which 
the coefficients ult u2, uz are not all equal to zero. 

E.g. the equation of a straight line at infinity is of the form 

Ο ^ + Ο ^ + ^ = 0> i-e- x3 — 0, 

since it is satisfied by every triple of numbers xv x2, 0. Similar-
ly, the axis x has the equation x2 = 0 and the axis y the equa-
tion xx = 0. 
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§ 3. Projective (collineation) transformations 

3.1. A one-to-one correspondence between the points of two 
projective planes αλ and a2 (different or not) in which every 
triple of collinear points has a triple of collinear points assigned 
to it on the other plane is called a collineation transformation. 

The correspondence defined at the beginning of the preceding 
section (Fig. 2) provides an example of a collineation transforma-
tion. In tha t correspondence the points Xx and X2 of the planes 
a2 and a2 correspond to each other only if the straight line XXX2 

contains a certain fixed point S belonging neither to αλ nor to a2 ; 
for, as we have seen, in tha t transformation three collinear points 
always change into three collinear points. 

I t will be observed tha t if we take two collineation transform-
ations (Fig, 4) : 1° between the planes αλ and a2 and 2° between 

a) b) 
F I G . 4 

the planes a2 and a3, we can define a new transformation between 
the planes a2 and a3 regarding as corresponding points such 
two points Xx and X2 as correspond on the strength of trans-
formations 1° and 2° to the same point X2 of the plane a2. 

In Fig. 4 the above is shown in the case where both the trans-
formation of a± into a2 and the transformation of a2 into a3 are 
central projections (from point S and from point Sx) of one 
plane upon another. In Fig. 4a the planes αλ and a3 are dif-
ferent from each other, and in Fig. 4b a± = a3. 

The transformation of the plane αλ into the plane a3 is a col-
lineation transformation because the condition tha t collinear 
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threes of points should be changed to collinear threes is a transitive 
property. A transformation of the plane ax into the plane a3 

obtained by means of the transormations of αλ into a2 and a2 

into a3 is called a combined transformation or a superposition of two 
transformations. Obviously a transformation of the plane αλ into 
the plane an obtained by a combination of a finite number of 
projective transformations 

αλ into a2, a2 into a3, ..., αη_Ύ into α„, 

and also called a projective transformation, is a collineation trans-
formation. 

Our further considerations will concern certain properties of 
projective tranformations and a proof of a theorem that is essen-
tial for our purpose: 

Let Av Bl9 Cx and D1 be four arbitrary points on the plane ax no 
three of which are collinear, and let A2, B2, C2 and D2 be four 
arbitrary points on the plane a2 no three of which are collinear. 
Then there exists one and only one projective transformation of 
the plane αλ into the plane a2 such that point Αλ is changed to point 
A2, point B± to point B2, point C1 to point C2 and point Dx to 
point D2. 

In the proof we shall use both geometrical and analytical 
methods according to which of them give quicker results. We 
shall also find analytical methods of representing projective 
transformations. 

3.2. On an arbitrary straight line let us take two ordinary 
points A and B and an arbitrary point C different from point B 
(Fig. 5). Assume that a unit of measure and the sense on the 
straight line have been chosen. The fraction 

injvvhich AC and BC denote the measures of the vectors AC and 
BC (i.e. lengths provided with a suitable sign depending on the 
sense), is called the division ratio for the point C with respect 
to the points A and B. 
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I t will be observed tha t the number Xc does not depend either 
on the unit (by a change of the unit the numerator and the de-
nominator will be increased by the same factor) or on the sense 
(the change of vectors AC and BC to the opposite sense will 
cause a change of the sign both in the numerator and in the deno-
minator). The number Xc thus depends only on geometrical 
properties (on the position of the point C with respect to the 
points A and B). I t will be seen tha t for points lying between 

A C C B D D' 
O O 0 0 0 0 » 

F I G . 5 

the points A and B, for instance for the point 0 , we have Xc < 0, 
while for external points, for instance for the point D, we have 
XD > 0. I t is easy to see tha t for two different points X and Y 

we always have λχ φλΎ. Indeed, if both points were internal, 
like the points C and C for instance, then for AC > AC we 
should have Ac > λ& ; if, however, both points were external, 
like the points D and D' for instance, then for BD < BD' we 
should have 

, AD' AB , BD' AB BD AD 

BD' BD' BD' BD BD BD 

The definition of the division ratio does not comprise the 
point a t infinity. In view of the fact tha t for every sequence of 
points D1} D2, ..., Dn, ... divergent to infinity we have 

n-+oo BDn 

we assume XD°o = 1. 
If we are given four points A, B, C, D on a straight line 

and a t least the first two of them are ordinary points, then 
the number 

Ac : AD 

is called the cross-ratio of the four points A, B, C, D and de-
noted by the symbol (ABCD). 
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Obviously, if the pair of points A, B separates the pair of 
points C, D (i.e. if one point of the second pair lies inside the 
segment AB and the other point lies outside the segment AB), 

then (ABCD) < 0 because the numbers Xc and XD have opposite 
signs, while if the pairs of points A, B and C, D do not separate 
each other, i.e. either the points G and D lie inside the segment 
AB or the points C and D lie outside the segment AB, then 
(ABCD) > 0. 

In geometrical constructions fours of points for which the 
cross-ratio has the value —1 are particularly frequent: we call 
them harmonic fours. 

EXAMPLE. Let A and B be two ordinary points, S the mid-
-point of the segment AB and 2V°° a point a t infinity. Since Xs 

= A8/B8= — l and ANoo = 1, we have (ABSN°°) = λ8 : λΝ<*> =-l 

and thus the four points A, B, S, N°° are a harmonic four. 
Having three arbitrary points A, B, C of a straight line p 

let us assign to each point of the line p a number x=(ABCX). 

I t can easily be seen tha t the function defined in this way is 
reflexive, i.e. such tha t for different points X and X' we have 
x φ x . Indeed, x = Xc : λχ, and for different points X and X' 

we have λχ Φ λχ> ; consequently x φ χ'. 

3.3. Let A, B, C, D (Fig. 6) be ordinary points of the straight 
line p and W a point tha t does not lie on the line p. Joining the 

point W to the points A, B, C, D we obtain the straight lines 
a, b, c, d. At the vertex W let us choose a sense agreeing with 
the sense chosen on the line p (i.e. such tha t the angle (ac) 

FIG. 6


